1
|
Chin FW, Chan SC, Chau DM, Ong TA, Abdul Razack AH, Yusoff K, Veerakumarasivam A. HOXA13 promotes immune evasion in bladder cancer by suppressing antigen processing and presentation, and phagosome pathways. Funct Integr Genomics 2025; 25:44. [PMID: 39994130 DOI: 10.1007/s10142-025-01553-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Homebox A13 (HOXA13) and homeobox B13 (HOXB13) expression dysregulation have been previously reported in bladder cancer. However, their roles in bladder carcinogenesis remain unclear. This study characterizes the distinct transcriptomic profile and pathway enrichment of HOXA13 and HOXB13 knockdown in bladder cancer cells. Separate in vitro knockdown models for HOXA13 and HOXB13 were established using small interfering RNAs (siRNAs), and knockdown efficiency was validated through reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Transcriptomic profiling was conducted using RNA sequencing, followed by differential gene expression analysis, and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis. HOXA13 knockdown significantly enriched pathways that are associated with immune evasion (i.e. antigen processing and presentation pathway, and phagosome pathway) through the upregulation of major histocompatibility complex (MHC) class I and II genes. These findings highlight the pivotal role of HOXA13 in promoting immune evasion in bladder cancer. Meanwhile, HOXB13 knockdown significantly enriched estrogen signaling pathway and PI3K-Akt signaling pathway, which are critical for cell proliferation and survival. While the role of HOXB13 in bladder cancer progression requires further delineation, the primary focus of this study is on HOXA13 due to its involvement in immune evasion mechanisms. This study provides novel insights into the potential therapeutic strategies for targeting HOXA13 in bladder cancer, and highlights the distinct roles of HOXA13 and HOXB13 in bladder carcinogenesis.
Collapse
Grants
- FP0514B0021-2 (DSTIN) Ministry of Energy, Science, Technology, Environmental and Climate Change, Malaysia
- FP0514B0021-2 (DSTIN) Ministry of Energy, Science, Technology, Environmental and Climate Change, Malaysia
- FP0514B0021-2 (DSTIN) Ministry of Energy, Science, Technology, Environmental and Climate Change, Malaysia
- FRGS/2/2014/SKK01/PERDANA/03/01 Ministry of Higher Education, Malaysia
- FRGS/2/2014/SKK01/PERDANA/03/01 Ministry of Higher Education, Malaysia
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Soon-Choy Chan
- School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia.
- Centre for Pre-University and General Studies, Perdana University, 50490 Kuala Lumpur, Malaysia.
- National Institutes of Biotechnology Malaysia, Malaysia Genome and Vaccine Institute, 43000, 43000 Kajang, Selangor, Malaysia.
| | - De-Ming Chau
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Teng-Aik Ong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Khatijah Yusoff
- National Institutes of Biotechnology Malaysia, Malaysia Genome and Vaccine Institute, 43000, 43000 Kajang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Abhi Veerakumarasivam
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- School of Medical and Life Sciences, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia.
- National Institutes of Biotechnology Malaysia, Malaysia Genome and Vaccine Institute, 43000, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
2
|
Tomczak K, Patel MS, Bhalla AD, Peterson CB, Landers SM, Callahan SC, Zhang D, Wong J, Landry JP, Lazar AJ, Livingston JA, Guadagnolo BA, Lyu HG, Lillemoe H, Roland CL, Keung EZ, Scally CP, Hunt KK, McCutcheon IE, Slopis JM, Gu J, Scheet P, Wang L, Rai K, Torres KE. Plasma DNA Methylation-Based Biomarkers for MPNST Detection in Patients With Neurofibromatosis Type 1. Mol Carcinog 2025; 64:44-56. [PMID: 39600120 PMCID: PMC11636586 DOI: 10.1002/mc.23825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 11/29/2024]
Abstract
Malignant peripheral nerve sheath tumor (MPNST) development is characterized by an altered DNA methylation landscape, which presents a promising area for developing MPNST-specific biomarkers for screening patients with NF1. Genome-wide DNA methylation profiling of a cohort of 13 patients with MPNST (29 samples of tumor and adjacent neurofibroma tissues) and of NF1-MPNST cell lines was performed to identify and validate candidate MPNST-specific CpG sites (CpGs). A logistic regression prediction model was constructed to select MPNST-specific CpGs distinct from adjacent neurofibromas and normal tissues. To test if hypermethylation at selected CpGs can also be detected in plasma from patients with MPNST, cfMBD-seq was applied to profile the cfDNA methylome of blood from patients with MPNST and NF1. Based on stringent feature-selection criteria and predictive modeling, we identified 73 candidate MPNST-specific CpGs (67 with unique CpG island locations) that reliably discriminated MPNSTs from neurofibromas. Validation of five candidate biomarkers confirmed successful MPNST detection (sensitivity: > 88%, specificity: > 91%) in tissues. In plasma samples, 63 of 67 selected genomic regions had greater than 1.2-fold higher methylation in patients with MPNST than those with NF1. Further, we identified 15 CpG islands that consistently separated plasma from patients with confirmed MPNST diagnosis from plasma of individuals with NF1 without a diagnosis of malignant transformation (FDR < 0.1). Our findings confirmed a unique hypermethylation pattern present during malignant transformation. This study highlights the potential to be investigated further as biomarkers in clinical settings for early MPNST detection in patients with NF1.
Collapse
Affiliation(s)
- Katarzyna Tomczak
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Manishkumar S. Patel
- Department of Tumor Microenvironment and MetastasisH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Angela D. Bhalla
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christine B. Peterson
- Department of BiostatisticsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Sharon M. Landers
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - S. Carson Callahan
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Di Zhang
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Justin Wong
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jace P. Landry
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alexander J. Lazar
- Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - J. Andrew Livingston
- Department of Sarcoma Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - B. Ashleigh Guadagnolo
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Heather G. Lyu
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Heather Lillemoe
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christina L. Roland
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Emily Z. Keung
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Christopher P. Scally
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Kelly K. Hunt
- Department of Breast Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ian E. McCutcheon
- Department of NeurosurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - John M. Slopis
- Department of Neuro‐OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Jian Gu
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Paul Scheet
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Liang Wang
- Department of Tumor Microenvironment and MetastasisH. Lee Moffitt Cancer Center and Research InstituteTampaFloridaUSA
| | - Kunal Rai
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Keila E. Torres
- Department of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Genomic MedicineThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
3
|
Al Sharie AH, Al Masoud EB, Jadallah RK, Alzghoul SM, Darweesh RF, Al-Bataineh R, Lataifeh LN, Salameh ST, Daoud MN, Rawashdeh TH, El-Elimat T, Alali FQ. Transcriptome analysis revealed a novel nine-gene prognostic risk score of clear cell renal cell carcinoma. Medicine (Baltimore) 2024; 103:e39678. [PMID: 39331921 PMCID: PMC11441924 DOI: 10.1097/md.0000000000039678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) continues to pose a significant global health concern, with rising incidence and high mortality rate. Accordingly, identifying molecular alternations associated with ccRCC is crucial to boost our understanding of its onset, persistence, and progression as well as developing prognostic biomarkers and novel therapies. Bulk RNA sequencing data and its associated clinicopathological variables of ccRCC were obtained from The Cancer Genome Atlas Program. Atypical differential gene expression analysis of advanced disease states using the extreme categories of staging and grading components was performed. Upregulated differentially expressed genes shared across the aforementioned components were selected. The risk-score construction pipeline started with univariate Cox logistic regression analysis, least absolute shrinkage and selection operator, and multivariate Cox logistic regression analysis in sequence. The generated risk score classified patients into low- vs high-risk groups. The predictive power of the constructed risk score was assessed using Kaplan-Meier curves analysis, multivariate Cox logistic regression analysis, and receiver operator curve of the overall survival. External validation of the risk score was performed using the E-MTAB-1980 cohort. The analysis work scheme established a novel nine-gene prognostic risk score composed of the following genes: ZIC2, TNNT1, SAA1, OTX1, C20orf141, CDHR4, HOXB13, IGFL2, and IGFN1. The high-risk group was associated with shortened overall survival and possessed an independent predictive power (hazard ratio: 1.942, 95% CI: 1.367-2.758, P < .0001, area under the curve = 0.719). In addition, the high-risk score was associated with advance clinicopathological parameters. The same pattern was observed within the external validation dataset (E-MTAB-1980 cohort), in which the high-risk score held a poor prognostic signature as well as independent predictive potential (hazard ratio: 5.121, 95% CI: 1.412-18.568, P = .013, area under the curve = 0.787). In the present work, a novel nine-gene prognostic risk score was constructed and validated. The risk score correlated with tumor immune microenvironment, somatic mutation patterns, and altered molecular pathways involved in tumorigenesis. Further experimental data are warranted to expand the work.
Collapse
Affiliation(s)
- Ahmed H Al Sharie
- Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Eyad B Al Masoud
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Rand K Jadallah
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Saja M Alzghoul
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Reem F Darweesh
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Rania Al-Bataineh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Leen N Lataifeh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Shatha T Salameh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Majd N Daoud
- Department of Endocrinology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY
| | | | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Feras Q Alali
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Santos-Pereira M, Pereira SC, Rebelo I, Spadella MA, Oliveira PF, Alves MG. Decoding the Influence of Obesity on Prostate Cancer and Its Transgenerational Impact. Nutrients 2023; 15:4858. [PMID: 38068717 PMCID: PMC10707940 DOI: 10.3390/nu15234858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
In recent decades, the escalating prevalence of metabolic disorders, notably obesity and being overweight, has emerged as a pressing concern in public health. Projections for the future indicate a continual upward trajectory in obesity rates, primarily attributable to unhealthy dietary patterns and sedentary lifestyles. The ramifications of obesity extend beyond its visible manifestations, intricately weaving a web of hormonal dysregulation, chronic inflammation, and oxidative stress. This nexus of factors holds particular significance in the context of carcinogenesis, notably in the case of prostate cancer (PCa), which is a pervasive malignancy and a leading cause of mortality among men. A compelling hypothesis arises from the perspective of transgenerational inheritance, wherein genetic and epigenetic imprints associated with obesity may wield influence over the development of PCa. This review proposes a comprehensive exploration of the nuanced mechanisms through which obesity disrupts prostate homeostasis and serves as a catalyst for PCa initiation. Additionally, it delves into the intriguing interplay between the transgenerational transmission of both obesity-related traits and the predisposition to PCa. Drawing insights from a spectrum of sources, ranging from in vitro and animal model research to human studies, this review endeavors to discuss the intricate connections between obesity and PCa. However, the landscape remains partially obscured as the current state of knowledge unveils only fragments of the complex mechanisms linking these phenomena. As research advances, unraveling the associated factors and underlying mechanisms promises to unveil novel avenues for understanding and potentially mitigating the nexus between obesity and the development of PCa.
Collapse
Affiliation(s)
- Mariana Santos-Pereira
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
| | - Sara C. Pereira
- Endocrine and Metabolic Research, Unit for Multidisciplinary Research in Biomedicine (UMIB), School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal;
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, 4099-002 Porto, Portugal
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Irene Rebelo
- UCIBIO-REQUIMTE, Laboratory of Biochemistry, Department of Biologic Sciences, Pharmaceutical Faculty, University of Porto, 4050-313 Porto, Portugal;
| | - Maria A. Spadella
- Human Embryology Laboratory, Marília Medical School, Marília 17519-030, SP, Brazil;
| | - Pedro F. Oliveira
- LAQV-REQUIMTE and Department of Chemistry, Campus Universitario de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Marco G. Alves
- iBiMED-Institute of Biomedicine and Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
5
|
Chin FW, Hussin H, Chau DM, Ong TA, Yunus R, Abdul Razack AH, Yusoff K, Chan SC, Veerakumarasivam A. Differential Protein Expression Patterns of HOXA13 and HOXB13 Are Associated with Bladder Cancer Progression. Diagnostics (Basel) 2023; 13:2636. [PMID: 37627895 PMCID: PMC10453033 DOI: 10.3390/diagnostics13162636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 08/27/2023] Open
Abstract
Bladder cancer is a common urological cancer and has the highest recurrence rate of any cancer. The aim of our study was to profile and characterize the protein expression of homeobox A13 (HOXA13) and homeobox B13 (HOXB13) genes in Malaysian bladder cancer patients. The protein expression of HOXA13 and HOXB13 in formalin-fixed paraffin-embedded (FFPE) bladder cancer tissues was determined by immunohistochemistry (IHC) analysis. The association between HOXA13/HOXB13 protein expression and demographic/clinicopathological characteristics of the bladder cancer patients was determined by chi-square analysis. Approximately 63.6% of the bladder cancer tissues harbored high HOXA13 expression. High HOXA13 expression was significantly associated with non-muscle invasive bladder cancer, lower tumor grade, higher number of lymph node metastases, and recurrence risk. In contrast, low HOXB13 expression (including those with negative expression) was observed in 71.6% of the bladder cancer tissues analyzed. Low HOXB13 expression was significantly associated with muscle-invasive bladder cancer, higher tumor stage, tumor grade, and metastatic risk. Both HOXA13 and HOXB13 protein expression were found to be associated with bladder tumorigenesis. The putative oncogenic and tumor suppressive roles of HOXA13 and HOXB13, respectively, suggest their potential utility as biomarkers in bladder cancer.
Collapse
Affiliation(s)
- Fee-Wai Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Huzlinda Hussin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - De-Ming Chau
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Teng-Aik Ong
- Department of Surgery, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Rosna Yunus
- Department of Pathology, Hospital Kuala Lumpur, Kuala Lumpur 50586, Malaysia
| | | | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Selangor, Malaysia
| | - Soon-Choy Chan
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Selangor, Malaysia
- School of Liberal Arts, Science and Technology, Perdana University, Kuala Lumpur 50490, Malaysia
| | - Abhi Veerakumarasivam
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Selangor, Malaysia
- School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
6
|
Inchanalkar M, Srivatsa S, Ambatipudi S, Bhosale PG, Patil A, Schäffer AA, Beerenwinkel N, Mahimkar MB. Genome-wide DNA methylation profiling of HPV-negative leukoplakia and gingivobuccal complex cancers. Clin Epigenetics 2023; 15:93. [PMID: 37245006 DOI: 10.1186/s13148-023-01510-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/21/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND Gingivobuccal complex oral squamous cell carcinoma (GBC-OSCC) is an aggressive malignancy with high mortality often preceded by premalignant lesions, including leukoplakia. Previous studies have reported genomic drivers in OSCC, but much remains to be elucidated about DNA methylation patterns across different stages of oral carcinogenesis. RESULTS There is a serious lack of biomarkers and clinical application of biomarkers for early detection and prognosis of gingivobuccal complex cancers. Hence, in search of novel biomarkers, we measured genome-wide DNA methylation in 22 normal oral tissues, 22 leukoplakia, and 74 GBC-OSCC tissue samples. Both leukoplakia and GBC-OSCC had distinct methylation profiles as compared to normal oral tissue samples. Aberrant DNA methylation increases during the different stages of oral carcinogenesis, from premalignant lesions to carcinoma. We identified 846 and 5111 differentially methylated promoters in leukoplakia and GBC-OSCC, respectively, with a sizable fraction shared between the two sets. Further, we identified potential biomarkers from integrative analysis in gingivobuccal complex cancers and validated them in an independent cohort. Integration of genome, epigenome, and transcriptome data revealed candidate genes with gene expression synergistically regulated by copy number and DNA methylation changes. Regularised Cox regression identified 32 genes associated with patient survival. In an independent set of samples, we validated eight genes (FAT1, GLDC, HOXB13, CST7, CYB5A, MLLT11, GHR, LY75) from the integrative analysis and 30 genes from previously published reports. Bisulfite pyrosequencing validated GLDC (P = 0.036), HOXB13 (P < 0.0001) promoter hypermethylation, and FAT1 (P < 0.0001) hypomethylation in GBC-OSCC compared to normal controls. CONCLUSIONS Our findings identified methylation signatures associated with leukoplakia and gingivobuccal complex cancers. The integrative analysis in GBC-OSCC identified putative biomarkers that enhance existing knowledge of oral carcinogenesis and may potentially help in risk stratification and prognosis of GBC-OSCC.
Collapse
Affiliation(s)
- Mayuri Inchanalkar
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
| | - Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Srikant Ambatipudi
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Achutha Menon Centre for Health Science Studies, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, Kerala, India
| | - Priyanka G Bhosale
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India
- Centre for Gene Therapy and Regenerative Medicine, Guy's Hospital, King's College London, Tower Wing, London, UK
| | - Asawari Patil
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Alejandro A Schäffer
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, and National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD, USA
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Manoj B Mahimkar
- Mahimkar Lab, Cancer Research Institute (CRI), Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Center, Kharghar, Navi Mumbai, Maharashtra, 410210, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
7
|
Li M, Tan T, Geng Y, Tao Y, Pan J, Zhang J, Xu Q, Shen H, Zuo L, Chen Y. HOXB13 facilitates hepatocellular carcinoma progression by activating AKT/mTOR signaling pathway. Ann Hepatol 2023; 28:100759. [PMID: 36179794 DOI: 10.1016/j.aohep.2022.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Hepatocellular carcinoma (HCC) is one of the sixth most common malignancies worldwide and is accompanied by high mortality. Homeobox B13 (HOXB13) has been shown to be involved in the development of various cancers. This study aimed to investigate the role of HOXB13 in HCC progression. MATERIALS AND METHODS The expression of HOXB13 in HCC tumor tissues was analyzed using qRT-PCR and immunohistochemical staining . After overexpression or downregulation of HOXB13 in HCC cell lines, cell proliferation was detected by CCK8 assay and Ki67 staining and cell invasion ability were tested by transwell assay. Western blot assay was applied to analyze the effect of HOXB13 on related signaling pathways. In addition, the role of HOXB13 on HCC in vivo was explored using a HCC mouse model. IF and WB were performed to detect cell proliferation, apoptosis and related protein expression in mice tumor tissues. RESULTS The results showed that the expression of HOXB13 was significantly increased in HCC tissues compared with adjacent tissues and positively correlated with the tumor stage and survival of HCC patients. Overexpression of HOXB13 promoted the proliferation and invasion of HCC cells and up-regulated the protein expression of AKT, mTOR and MMP2. In contrast, the downregulation of HOXB13 resulted in the opposite results. In vivo experiments, HOXB13 significantly promoted tumor growth in mice bearing HCC by promoting cell proliferation and inhibiting cell apoptosis. CONCLUSIONS This study suggested that HOXB13 can facilitate HCC progression by activation of the AKT/mTOR signaling pathway. HOXB13 may be a novel target for HCC therapy.
Collapse
Affiliation(s)
- Miao Li
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Tingting Tan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Yu Geng
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine Nanjing, Jiangsu, China
| | - Yue Tao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Jie Pan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Jun Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Qin Xu
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Lingyun Zuo
- Department of Gastroenterology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China.
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Molina-Cerrillo J, Santoni M, Ruiz Á, Massari F, Pozas J, Ortego I, Gómez V, Grande E, Alonso-Gordoa T. Epigenetics in advanced renal cell carcinoma: Potential new targets. Crit Rev Oncol Hematol 2022; 180:103857. [DOI: 10.1016/j.critrevonc.2022.103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
|
9
|
Xiong F, Liu W, Wang X, Wu G, Wang Q, Guo T, Huang W, Wang B, Chen Y. HOXA5 inhibits the proliferation of extrahepatic cholangiocarcinoma cells by enhancing MXD1 expression and activating the p53 pathway. Cell Death Dis 2022; 13:829. [PMID: 36167790 PMCID: PMC9515223 DOI: 10.1038/s41419-022-05279-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 01/23/2023]
Abstract
Homeobox A5 (HOXA5) is a transcription factor in mammalian and can regulate cell differentiation, proliferation, and apoptosis as well as tumorigenesis. However, little is known on whether and how HOXA5 can regulate the malignant behaviors of cholangiocarcinoma. The methylation levels of HOXA5 were evaluated by methylation microarray and bisulfite sequencing PCR. HOXA5 expression in tissue samples was examined by immunohistochemistry and Western blot. The proliferation of tumor cells was assessed by CCK-8, EdU, and nude mouse tumorigenicity assays. The invasion, apoptosis and cell cycling of tumor cells were evaluated by Wound healing assay and flow cytometry. The interaction between HOXA5 and the MXD1 promoter was examined by CUT & Tag assay, luciferase reporter assay and chromatin immunoprecipitation. Hypermethylation in the HOXA5 promoter down-regulated HOXA5 expression in extrahepatic cholangiocarcinoma (ECCA) tissues, which was correlated with worse overall survival. HOXA5 overexpression significantly inhibited the proliferation and tumor growth. HOXA5 overexpression enhanced MXD1 expression by directly binding to the MXD1 promoter in ECCA cells. MXD1 overexpression inhibited the proliferation and tumor growth while MXD1 silencing abrogated the HOXA5-mediated proliferation inhibition. HOXA5 overexpression increased p53 protein expression in an MXD1-dependent manner. HOXA5 and MXD1 acted as tumor suppressors to inhibit the mitosis of ECCA cells by enhancing the p53 signaling. Our findings may uncover molecular mechanisms by which the HOXA5/MXD1 axis regulates the progression of ECCA, suggesting that the HOXA5/MXD1 may be therapeutic targets for ECCA.
Collapse
Affiliation(s)
- Fei Xiong
- grid.33199.310000 0004 0368 7223Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenzheng Liu
- grid.33199.310000 0004 0368 7223Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Xin Wang
- grid.33199.310000 0004 0368 7223Departement of Pediatric Surgery, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Wuhan, China
| | - Guanhua Wu
- grid.33199.310000 0004 0368 7223Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Qi Wang
- grid.33199.310000 0004 0368 7223Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Tong Guo
- grid.33199.310000 0004 0368 7223Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Wenhua Huang
- grid.33199.310000 0004 0368 7223Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Bing Wang
- grid.33199.310000 0004 0368 7223Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Yongjun Chen
- grid.33199.310000 0004 0368 7223Department of Biliary‑Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| |
Collapse
|
10
|
Pfeifer B, Saranti A, Holzinger A. GNN-SubNet: disease subnetwork detection with explainable graph neural networks. Bioinformatics 2022; 38:ii120-ii126. [PMID: 36124793 DOI: 10.1093/bioinformatics/btac478] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION The tremendous success of graphical neural networks (GNNs) already had a major impact on systems biology research. For example, GNNs are currently being used for drug target recognition in protein-drug interaction networks, as well as for cancer gene discovery and more. Important aspects whose practical relevance is often underestimated are comprehensibility, interpretability and explainability. RESULTS In this work, we present a novel graph-based deep learning framework for disease subnetwork detection via explainable GNNs. Each patient is represented by the topology of a protein-protein interaction (PPI) network, and the nodes are enriched with multi-omics features from gene expression and DNA methylation. In addition, we propose a modification of the GNNexplainer that provides model-wide explanations for improved disease subnetwork detection. AVAILABILITY AND IMPLEMENTATION The proposed methods and tools are implemented in the GNN-SubNet Python package, which we have made available on our GitHub for the international research community (https://github.com/pievos101/GNN-SubNet). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bastian Pfeifer
- Institute for Medical Informatics Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Anna Saranti
- Institute for Medical Informatics Statistics and Documentation, Medical University Graz, Graz, Austria
| | - Andreas Holzinger
- Institute for Medical Informatics Statistics and Documentation, Medical University Graz, Graz, Austria.,Human-Centered AI Lab, Department of Forest- and Soil Sciences, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Alberta Machine Intelligence Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Gao DZ, Yang YS, Wang Z, Zhao XF. Expression profile and prognostic significance of HOXB13 in rectal cancer. Int J Biol Markers 2022; 37:140-148. [PMID: 35296171 DOI: 10.1177/17246008221076151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This study aimed to investigate the expression pattern and prognostic significance of HOXB13 in rectal cancer. METHODS HOXB13 expression in rectal cancer and normal adjacent tissues was detected by reverse transcriptase-polymerase chain reaction and immunohistochemistry, and its clinicopathological characteristics and prognosis were statistically tested. Furthermore, we evaluated the association between tumor immune infiltrating cells and HOXB13 using the tumor immune estimation resource (TIMER) database. The potential biological mechanism associated with HOXB13 overexpression was investigated by gene set enrichment analysis (GSEA). RESULTS The expression of HOXB13 messenger RNA and protein in human rectal cancer tissues were significantly higher than those in the normal adjacent tissues (P < 0.05). HOXB13 expression was significantly correlated with depth of invasion, lymphatic invasion, lymph node metastasis, distant metastasis, and pathological tumor node metastasis stage (P < 0.05). Kaplan-Meier survival curves confirmed that HOXB13 overexpression was correlated negatively with overall survival and disease-free survival in rectal cancer (P < 0.05). Also, multivariate Cox regression analysis demonstrated that HOXB13 expression, age, and lymphatic invasion were independent prognostic factors in rectal cancer (P < 0.05). Plus, the results from the TIMER database indicated that HOXB13 expression has a significant association with several immune cell infiltrates. Finally, the GSEA results indicated that HOXB13 participated in the various immune-associated processes, including natural killer cell-mediated cytotoxicity and the T-cell receptor signaling pathway. CONCLUSION Our study showed an essential role of HOXB13 in rectal cancer immunity and prognosis. Significantly, the overexpression of HOXB13 leads to the worse prognosis for patients with rectal cancer, which will contribute to understanding molecular mechanisms associated with tumor pathogenesis and prognosis in this disease.
Collapse
Affiliation(s)
- Da-Zhi Gao
- Department of General Surgery, 194043Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | - Yu-Shen Yang
- Department of General Surgery, 194043Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | - Zhun Wang
- Department of General Surgery, 194043Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| | - Xue-Feng Zhao
- Department of General Surgery, 194043Dalian University Affiliated Xinhua Hospital, Dalian 116021, China
| |
Collapse
|
12
|
Złowocka-Perłowska E, Tołoczko-Grabarek A, Lubiński J. Germline HOXB13 mutation p.G84E do not confer an increased bladder or kidney cancer risk in polish population. Hered Cancer Clin Pract 2022; 20:1. [PMID: 34983599 PMCID: PMC8728939 DOI: 10.1186/s13053-021-00208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/09/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction The role of HOXB13 in bladder and renal tumorigenesis is unclear. Our goal was to determine the prevalence of HOXB13 p.G84E mutation in bladder and kidney cancer patients from Poland. Materials and methods 1418 patients with bladder cancer and 813 cases with kidney cancer and 4497 controls were genotyped for HOXB13 p.G84E. Results p.G84E mutation of HOXB13 gene was detected in three of 1418 (0.2%) bladder cancer cases and in six of 4497 controls (odds ratio [OR], 1.6; 95% CI 0.39–6.36; p = 0.8). Among 813 kidney cancer cases HOXB13 mutations was reported in three patients (0,4%) (odds ratio [OR], (OR = 2,8; 95% CI 0.69–11.11; p = 0.3). In cases with mutations in the HOXB13 gene, the family history of cancer was negative. Conclusion HOXB13 mutation was not associated with bladder or kidney cancer. Mutation p.G84E in HOXB13 seem not to play a role in bladder and kidney cancer development in Polish patients.
Collapse
Affiliation(s)
- Elżbieta Złowocka-Perłowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
| | - Aleksandra Tołoczko-Grabarek
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
13
|
Wang MQ, Yin QY, Chen YR, Zhu SL. Diagnostic and prognostic value of HOXC family members in gastric cancer. Future Oncol 2021; 17:4907-4923. [PMID: 34751593 DOI: 10.2217/fon-2021-0291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aims: HOX clusters encode proteins that play pivotal roles in regulating transcription factors and many other proteins during embryogenesis. However, little is known about the diagnostic and prognostic values of HOXC family members in gastric cancer (GC). Materials and methods: The authors evaluated the data in patients with GC based on bioinformatics analysis. Results: HOXC6/8/9/10/11/13 were overexpressed in GC and associated with a poor prognosis. HOXC4/5 were downregulated in GC tissues. Receiver operating characteristic curve analysis demonstrated that they have high diagnostic value. In addition, HOXC4/5/6/9/10/11/13 were negatively correlated with DNA methylation level. The gene set enrichment analysis results implied that they play essential roles in multiple biological processes underlying tumorigenesis. Conclusion: HOXC family members are potential targets for diagnosis and may work as prognostic biomarkers of GC.
Collapse
Affiliation(s)
- Mei-Qian Wang
- Department of Gastroenterology & Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qi-Yun Yin
- Department of Intensive Care Unit, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Yi-Ru Chen
- Department of Gastroenterology & Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sen-Lin Zhu
- Department of Gastroenterology & Hepatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
Geng H, Liu G, Hu J, Li J, Wang D, Zou S, Xu X. HOXB13 suppresses proliferation, migration and invasion, and promotes apoptosis of gastric cancer cells through transcriptional activation of VGLL4 to inhibit the involvement of TEAD4 in the Hippo signaling pathway. Mol Med Rep 2021; 24:722. [PMID: 34396425 PMCID: PMC8383034 DOI: 10.3892/mmr.2021.12361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC) is one of the most common types of malignancy worldwide and is accompanied by both high mortality and morbidity rates. Homeobox B13 (HOXB13) has been reported to act as a tumor suppressor gene in multiple types of human cancer. The present study aimed to investigate the effects and potential underlying molecular mechanisms of HOXB13 in the progression of GC. The expression of HOXB13 in GC cells was first examined using the Cancer Cell Line Encyclopedia database and subsequently validated in a number of GC cell lines. Following HOXB13 overexpression (Ov-HOXB13), HGC-27 cell proliferation was evaluated by colony formation and Cell Counting Kit-8 assays. Wound healing and Matrigel assays were used to determine the migratory and invasive abilities, respectively. Additionally, cell apoptosis was assessed using TUNEL staining, and the expression of apoptosis-related proteins was detected by western blot analysis. Subsequently, TEA domain transcription factor 4 (TEAD4) was overexpressed to evaluate the effects on HGC-27 cell proliferation, migration, invasion and apoptosis following co-transfection with Ov-HOXB13. The potential binding sites of HOXB13 on the vestigial-like family member 4 (VGLL4) promoter were verified using chromatin immunoprecipitation and dual luciferase reporter assays. Moreover, the expression levels of proteins involved in the Hippo signaling pathway were analyzed using western blotting. The results revealed that the expression of HOXB13 was notably lower in GC cells compared with normal gastric cells. The overexpression of HOXB13 significantly inhibited the proliferation, migration and invasion, but promoted the apoptosis of HGC-27 cells. Moreover, Ov-HOXB13 downregulated TEAD4 expression. Notably, Ov-TEAD4 transfection partially reversed the effects of Ov-HOXB13 on the cellular behaviors of HGC-27 cells. HOXB13 was also confirmed to bind with the VGLL4 promoter. The knockdown of VGLL4 restored the inhibitory effects of Ov-HOXB13 on the expression levels of VGLL4 and Hippo pathway signaling proteins. In conclusion, the findings of the present study suggested that Ov-HOXB13 may suppress the proliferation, migration and invasion, and promote the apoptosis of GC cells through the transcriptional activation of VGLL4 to inhibit the involvement of TEAD4 in the Hippo signaling pathway. These results may provide novel and potent targets for the treatment of GC.
Collapse
Affiliation(s)
- Hui Geng
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Guangli Liu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Jiandong Hu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Jianchao Li
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Dong Wang
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Shenshan Zou
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| | - Xintao Xu
- Department of General Surgery, Changzhou Hospital of Traditional Chinese Medicine, Changzhou, Jiangsu 213003, P.R. China
| |
Collapse
|
15
|
Misawa A, Kondo Y, Takei H, Takizawa T. Long Noncoding RNA HOXA11-AS and Transcription Factor HOXB13 Modulate the Expression of Bone Metastasis-Related Genes in Prostate Cancer. Genes (Basel) 2021; 12:genes12020182. [PMID: 33514011 PMCID: PMC7912412 DOI: 10.3390/genes12020182] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/31/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression, which play fundamental roles in cancer development. In this study, we found that homeobox A11 antisense RNA (HOXA11-AS), a highly expressed lncRNA in cell lines derived from prostate cancer bone metastases, promoted the cell invasion and proliferation of PC3 prostate cancer cells. Transcription factor homeobox B13 (HOXB13) was identified as an upstream regulator of HOXA11-AS.HOXA11-AS regulated bone metastasis-associated C-C motif chemokine ligand 2 (CCL2)/C-C chemokine receptor type 2 (CCR2) signaling in both PC3 prostate cancer cells and SaOS2 osteoblastic cells. The HOXB13/HOXA11-AS axis also regulated integrin subunits (ITGAV and ITGB1) specific to prostate cancer bone metastasis. HOXB13, in combination with HOXA11-AS, directly regulated the integrin-binding sialoprotein (IBSP) promoter. Furthermore, conditioned medium containing HOXA11-AS secreted from PC3 cells could induce the expression of CCL2 and IBSP in SaOS2 osteoblastic cells. These results suggest that prostate cancer HOXA11-AS and HOXB13 promote metastasis by regulation of CCL2/CCR2 cytokine and integrin signaling in autocrine and paracrine manners.
Collapse
Affiliation(s)
- Aya Misawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Yukihiro Kondo
- Department of Urology, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Hiroyuki Takei
- Department of Breast Surgical Oncology, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5 Sendagi, Tokyo 113-8602, Japan;
- Correspondence: ; Tel.: +81-3-3822-2131; Fax: +81-3-5685-3052
| |
Collapse
|
16
|
The let-7c/HoxB7 axis regulates the cell proliferation, migration and apoptosis in hepatocellular carcinoma. Anticancer Drugs 2020; 31:6-18. [PMID: 31609764 DOI: 10.1097/cad.0000000000000843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ectopic expression of HOX-containing genes is closely related to carcinogenesis, acting as either tumor suppressors or oncogenes. A preliminary bioinformatics analysis showed that HoxB7 is a possible target of let-7c. In this study, we aimed to investigate the relationship between HoxB7 and let-7c in liver carcinogenesis. We found that HoxB7 was upregulated in hepatocellular carcinoma (HCC) tissues and cells and negatively correlated with survival time, whereas let-7c was downregulated and positively correlated with survival time in patients with HCC. Let-7c overexpression suppressed proliferation, migration but promoted cell apoptosis in HCC cells. We validated that HoxB7 is a target of let-7c. Consistently, let-7c overexpression reversed the promotional effects of HoxB7 on proliferation and migration in HCC cells, and increased the cell apoptotic rate reduced by HoxB7. Furthermore, let-7c overexpression reversed the promotional effect of HoxB7 on tumor growth in subcutaneous HCC tumor model. Our data suggest that the let-7c/HoxB7 axis regulates HCC development, which may provide a novel therapeutic strategy for the treatment of HCC.
Collapse
|
17
|
Paço A, de Bessa Garcia SA, Freitas R. Methylation in HOX Clusters and Its Applications in Cancer Therapy. Cells 2020; 9:cells9071613. [PMID: 32635388 PMCID: PMC7408435 DOI: 10.3390/cells9071613] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023] Open
Abstract
HOX genes are commonly known for their role in embryonic development, defining the positional identity of most structures along the anterior–posterior axis. In postembryonic life, HOX gene aberrant expression can affect several processes involved in tumorigenesis such as proliferation, apoptosis, migration and invasion. Epigenetic modifications are implicated in gene expression deregulation, and it is accepted that methylation events affecting HOX gene expression play crucial roles in tumorigenesis. In fact, specific methylation profiles in the HOX gene sequence or in HOX-associated histones are recognized as potential biomarkers in several cancers, helping in the prediction of disease outcomes and adding information for decisions regarding the patient’s treatment. The methylation of some HOX genes can be associated with chemotherapy resistance, and its identification may suggest the use of other treatment options. The use of epigenetic drugs affecting generalized or specific DNA methylation profiles, an approach that now deserves much attention, seems likely to be a promising weapon in cancer therapy in the near future. In this review, we summarize these topics, focusing particularly on how the regulation of epigenetic processes may be used in cancer therapy.
Collapse
Affiliation(s)
- Ana Paço
- Centre Bio: Bioindustries, Biorefineries and Bioproducts, BLC3 Association—Technology and Innovation Campus, 3405-169 Oliveira do Hospital, Portugal;
| | | | - Renata Freitas
- I3S—Institute for Innovation & Health Research, University of Porto, 4200-135 Porto, Portugal;
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Correspondence:
| |
Collapse
|
18
|
Brotto DB, Siena ÁDD, de Barros II, Carvalho SDCES, Muys BR, Goedert L, Cardoso C, Plaça JR, Ramão A, Squire JA, Araujo LF, Silva WAD. Contributions of HOX genes to cancer hallmarks: Enrichment pathway analysis and review. Tumour Biol 2020; 42:1010428320918050. [PMID: 32456563 DOI: 10.1177/1010428320918050] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or "hallmarks") and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.
Collapse
Affiliation(s)
- Danielle Barbosa Brotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Ádamo Davi Diógenes Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Isabela Ichihara de Barros
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Simone da Costa E Silva Carvalho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Lucas Goedert
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cibele Cardoso
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jeremy Andrew Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Luiza Ferreira Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Center for Integrative System Biology (CISBi), NAP/USP, University of São Paulo, Ribeirão Preto, Brazil.,Center for Medical Genomics, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
19
|
HOXB13 controls cell state through super-enhancers. Exp Cell Res 2020; 393:112039. [PMID: 32376288 DOI: 10.1016/j.yexcr.2020.112039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/29/2022]
Abstract
Expression of the homeodomain transcription factor HOXB13 has been demonstrated in several malignancies but its role in tumorigenesis remains elusive. We observed high levels of HOXB13 in poorly differentiated pediatric tumors including a highly aggressive childhood neoplasm - malignant rhabdoid tumor. In a xenograft model of rhabdoid tumor, knockout of HOXB13 diminished tumor growth while partial knockdown of HOXB13 promoted differentiation of tumor cells into bone. These results suggest that HOXB13 enhances rhabdoid malignancy by interfering with mesenchymal stem cell differentiation. Consistent with this hypothesis, overexpression of HOXB13 in mesenchymal progenitor cells inhibited adipogenic, myogenic, and osteogenic differentiation. Mechanistically, we demonstrated that HOXB13 binds to super-enhancer regions regulating genes involved in differentiation and tumorigenesis.
Collapse
|
20
|
Zuo L, Tan T, Wei C, Wang H, Tan L, Hao Y, Qian J, Chen Y, Wu C. HOXB13 expression is correlated with hepatic inflammatory activity of patients with hepatic fibrosis. J Mol Histol 2020; 51:183-189. [PMID: 32200464 DOI: 10.1007/s10735-020-09868-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/18/2020] [Indexed: 01/10/2023]
Abstract
Liver fibrosis is a common pathological process of chronic hepatic injury, preceded by the chronic inflammation. The homeobox B13 (HOXB13) gene, a member of HOX family, plays diverse biological roles in embryonic development, carcinogenesis, and many inflammatory diseases. However, the expression of HOXB13 in chronic liver diseases including hepatic fibrosis remains to be defined. In present study, 55 patients with hepatic fibrosis, 15 patients of hepatocellular carcinoma, and 17 healthy controls were enrolled in this study. Pathological specimens were collected through liver biopsy or surgical resection. The degree of hepatic inflammation (G0-G4) and fibrosis (S0-S4) of hepatic fibrosis was scored based on the modified histology activity index. Intrahepatic HOXB13 expression was analyzed using immunohistochemistry analysis. Compared with healthy subjects, both patients with hepatic fibrosis and patients with hepatocellular carcinoma exhibited significant accumulations of HOXB13+ cells in the liver (p < 0.05). Additionally, the number of HOXB13+ cell was significantly elevated along with the increment of hepatic inflammatory activities, but not fibrosis stages, among these liver fibrosis samples (p < 0.01). Furthermore, the quantity of HOXB13+ cells were also positively correlated with hepatic enzymes, alanine transaminase (r = 0.299, p = 0.041) and aspartate aminotransferase (r = 0.317, p = 0.013) in our cohort of hepatic fibrosis. In conclusion, our study identified a strong hepatic expression of HOXB13 among patients with hepatic fibrosis, which strongly associated with the degree of hepatic inflammatory activity for patients with hepatic fibrosis, suggesting an important role of HOXB13 during the pathogenesis of liver fibrogenesis.
Collapse
Affiliation(s)
- Lingyun Zuo
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Gastroenterology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tingting Tan
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Cheng Wei
- Department of Gastroenterology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Huali Wang
- Department of Gastroenterology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Luxuan Tan
- Department of Gastroenterology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yingying Hao
- Department of Intensive Care Units, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jingjing Qian
- Department of Gastroenterology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China.
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
21
|
Xie B, Bai B, Xu Y, Liu Y, Lv Y, Gao X, Wu F, Fang Z, Lou Y, Pan H, Han W. Tumor-suppressive function and mechanism of HOXB13 in right-sided colon cancer. Signal Transduct Target Ther 2019; 4:51. [PMID: 31815008 PMCID: PMC6882800 DOI: 10.1038/s41392-019-0086-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 01/05/2023] Open
Abstract
Right-sided colon cancer (RCC) and left-sided colon cancer (LCC) differ in their clinical and molecular features. An investigation of differentially expressed genes (DEGs) between RCC and LCC could contribute to targeted therapy for colon cancer, especially RCC, which has a poor prognosis. Here, we identified HOXB13, which was significantly less expressed in RCC than in LCC and associated with prognosis in RCC, by using 5 datasets from the Gene Expression Omnibus (GEO). Tissue sample analysis showed that HOXB13 was differentially expressed between normal and only RCC tumor tissues. HOXB13 inhibited colon cancer cell proliferation and induced apoptosis both in vitro and in vivo. Furthermore, we found that HOXB13 might be regulated by DNMT3B and suppress C-myc expression to exert antitumor effects via β-catenin/TCF4 signals in RCC. In conclusion, the current study is the first to demonstrate that HOXB13 has a tumor-suppressive effect in RCC. High expression levels of HOXB13 are associated with prolonged overall survival in patients with RCC. The DNMT3B-HOXB13-C-myc signaling axis might be a molecular target for the treatment of RCC.
Collapse
Affiliation(s)
- Binbin Xie
- Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016 PR China
| | - Bingjun Bai
- Department of Colorectal Surgery; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016 PR China
| | - Yuzi Xu
- Department of Stomatology; Stomatology Hospital; School of Medicine, Zhejiang University, Hangzhou, 310000 PR China
| | - Yunlong Liu
- Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016 PR China
| | - Yiming Lv
- Department of Colorectal Surgery; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016 PR China
| | - Xing Gao
- Department of Medical Oncology; The Second Affiliated Hospital of Suzhou University; School of Medicine, Suzhou University, Suzhou, 215000 PR China
| | - Fei Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001 PR China
| | - Zhipeng Fang
- Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016 PR China
| | - Ying Lou
- Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016 PR China
| | - Hongming Pan
- Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016 PR China
| | - Weidong Han
- Department of Medical Oncology; Sir Run Run Shaw Hospital; School of Medicine, Zhejiang University, Hangzhou, 310016 PR China
| |
Collapse
|
22
|
Fadaka AO, Pretorius A, Klein A. MicroRNA Assisted Gene Regulation in Colorectal Cancer. Int J Mol Sci 2019; 20:E4899. [PMID: 31623294 PMCID: PMC6801675 DOI: 10.3390/ijms20194899] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/25/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second-leading cause of cancer death and a major public health problem. Nearly 80% CRC cases are diagnosed after the disease have metastasized and are often too advanced for treatment. Small non-coding RNA guides argonaute protein to their specific target for regulation as the sole of RNA induced silencing complex for gene silencing. These non-coding RNA for example microRNA, are thought to play a key role in affecting the efficiency of gene regulation in cancer, especially CRC. Understanding the mechanism at the molecular level could lead to improved diagnosis, treatment, and management decisions for CRC. The study aimed to predict the molecular mechanism of gene regulation based microRNA-mRNA duplex as a lead in the silencing mechanism. Five candidate microRNAs were identified through the in silico approach. The MicroRNA target prediction and subsequent correlation, and prioritization were performed using miRTarBase, gbCRC and CoReCG, and DAVID databases respectively. Protein selection and preparation were carried out using PDB and Schrödinger suits. The molecular docking analysis was performed using PATCHDOCK webserver and visualized by discovery studio visualizer. The results of the study reveal that the candidate microRNAs have strong binding affinity towards their targets suggesting a crucial factor in the silencing mechanism. Furthermore, the molecular docking of the receptor to both the microRNA and microRNA-mRNA duplex were analyzed computationally to understand their interaction at the molecular level. Conclusively, the study provides an explanation for understanding the microRNAs-based gene regulation (silencing mechanism) in CRC.
Collapse
Affiliation(s)
- Adewale O Fadaka
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 Cape Town, South Africa.
| | - Ashley Pretorius
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 Cape Town, South Africa.
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 Cape Town, South Africa.
| |
Collapse
|
23
|
Paralogous HOX13 Genes in Human Cancers. Cancers (Basel) 2019; 11:cancers11050699. [PMID: 31137568 PMCID: PMC6562813 DOI: 10.3390/cancers11050699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Hox genes (HOX in humans), an evolutionary preserved gene family, are key determinants of embryonic development and cell memory gene program. Hox genes are organized in four clusters on four chromosomal loci aligned in 13 paralogous groups based on sequence homology (Hox gene network). During development Hox genes are transcribed, according to the rule of “spatio-temporal collinearity”, with early regulators of anterior body regions located at the 3’ end of each Hox cluster and the later regulators of posterior body regions placed at the distal 5’ end. The onset of 3’ Hox gene activation is determined by Wingless-type MMTV integration site family (Wnt) signaling, whereas 5’ Hox activation is due to paralogous group 13 genes, which act as posterior-inhibitors of more anterior Hox proteins (posterior prevalence). Deregulation of HOX genes is associated with developmental abnormalities and different human diseases. Paralogous HOX13 genes (HOX A13, HOX B13, HOX C13 and HOX D13) also play a relevant role in tumor development and progression. In this review, we will discuss the role of paralogous HOX13 genes regarding their regulatory mechanisms during carcinogenesis and tumor progression and their use as biomarkers for cancer diagnosis and treatment.
Collapse
|
24
|
Wang X, Sun Y, Xu T, Qian K, Huang B, Zhang K, Song Z, Qian T, Shi J, Li L. HOXB13 promotes proliferation, migration, and invasion of glioblastoma through transcriptional upregulation of lncRNA HOXC-AS3. J Cell Biochem 2019; 120:15527-15537. [PMID: 31062400 DOI: 10.1002/jcb.28819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 11/08/2022]
Abstract
HOXB13 exerts a close relation in several human cancers. This study explored the role of HOXB13 in glioblastoma (GBM), a brain tissue with the highest aggressive rate and mortality in adults. Through microarray and immunohistochemistry analyses, HOXB13 was highly expressed in GBM tissues. Furthermore, we showed that high-level expression of HOXB13 in GBM was associated with worse survival, suggesting that HOXB13 could be a prognostic marker for patients with GBM. GBM cells U87 and U251 overexpressing HOXB13 showed enhanced proliferation, migration, and invasion relative to the control cells, while knockdown of HOXB13 led to decreased cell proliferation, migration, and invasion abilities. In addition, dual-luciferase report assay, chromatin immunoprecipitation assay, and quantitative real-time polymerase chain reaction data showed that HOXB13 directly bound to HOXC-AS3 promoter. HOXC-AS3 was involved in HOXB13-induced proliferation, migration, and invasion of GBM cells. In summary, this study revealed the prognostic potential of HOXB13 in GBM. We believed that HOXB13/HOXC-AS3 signaling axis can be served as therapeutic targets for this highly aggressive cancer.
Collapse
Affiliation(s)
- Xi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Sun
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tuoye Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Qian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Baosheng Huang
- Department of Neurosurgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kaixin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Neurosurgery, Huangshan City People's Hospital, Huangshan, Anhui, China
| | - Zewu Song
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tengda Qian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lixin Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
He C, Chen ZY, Li Y, Yang ZQ, Zeng F, Cui Y, He Y, Chen JB, Chen HQ. miR-10b suppresses cell invasion and metastasis through targeting HOXA3 regulated by FAK/YAP signaling pathway in clear-cell renal cell carcinoma. BMC Nephrol 2019; 20:127. [PMID: 30975094 PMCID: PMC6458703 DOI: 10.1186/s12882-019-1322-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/31/2019] [Indexed: 12/27/2022] Open
Abstract
Background MicroRNAs have been related to tumor progression in diverse human cancers including clear-cell renal cell carcinoma (ccRCC). Previous study has suggested the important regulation function of miR-10b in ccRCC. However, the direct target of miR-10b in ccRCC and the related molecular mechanisms has not yet been revealed. Methods miR-10b and HOXA3 was detected by qRT-PCR. MTT, colony formation assay, wound-healing and transwell assays were performed to detect cell proliferation, colony formation, migration, and invasion abilities in ccRCC. Western blot analyses were performed to evaluate the protein expression of HOXA3, YAP, FAK and MMP-9. Dual luciferase reporter assay was employed to measure potential molecular mechanism of miR-10b in ccRCC. Results miR-10b was down-regulated in 786-O and A498 cells as compared to renal tubular HK-2 cells. By contrast, HOXA3 and YAP was up-regulated in ccRCC cells and tissues. Functionally, knockdown of YAP inhibited cell proliferation, migration and invasion. Knockdown of FAK downregulated YAP, in turn, resulted in a decrease of HOXA3 expression. Mechanically, miR-10b targets HOXA3 to exert its tumor-suppressive effect on ccRCC in vitro. Conclusions These novel data suggest that miR-10b suppresses cell invasion and metastasis through targeting HOXA3, which partially passed through the FAK/YAP signaling pathway.
Collapse
Affiliation(s)
- Cheng He
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Zhi-Yong Chen
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Yang Li
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Zhong-Qing Yang
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Feng Zeng
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Yao He
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - Jin-Bo Chen
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China
| | - He-Qun Chen
- Department of Urology, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410000, Hunan Province, People's Republic of China.
| |
Collapse
|
26
|
Zhuang Q, Chen Z, Shen J, Fan M, Xue D, Lu H, Xu R, He X. RASSF1A promoter methylation correlates development, progression, and poor cancer-specific survival of renal cell carcinoma: trial sequential analysis. Onco Targets Ther 2018; 12:119-134. [PMID: 30588036 PMCID: PMC6304251 DOI: 10.2147/ott.s183142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background This meta-analysis evaluated the clinicopathologic and prognostic significance of RASSF1A promoter methylation in renal cell carcinoma (RCC). Materials and methods The ORs or HRs and their 95% CIs were calculated. Trial sequential analysis was conducted. Results Twenty-two articles that included 1,421 patients with RCC and 724 controls were identified. RASSF1A promoter methylation correlated with RCC in tissue, blood, and urine samples. On multivariate analysis, RASSF1A promoter methylation was associated with tumor grade (grade 3–4 vs 1–2: OR=3.59), clinical stage (stage 3–4 vs 1–2: OR=2.15), T classification (pT2–4 vs pT1: OR=2.66), histologic subtypes (papillary vs clear cell: OR=2.91), and cancer-specific survival (HR=1.78), but it was not linked to age, gender, lymph node status, distant metastasis, or overall survival. The Cancer Genome Atlas data also showed that RASSF1A methylation was significantly more likely to be seen in papillary vs clear-cell RCC (OR=23.19). Conclusion RASSF1A promoter methylation may be associated with the development and progression of RCC, as well as poor cancer-specific survival. Methylation was more frequent in papillary vs clear-cell RCC. More studies are needed to confirm these findings in blood or urine samples.
Collapse
Affiliation(s)
- Qianfeng Zhuang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Zhen Chen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Jie Shen
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Min Fan
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Dong Xue
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Hao Lu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China,
| |
Collapse
|
27
|
|
28
|
Sui BQ, Zhang CD, Liu JC, Wang L, Dai DQ. HOXB13 expression and promoter methylation as a candidate biomarker in gastric cancer. Oncol Lett 2018; 15:8833-8840. [PMID: 29928325 DOI: 10.3892/ol.2018.8371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/03/2017] [Indexed: 12/16/2022] Open
Abstract
Homeobox b13 (HOXB13) is considered to be a tumor suppressor gene in multiple types of human cancer. The present study aimed to identify the difference in expression of HOXB13 mRNA between gastric cancer (GC) tissues and corresponding non-malignant gastric tissues. The clinical significance of HOXB13 mRNA expression was also assessed in GC and a potential association between HOXB13 mRNA expression and DNA promoter methylation was observed. The expression of HOXB13 mRNA was assessed by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and HOXB13 methylation status was assessed by methylation-specific PCR (MSP) in 5 GC cell lines and 85 paired GC and normal gastric tissues. Kaplan-Meier survival curves were used to assess the survival of patients with GC. HOXB13 mRNA expression was significantly lower in primary GC tissues than in corresponding nonmalignant gastric tissues, and decreased HOXB13 expression was associated with poorer differentiation, lymph node metastasis, invasion depth and Tumor-Node-Metastasis (TNM) stage. Kaplan-Meier survival analysis demonstrated that HOXB13 mRNA expression was a significant prognostic indicator of GC patient survival. Furthermore, MSP revealed that the proportion of GC samples with hypermethylated HOXB13 (60.0%, 51/85) was increased compared with the corresponding nonmalignant gastric tissues (11.8%, 10/85). Decreased HOXB13 mRNA expression was due to DNA hypermethylation as following treatment with the DNA methyltransferase inhibitor 5-Aza-dC, HOXB13 expression in the GC MKN-45 cell line was upregulated. The results of the present study indicate that decreased expression of HOXB13 mRNA was associated with tumor differentiation, depth of invasion, lymph node metastases and TNM stage in GC, and it was a significant poor prognostic factor for patients with GC. Aberrant DNA promoter methylation was a crucial reason for the downregulation of HOXB13 mRNA expression.
Collapse
Affiliation(s)
- Bai-Qiang Sui
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Chun-Dong Zhang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Ji-Chao Liu
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Lei Wang
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Dong-Qiu Dai
- Department of Gastrointestinal Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
29
|
Wang X, Lin P, Ho JWK. Discovery of cell-type specific DNA motif grammar in cis-regulatory elements using random Forest. BMC Genomics 2018; 19:929. [PMID: 29363433 PMCID: PMC5780765 DOI: 10.1186/s12864-017-4340-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background It has been observed that many transcription factors (TFs) can bind to different genomic loci depending on the cell type in which a TF is expressed in, even though the individual TF usually binds to the same core motif in different cell types. How a TF can bind to the genome in such a highly cell-type specific manner, is a critical research question. One hypothesis is that a TF requires co-binding of different TFs in different cell types. If this is the case, it may be possible to observe different combinations of TF motifs – a motif grammar – located at the TF binding sites in different cell types. In this study, we develop a bioinformatics method to systematically identify DNA motifs in TF binding sites across multiple cell types based on published ChIP-seq data, and address two questions: (1) can we build a machine learning classifier to predict cell-type specificity based on motif combinations alone, and (2) can we extract meaningful cell-type specific motif grammars from this classifier model. Results We present a Random Forest (RF) based approach to build a multi-class classifier to predict the cell-type specificity of a TF binding site given its motif content. We applied this RF classifier to two published ChIP-seq datasets of TF (TCF7L2 and MAX) across multiple cell types. Using cross-validation, we show that motif combinations alone are indeed predictive of cell types. Furthermore, we present a rule mining approach to extract the most discriminatory rules in the RF classifier, thus allowing us to discover the underlying cell-type specific motif grammar. Conclusions Our bioinformatics analysis supports the hypothesis that combinatorial TF motif patterns are cell-type specific. Electronic supplementary material The online version of this article (10.1186/s12864-017-4340-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Wang
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia
| | - Peijie Lin
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia
| | - Joshua W K Ho
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia. .,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
30
|
Yan F, Wang Y, Liu C, Zhao H, Zhang L, Lu X, Chen C, Wang Y, Lu T, Wang F. Identify clear cell renal cell carcinoma related genes by gene network. Oncotarget 2017; 8:110358-110366. [PMID: 29299153 PMCID: PMC5746388 DOI: 10.18632/oncotarget.22769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/03/2017] [Indexed: 12/26/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prominent type of kidney cancer in adults. The patients within metastatic ccRCC have a poor 5-year survival rate that is less than 10%. It is essential to identify ccRCC -related genes to help with the understanding of molecular mechanism of ccRCC. In this literature, we aim to identify genes related to ccRCC based on a gene network. We collected gene expression level data of ccRCC from the Cancer Genome Atlas (TCGA) for our analysis. We constructed a co-expression gene network as the first step of our study. Then, the network sparse boosting approach was performed to select the genes which are relevant to ccRCC. Results of our study show there are 15 genes selected from the all genes we collected. Among these genes, 7 of them have been demonstrated to play a key role in development and progression or in drug response of ccRCC. This finding offers clues of gene markers for the treatment of ccRCC.
Collapse
Affiliation(s)
- Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yue Wang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Chunhui Liu
- Zhongda Hospital Southeast University, Nanjing, P.R. China
| | - Huiling Zhao
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Liya Zhang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Xiaofan Lu
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Chen Chen
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yaoyan Wang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing, P.R. China
| | - Fei Wang
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
31
|
HOXB9 Expression Correlates with Histological Grade and Prognosis in LSCC. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3680305. [PMID: 28808656 PMCID: PMC5541786 DOI: 10.1155/2017/3680305] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/22/2017] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to investigate the HOX gene expression profile in laryngeal squamous cell carcinoma (LSCC) and assess whether some genes are associated with the clinicopathological features and prognosis in LSCC patients. The HOX gene levels were tested by microarray and validated by qRT-PCR in paired cancerous and adjacent noncancerous LSCC tissue samples. The microarray testing data of 39 HOX genes revealed 15 HOX genes that were at least 2-fold upregulated and 2 that were downregulated. After qRT-PCR evaluation, the three most upregulated genes (HOXB9, HOXB13, and HOXD13) were selected for tissue microarray (TMA) analysis. The correlations between the HOXB9, HOXB13, and HOXD13 expression levels and both clinicopathological features and prognosis were analyzed. Three HOX gene expression levels were markedly increased in LSCC tissues compared with adjacent noncancerous tissues (P < 0.001). HOXB9 was found to correlate with histological grade (P < 0.01) and prognosis (P < 0.01) in LSCC. In conclusion, this study revealed that HOXB9, HOXB13, and HOXD13 were upregulated and may play important roles in LSCC. Moreover, HOXB9 may serve as a novel marker of poor prognosis and a potential therapeutic target in LSCC patients.
Collapse
|
32
|
Liu Q, Jin J, Ying J, Cui Y, Sun M, Zhang L, Fan Y, Xu B, Zhang Q. Epigenetic inactivation of the candidate tumor suppressor gene ASC/TMS1 in human renal cell carcinoma and its role as a potential therapeutic target. Oncotarget 2016; 6:22706-23. [PMID: 26093088 PMCID: PMC4673193 DOI: 10.18632/oncotarget.4256] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 05/23/2015] [Indexed: 11/25/2022] Open
Abstract
This study investigated the epigenetic alteration and biological function of the pro-apoptotic gene ASC/TMS1 in renal cell carcinoma. ASC/TMS1 was downregulated in five out of six RCC cell lines. A significant downregulation was also detected in sixty-seven paired renal tumors compared with adjacent non-cancerous tissues. The downregulation of ASC/TMS1 was correlated with promoter hypermethylation and could be restored with demethylation treatment. Re-expression of ASC/TMS1 in silenced RCC cell lines inhibited cell viability, colony formation, arrested cell cycle, induced apoptosis, suppressed cell invasion and repressed tumorigenicity in SCID mice. The antitumorigenic function of ASC/TMS1 in renal cancer was partially regulated by activation of p53 and p21 signaling. In addition, restoration of ASC/TMS1 sensitizes RCC cells to DNA damaging agents. Knockdown of ASC/TMS1 reduced DNA damaging agents-induced p53 activation and cell apoptosis. Moreover, ASC/TMS1 hypermethylation was further detected in 41.1% (83/202) of RCC tumors, but only 12% in adjacent non-cancerous tissues. ASC/TMS1 methylation was significantly correlated with higher tumor nuclear grade. In conclusion, ASC/TMS1 is a novel functional tumor suppressor in renal carcinogenesis. ASC/TMS1 tumor specific methylation may be a useful biomarker for designing improved diagnostic and therapeutic strategies for RCC.
Collapse
Affiliation(s)
- Qianling Liu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jie Jin
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Cancer Hospital, Peking Union Medical College (PUMC), Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Yun Cui
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Mengkui Sun
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Lian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Yu Fan
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Ben Xu
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| | - Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, National Research Center for Genitourinary Oncology, Beijing 100034, China
| |
Collapse
|
33
|
Shenoy N, Pagliaro L. Sequential pathogenesis of metastatic VHL mutant clear cell renal cell carcinoma: putting it together with a translational perspective. Ann Oncol 2016; 27:1685-95. [PMID: 27329246 DOI: 10.1093/annonc/mdw241] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/06/2016] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for ∼80% of all RCC, and biallelic Von Hippel-Lindau (VHL) gene defects occur in ∼75% of sporadic ccRCC. The etiopathogenesis of VHL mutant metastatic RCC, based on our understanding to date of molecular mechanisms involved, is a sequence of events which can be grouped under the following: (i) loss of VHL activity (germline/somatic mutation + inactivation of the wild-type copy); (ii) constitutive activation of the hypoxia-inducible factor (HIF) pathway due to loss of VHL activity and transcription of genes involved in angiogenesis, epithelial-mesenchymal transition, invasion, metastasis, survival, anaerobic glycolysis and pentose phosphate pathway; (iii) interactions of the HIF pathway with other oncogenic pathways; (iv) genome-wide epigenetic changes (potentially driven by an overactive HIF pathway) and the influence of epigenetics on various oncogenic, apoptotic, cell cycle regulatory and mismatch repair pathways (inhibition of multiple tumor suppressor genes); (v) immune evasion, at least partially caused by changes in the epigenome. These mechanisms interact throughout the pathogenesis and progression of disease, and also confer chemoresistance and radioresistance, making it one of the most difficult metastatic cancers to treat. This article puts together the sequential pathogenesis of VHL mutant ccRCC by elaborating these mechanisms and the interplay of oncogenic pathways, epigenetics, metabolism and immune evasion, with a perspective on potential therapeutic strategies. We reflect on the huge gap between our understanding of the molecular biology and currently accepted standard of care in metastatic ccRCC, and present ideas for better translational research involving therapeutic strategies with combinatorial drug approach, targeting different aspects of the pathogenesis.
Collapse
Affiliation(s)
- N Shenoy
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| | - L Pagliaro
- Division of Medical Oncology, Mayo Clinic, Rochester, USA
| |
Collapse
|
34
|
Yuan H, Kajiyama H, Ito S, Chen D, Shibata K, Hamaguchi M, Kikkawa F, Senga T. HOXB13 and ALX4 induce SLUG expression for the promotion of EMT and cell invasion in ovarian cancer cells. Oncotarget 2016; 6:13359-70. [PMID: 25944620 PMCID: PMC4537020 DOI: 10.18632/oncotarget.3673] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/25/2015] [Indexed: 12/12/2022] Open
Abstract
Homeoproteins, a family of transcription factors that have conserved homeobox domains, play critical roles in embryonic development in a wide range of species. Accumulating studies have revealed that homeoproteins are aberrantly expressed in multiple tumors and function as either tumor promoters or suppressors. In this study, we show that two homeoproteins, HOXB13 and ALX4, are associated with epithelial to mesenchymal transition (EMT) and invasion of ovarian cancer cells. HOXB13 and ALX4 formed a complex in cells, and exogenous expression of either protein promoted EMT and invasion. Conversely, depletion of either protein suppressed invasion and induced reversion of EMT. SLUG is a C2H2-type zinc-finger transcription factor that promotes EMT in various cell lines. Knockdown of HOXB13 or ALX4 suppressed SLUG expression, and exogenous expression of either protein promoted SLUG expression. Finally, we showed that SLUG expression was essential for the HOXB13- or ALX4-mediated EMT and invasion. Our results show that HOXB13/SLUG and ALX4/SLUG axes are novel pathways that promote EMT and invasion of ovarian cancer cells.
Collapse
Affiliation(s)
- Hong Yuan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Satoko Ito
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Dan Chen
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Michinari Hamaguchi
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Takeshi Senga
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| |
Collapse
|
35
|
Shenoy N, Vallumsetla N, Zou Y, Galeas JN, Shrivastava M, Hu C, Susztak K, Verma A. Role of DNA methylation in renal cell carcinoma. J Hematol Oncol 2015. [PMID: 26198328 PMCID: PMC4511443 DOI: 10.1186/s13045-015-0180-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alterations in DNA methylation are seen in cancers and have also been examined in clear cell renal cell carcinoma (ccRCC). Numerous tumor suppressor genes have been reported to be partially or completely silenced due to hypermethylation of their promoters in single-locus studies, and the use of hypomethylating agents has been shown to restore the expression of many of these genes in vitro. In particular, members of the Wnt and TGF-beta pathways, pro-apoptotic genes such as APAF-1 and negative cell-cycle regulators such as KILLIN have been shown to be epigenetically silenced in numerous studies in ccRCC. Recently, TCGA analysis of a large cohort of ccRCC samples demonstrated that aberrant hypermethylation correlated with the stage and grade in kidney cancer. Our genome-wide studies also revealed aberrant widespread hypermethylation that affected regulatory regions of the kidney genome in ccRCC. We also observed that aberrant enhancer hypermethylation was predictive of adverse prognosis in ccRCC. Recent discovery of mutations affecting epigenetic regulators reinforces the importance of these changes in the pathophysiology of ccRCC and points to the potential of epigenetic modulators in the treatment of this malignancy.
Collapse
Affiliation(s)
- Niraj Shenoy
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Nishanth Vallumsetla
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Yiyu Zou
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Jose Nahun Galeas
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | | | - Caroline Hu
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| | - Katalin Susztak
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Amit Verma
- Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10467, USA.
| |
Collapse
|
36
|
Maia S, Cardoso M, Pinto P, Pinheiro M, Santos C, Peixoto A, Bento MJ, Oliveira J, Henrique R, Jerónimo C, Teixeira MR. Identification of Two Novel HOXB13 Germline Mutations in Portuguese Prostate Cancer Patients. PLoS One 2015; 10:e0132728. [PMID: 26176944 PMCID: PMC4503425 DOI: 10.1371/journal.pone.0132728] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/17/2015] [Indexed: 01/01/2023] Open
Abstract
The HOXB13 germline variant G84E (rs138213197) was recently described in men of European descent, with the highest prevalence in Northern Europe. The G84E mutation has not been found in patients of African or Asian ancestry, which may carry other HOXB13 variants, indicating allelic heterogeneity depending on the population. In order to gain insight into the full scope of coding HOXB13 mutations in Portuguese prostate cancer patients, we decided to sequence the entire coding region of the HOXB13 gene in 462 early-onset or familial/hereditary cases. Additionally, we searched for somatic HOXB13 mutations in 178 prostate carcinomas to evaluate their prevalence in prostate carcinogenesis. Three different patients were found to carry in their germline DNA two novel missense variants, which were not identified in 132 control subjects. Both variants are predicted to be deleterious by different in silico tools. No somatic mutations were found. These findings further support the hypothesis that different rare HOXB13 mutations may be found in different ethnic groups. Detection of mutations predisposing to prostate cancer may require re-sequencing rather than genotyping, as appropriate to the population under investigation.
Collapse
Affiliation(s)
- Sofia Maia
- Department of Genetics and Cancer Genetics Group–CI-IPOP, Portuguese Oncology Institute–Porto, Porto, Portugal
| | - Marta Cardoso
- Department of Genetics and Cancer Genetics Group–CI-IPOP, Portuguese Oncology Institute–Porto, Porto, Portugal
| | - Pedro Pinto
- Department of Genetics and Cancer Genetics Group–CI-IPOP, Portuguese Oncology Institute–Porto, Porto, Portugal
| | - Manuela Pinheiro
- Department of Genetics and Cancer Genetics Group–CI-IPOP, Portuguese Oncology Institute–Porto, Porto, Portugal
| | - Catarina Santos
- Department of Genetics and Cancer Genetics Group–CI-IPOP, Portuguese Oncology Institute–Porto, Porto, Portugal
| | - Ana Peixoto
- Department of Genetics and Cancer Genetics Group–CI-IPOP, Portuguese Oncology Institute–Porto, Porto, Portugal
| | - Maria José Bento
- Department of Epidemiology, Portuguese Oncology Institute–Porto, Porto, Portugal
- North Region Cancer Registry, Portuguese Oncology Institute–Porto, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto–Porto, Portugal
| | - Jorge Oliveira
- Department of Urology, Portuguese Oncology Institute–Porto, Porto, Portugal
| | - Rui Henrique
- Biomedical Sciences Institute (ICBAS), University of Porto–Porto, Portugal
- Cancer Biology and Epigenetics Group–CI-IPOP, Portuguese Oncology Institute–Porto, Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute–Porto, Porto, Portugal
| | - Carmen Jerónimo
- Biomedical Sciences Institute (ICBAS), University of Porto–Porto, Portugal
- Cancer Biology and Epigenetics Group–CI-IPOP, Portuguese Oncology Institute–Porto, Porto, Portugal
| | - Manuel R. Teixeira
- Department of Genetics and Cancer Genetics Group–CI-IPOP, Portuguese Oncology Institute–Porto, Porto, Portugal
- Biomedical Sciences Institute (ICBAS), University of Porto–Porto, Portugal
- * E-mail:
| |
Collapse
|
37
|
Methylome sequencing in triple-negative breast cancer reveals distinct methylation clusters with prognostic value. Nat Commun 2015; 6:5899. [PMID: 25641231 DOI: 10.1038/ncomms6899] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/17/2014] [Indexed: 01/09/2023] Open
Abstract
Epigenetic alterations in the cancer methylome are common in breast cancer and provide novel options for tumour stratification. Here, we perform whole-genome methylation capture sequencing on small amounts of DNA isolated from formalin-fixed, paraffin-embedded tissue from triple-negative breast cancer (TNBC) and matched normal samples. We identify differentially methylated regions (DMRs) enriched with promoters associated with transcription factor binding sites and DNA hypersensitive sites. Importantly, we stratify TNBCs into three distinct methylation clusters associated with better or worse prognosis and identify 17 DMRs that show a strong association with overall survival, including DMRs located in the Wilms tumour 1 (WT1) gene, bi-directional-promoter and antisense WT1-AS. Our data reveal that coordinated hypermethylation can occur in oestrogen receptor-negative disease, and that characterizing the epigenetic framework provides a potential signature to stratify TNBCs. Together, our findings demonstrate the feasibility of profiling the cancer methylome with limited archival tissue to identify regulatory regions associated with cancer.
Collapse
|
38
|
Mansfield AS, Wang L, Cunningham JM, Jen J, Kolbert CP, Sun Z, Yang P. DNA methylation and RNA expression profiles in lung adenocarcinomas of never-smokers. Cancer Genet 2014; 208:253-60. [PMID: 25650174 DOI: 10.1016/j.cancergen.2014.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 12/18/2014] [Accepted: 12/23/2014] [Indexed: 10/24/2022]
Abstract
Lung cancer occurs in never-smokers. Epigenetic changes in lung cancer potentially represent important diagnostic, prognostic, and therapeutic targets. We compared DNA methylation profiles of 28 adenocarcinomas of the lungs of never-smokers with paired adjacent nonmalignant lung tissue. We correlated differential methylation changes with gene expression changes from the same 28 sample pairs. Using principal component analysis, we observed a distinct separation in methylation profiles between tumor and adjacent nonmalignant lung tissue. Tumors were generally hypomethylated compared with adjacent nonmalignant tissue. Of 1,906 CpG sites differentially methylated between tumor and nonmalignant tissue, 1,198 were within classically defined CpG islands where tumors were hypermethylated compared with nonmalignant tissue. A total of 708 sites were outside CpG islands where tumors were hypomethylated compared with nonmalignant tissue. There were significant differences in expression of 351 genes (23%) of the 1,522 genes matched to the differentially methylated CpG sites. Genes that were not significantly differentially expressed and were hypermethylated within CpG sites were enriched for homeobox genes. These results suggest that the methylation profiles of lung adenocarcinomas of never-smokers and adjacent nonmalignant lung tissue are significantly different. Despite the differential methylation of homeobox genes, no significant changes in expression of these genes were detected.
Collapse
Affiliation(s)
- Aaron S Mansfield
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Liang Wang
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julie M Cunningham
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Medical Genome Facility, Mayo Clinic, Rochester, MN, USA
| | - Jin Jen
- Division of Experimental Pathology and Laboratory Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA; Medical Genome Facility, Mayo Clinic, Rochester, MN, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Zhifu Sun
- Division of Biomedical Statistics and Informatics, Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Ping Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Division of Epidemiology and Department of Medical Genetics, Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
39
|
Decker B, Ostrander EA. Dysregulation of the homeobox transcription factor gene HOXB13: role in prostate cancer. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:193-201. [PMID: 25206306 PMCID: PMC4157396 DOI: 10.2147/pgpm.s38117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Prostate cancer (PC) is the most common noncutaneous cancer in men, and epidemiological studies suggest that about 40% of PC risk is heritable. Linkage analyses in hereditary PC families have identified multiple putative loci. However, until recently, identification of specific risk alleles has proven elusive. Cooney et al used linkage mapping and segregation analysis to identify a putative risk locus on chromosome 17q21-22. In search of causative variant(s) in genes from the candidate region, a novel, potentially deleterious G84E substitution in homeobox transcription factor gene HOXB13 was observed in multiple hereditary PC families. In follow-up testing, the G84E allele was enriched in cases, especially those with an early diagnosis or positive family history of disease. This finding was replicated by others, confirming HOXB13 as a PC risk gene. The HOXB13 protein plays diverse biological roles in embryonic development and terminally differentiated tissue. In tumor cell lines, HOXB13 participates in a number of biological functions, including coactivation and localization of the androgen receptor and FOXA1. However, no consensus role has emerged and many questions remain. All HOXB13 variants with a proposed role in PC risk are predicted to damage the protein and lie in domains that are highly conserved across species. The G84E variant has the strongest epidemiological support and lies in a highly conserved MEIS protein-binding domain, which binds cofactors required for activation. On the basis of epidemiological and biological data, the G84E variant likely modulates the interaction between the HOXB13 protein and the androgen receptor, as well as affecting FOXA1-mediated transcriptional programming. However, further studies of the mutated protein are required to clarify the mechanisms by which this translates into PC risk.
Collapse
Affiliation(s)
- Brennan Decker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA ; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
40
|
Kim IJ, Kang TW, Jeong T, Kim YR, Jung C. HOXB13 regulates the prostate-derived Ets factor: implications for prostate cancer cell invasion. Int J Oncol 2014; 45:869-76. [PMID: 24898171 DOI: 10.3892/ijo.2014.2485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/29/2014] [Indexed: 11/06/2022] Open
Abstract
HOXB13 has been shown to enhance the invasive potential of breast and endometrial tumors. HOXB13 is also abundant in castration-resistant prostate tumors. To determine the invasive potential of HOXB13 in prostate tumors, highly metastatic PC3 prostate cancer cells were manipulated to express HOXB13 and/or the prostate-derived Ets factor (PDEF). The PDEF is believed to reduce the invasive potential of various tumors, including prostate tumors. To further demonstrate the functional correlation between HOXB13 and PDEF, transwell invasion and gelatin zymography assays were performed. In addition, the western blot analysis was used to demonstrate the expression of PDEF target proteins involved in cancer cell migration and invasion, MMP-9 and survivin. According to the results, HOXB13 promoted PC3 cell migration and invasion. The DNA microarray analysis demonstrated that HOXB13 significantly suppressed the expression of the PDEF. Accordingly, the expression of MMP-9 and survivin was regulated by HOXB13. In addition, HOXB13 promoted the invasive potential of PC3 cells while inhibiting the PDEF. The coexpression of HOXB13 and the PDEF led to moderate retardation of the number of invasive cells, indicating that HOXB13 functionally counteracted cell invasion by reducing PDEF expression. The western blot analysis demonstrated that HOXB13 counteracted the PDEF-mediated inhibition of the expression of PDEF target proteins such as MMP-9 and survivin. The results suggest that the HOXB13-mediated promotion of tumor cell invasion is accomplished mainly through the downregulation of PDEF expression.
Collapse
Affiliation(s)
- In-Je Kim
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Taek Won Kang
- Department of Urology, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Taeoh Jeong
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Young-Rang Kim
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| | - Chaeyong Jung
- Department of Anatomy, Chonnam National University Medical School, Gwangju 501-746, Republic of Korea
| |
Collapse
|
41
|
Hamid SM, Cicek S, Karamil S, Ozturk MB, Debelec-Butuner B, Erbaykent-Tepedelen B, Varisli L, Gonen-Korkmaz C, Yorukoglu K, Korkmaz KS. HOXB13 contributes to G1/S and G2/M checkpoint controls in prostate. Mol Cell Endocrinol 2014; 383:38-47. [PMID: 24325868 DOI: 10.1016/j.mce.2013.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 01/14/2023]
Abstract
HOXB13 is a homeobox protein that is expressed in normal adult prostate and colon tissues; however, its deregulated expression was evidenced in various malignancies. To characterize the putative role of HOXB13 in cell cycle progression, we performed overexpression and siRNA-mediated knockdown studies in PC-3 and LNCaP cells. Immunohistochemistry (IHC) analyses were also performed using formalin-fixed, paraffin-embedded tissues containing normal, H-PIN and PCa sections from 20 radical prostatectomy specimens. Furthermore, when the role of HOXB13 during cell cycle progression, association with cyclins, cell growth and colony formation using real-time cell proliferation were assessed, we observed that ectopic expression of HOXB13 accumulated cells at G1 through decreasing the cyclin D1 level by promoting its ubiquitination and degradation. This loss slowed S phase entry in both cell lines examined, with an associated decrease in pRb((S780) and (S795)) phosphorylations. Contrary, siRNA-mediated depletion of HOXB13 expression noticeably increased cyclin levels, stabilized E2F1 and CDC25C, subsequent to increased pRb phosphorylations. This increase in Cyclin B1 and CDC25C both together facilitated activation of cyclin B complex via dephosphorylating CDK1((T14Y15)), and resumed the G2/M transition after nocodazole synchronization. Despite an increase in the total expression level and cytoplasmic retention of HOXB13 in H-PIN and PCa samples that were observed via IHC evaluation of prostate tissues, HOXB13 depletion facilitated to an increase in PC-3 and LNCaP cell proliferation. Thus, we suggest that HOXB13 expression is required for cell cycle regulation, and increases by an unknown mechanism consequent to its functional loss in cancer.
Collapse
Affiliation(s)
- Syed Muhammad Hamid
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Seher Cicek
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Selda Karamil
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Mert Burak Ozturk
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Bilge Debelec-Butuner
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey; Department of Biotechnology, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Burcu Erbaykent-Tepedelen
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | - Lokman Varisli
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey
| | | | - Kutsal Yorukoglu
- Dokuz Eylul University, Faculty of Medicine, Department of Pathology, Inciralti, Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory and Faculty of Pharmacy, Ege University, Faculty of Engineering, Bornova, Izmir, Turkey.
| |
Collapse
|
42
|
Zhao L, Zhu S, Gao Y, Wang Y. Two-gene expression ratio as predictor for breast cancer treated with tamoxifen: evidence from meta-analysis. Tumour Biol 2013; 35:3113-7. [PMID: 24264313 DOI: 10.1007/s13277-013-1403-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 12/11/2022] Open
Abstract
A HOXB13-to-IL17BR expression ratio was previously identified to predict a clinical outcome of breast cancer patients treated with adjuvant tamoxifen. A large number of studies were addressed to confirm its function as a predictor of breast cancer outcome treated with tamoxifen. However, conflicting results were got. In this study, a systematic search of databases was carried out, and other relevant papers were also identified. Then, the analyses were conducted according to the PRISMA and MOOSE guidelines. After full review, 11 studies with a total of 2,958 participants were deemed eligible and were included in the study. Pooled results revealed that women with higher HOXB13-to-IL17BR expression ratio had significantly worse outcomes in breast patients treated with tamoxifen, especially for those who are negative of node.
Collapse
Affiliation(s)
- Lin Zhao
- International Medical School, Tianjin Medical University, 300070, Tianjin, China
| | | | | | | |
Collapse
|
43
|
Tykwinska K, Lauster R, Knaus P, Rosowski M. Growth and differentiation factor 3 induces expression of genes related to differentiation in a model of cancer stem cells and protects them from retinoic acid-induced apoptosis. PLoS One 2013; 8:e70612. [PMID: 23950971 PMCID: PMC3741270 DOI: 10.1371/journal.pone.0070612] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/20/2013] [Indexed: 01/01/2023] Open
Abstract
Misexpression of growth factors, particularly those related to stem cell-like phenotype, is often observed in several cancer types. It has been found to influence parameters of disease progression like cell proliferation, differentiation, maintenance of undifferentiated phenotype and modulation of the immune system. GDF3 is a TGFB family member associated with pluripotency and differentiation during embryonic development that has been previously reported to be re-expressed in a number of cancer types. However, its role in tumor development and progression has not been clarified yet. In this study we decipher the role of GDF3 in an in vitro model of cancer stem cells, NCCIT cells. By classical approach to study protein function combined with high-throughput technique for transcriptome analysis and differentiation assays we evaluated GDF3 as a potential therapeutic target. We observed that GDF3 robustly induces a panel of genes related to differentiation, including several potent tumor suppressors, without impacting the proliferative capacity. Moreover, we report for the first time the protective effect of GDF3 against retinoic acid-induced apoptosis in cells with stem cell-like properties. Our study implies that blocking of GDF3 combined with retinoic acid-treatment of solid cancers is a compelling direction for further investigations, which can lead to re-design of cancer differentiation therapies.
Collapse
Affiliation(s)
- Karolina Tykwinska
- Institute of Medical Biotechnology, Department of Biotechnology, Technische Universität Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
44
|
Liu Z, Ren G, Shangguan C, Guo L, Dong Z, Li Y, Zhang W, Zhao L, Hou P, Zhang Y, Wang X, Lu J, Huang B. ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene. PLoS One 2012; 7:e40943. [PMID: 22808286 PMCID: PMC3396626 DOI: 10.1371/journal.pone.0040943] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/15/2012] [Indexed: 01/02/2023] Open
Abstract
All-trans retinoic acid (ATRA) has been widely investigated for treatments of many cancers including prostate cancer. HOXB13, silenced in androgen receptor-negative (AR(-)) prostate cancer cells, plays a role in AR(-) prostate cancer cell growth arrest. In this study we intended to elucidate the mechanisms that are involved in the proliferation inhibition of AR(-) prostate cancer cells triggered by ATRA. We discovered that ATRA was able to induce the growth arrest and to increase HOXB13 expression in AR(-) prostate cancer cells. Both EZH2 and DNMT3b participated in the repression of HOXB13 expression through an epigenetic mechanism involving DNA and histone methylation modifications. Specifically, EZH2 recruited DNMT3b to HOXB13 promoter to form a repression complex. Moreover, ATRA could upregulate HOXB13 through decreasing EZH2 and DNMT3b expressions and reducing their interactions with the HOXB13 promoter. Concurrently, the methylation level of the HOXB13 promoter was reduced upon the treatment of ATRA. Results from this study implicated a novel effect of ATRA in inhibition of the growth of AR(-) resistant human prostate cancer cells through alteration of HOXB13 expression as a result of epigenetic modifications.
Collapse
Affiliation(s)
- Zhiwei Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Guoling Ren
- College of Life Sciences, Daqing Normal University, Daqing, Heilongjiang, China
| | - Chenyan Shangguan
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lijing Guo
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Zhixiong Dong
- The College of Life Science, Tianjin Normal University, Tianjin, China
| | - Yueyang Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Weina Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Li Zhao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Pingfu Hou
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiuli Wang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
45
|
Abstract
This article focuses on the epigenetic alterations of aberrant promoter hypermethylation of genes, and histone modifications or RNA interference in cancer cells. Current knowledge of the hypermethylation of allele(s) in classical tumor suppressor genes in inherited and sporadic cancer, candidate tumor suppressor and other cancer genes is summarized gene by gene. Global and array-based studies of tumor cell hypermethylation are discussed. The importance of standardization of scoring of the methylation status of a gene is highlighted. The histone marks associated with hypermethylated genes, and the miRNAs with dysregulated expression, in kidney or bladder tumor cells are also discussed. Kidney cancer has the highest mortality rate of the genito-urinary cancers. There are management issues associated with the high recurrence rate of superficial bladder cancer, while muscle-invasive bladder cancer has a poor prognosis. These clinical problems are the basis for the translational application of gene hypermethylation in the diagnosis and prognosis of kidney and bladder cancer.
Collapse
Affiliation(s)
- Amanda M Hoffman
- Departments of Surgical Oncology & Pathology, W350, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | |
Collapse
|
46
|
Jeong TO, Oh KJ, Xuan Nguyen NT, Kim YR, Kim MS, Lee SD, Ryu SB, Jung C. Evaluation of HOXB13 as a molecular marker of recurrent prostate cancer. Mol Med Rep 2012; 5:901-4. [PMID: 22293681 PMCID: PMC3493085 DOI: 10.3892/mmr.2012.769] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/23/2012] [Indexed: 11/06/2022] Open
Abstract
Many patients with prostate cancer have disease recurrence following surgical removal of tumors and fail to respond to androgen ablation therapy. Despite the existence of a number of clinical/pathological factors, it is not possible to predict which patients will fall into this category. The results of our previous studies demonstrated that the HOXB13 homeodomain protein plays a key role in the development of prostate cancer and the progression of this malignancy. In addition, HOXB13 has been reported to predict estrogen-resistant breast cancer tumors. The purpose of this study was to investigate whether HOXB13 could be used as a molecular marker to predict prostate cancer recurrence. To examine the role of HOXB13 as a molecular marker with clinical/pathological data, the expression of HOXB13 was compared using immunohistochemistry in 57 organ-confined prostate cancer tumors obtained by radical prostatectomy. There was no significant correlation between the expression of HOXB13 and most clinical/pathological parameters, including tumor margin, invasion, pathological stage and risk level. The HOXB13 expression levels correlated with the Gleason score and there was a positive correlation with the pre-operative prostate specific antigen (PSA) levels. Accordingly, the tumor specimens from 4 patients who ultimately had biochemical failure (PSA >0.2 ng/ml), all showed a high expression of HOXB13, while their risk levels were either intermediate or high. This is the first study to report that HOXB13, together with other clinical/pathological factors, can be used as a molecular marker to predict the progression of prostate cancer.
Collapse
Affiliation(s)
- Tae-O Jeong
- Department of Anatomy, Chonnam National University Medical School and Research Institute of Medical Sciences, Gwangju 501-190, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Raha P, Thomas S, Munster PN. Epigenetic modulation: a novel therapeutic target for overcoming hormonal therapy resistance. Epigenomics 2011; 3:451-70. [DOI: 10.2217/epi.11.72] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
For more than four decades, modulation of estrogen receptor activity with antiestrogens has been a successful strategy for the treatment of breast cancer. However, therapeutic resistance limits this approach. Patients whose tumors lack estrogen receptors are not candidates for antiestrogens. Furthermore, roughly half that do express estrogen receptors fail to respond. Together, these tumors are considered to be de novo resistant. For those with tumors that do respond, most will eventually acquire resistance. As such, the underlying mechanisms of both de novo and acquired resistance have been the subject of considerable research, so that new therapeutic targets might be discovered and developed. From this work, epigenetic regulation of gene expression has emerged as a major contributor to both forms of resistance. In this article, we present our current understanding of the mechanisms that contribute to antiestrogen resistance, focusing on epigenetic regulation, and examine the approaches being used that target epigenetic machinery to overcome resistance both in the laboratory and in the clinic.
Collapse
Affiliation(s)
- Paromita Raha
- Department of Medicine, Hematology/Oncology Division. Room A722, University of California, 1600 Divisadero St, San Francisco, CA 94115-1770, USA
| | - Scott Thomas
- Department of Medicine, Hematology/Oncology Division. Room A722, University of California, 1600 Divisadero St, San Francisco, CA 94115-1770, USA
| | | |
Collapse
|
48
|
Sandgren J, Andersson R, Rada-Iglesias A, Enroth S, Akerstrom G, Dumanski JP, Komorowski J, Westin G, Wadelius C. Integrative epigenomic and genomic analysis of malignant pheochromocytoma. Exp Mol Med 2010; 42:484-502. [PMID: 20534969 DOI: 10.3858/emm.2010.42.7.050] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenomic and genomic changes affect gene expression and contribute to tumor development. The histone modifications trimethylated histone H3 lysine 4 (H3K4me3) and lysine 27 (H3K27me3) are epigenetic regulators associated to active and silenced genes, respectively and alterations of these modifications have been observed in cancer. Furthermore, genomic aberrations such as DNA copy number changes are common events in tumors. Pheochromocytoma is a rare endocrine tumor of the adrenal gland that mostly occurs sporadic with unknown epigenetic/genetic cause. The majority of cases are benign. Here we aimed to combine the genome-wide profiling of H3K4me3 and H3K27me3, obtained by the ChIP-chip methodology, and DNA copy number data with global gene expression examination in a malignant pheochromocytoma sample. The integrated analysis of the tumor expression levels, in relation to normal adrenal medulla, indicated that either histone modifications or chromosomal alterations, or both, have great impact on the expression of a substantial fraction of the genes in the investigated sample. Candidate tumor suppressor genes identified with decreased expression, a H3K27me3 mark and/or in regions of deletion were for instance TGIF1, DSC3, TNFRSF10B, RASSF2, HOXA9, PTPRE and CDH11. More genes were found with increased expression, a H3K4me3 mark, and/or in regions of gain. Potential oncogenes detected among those were GNAS, INSM1, DOK5, ETV1, RET, NTRK1, IGF2, and the H3K27 trimethylase gene EZH2. Our approach to associate histone methylations and DNA copy number changes to gene expression revealed apparent impact on global gene transcription, and enabled the identification of candidate tumor genes for further exploration.
Collapse
Affiliation(s)
- Johanna Sandgren
- Department of Surgical Sciences, Uppsala University, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Aberrant DNA methylation, in particular promoter hypermethylation and transcriptional silencing of tumor suppressor genes, has an important role in the development of many human cancers, including renal cell carcinoma (RCC). Indeed, apart from mutations in the well studied von Hippel-Lindau gene (VHL), the mutation frequency rates of known tumor suppressor genes in RCC are generally low, but the number of genes found to show frequent inactivation by promoter methylation in RCC continues to grow. Here, we review the genes identified as epigenetically silenced in RCC and their relationship to pathways of tumor development. Increased understanding of RCC epigenetics provides new insights into the molecular pathogenesis of RCC and opportunities for developing novel strategies for the diagnosis, prognosis and management of RCC.
Collapse
|
50
|
Zhang Q, Ying J, Li J, Fan Y, Poon FF, Ng KM, Tao Q, Jin J. Aberrant promoter methylation of DLEC1, a critical 3p22 tumor suppressor for renal cell carcinoma, is associated with more advanced tumor stage. J Urol 2010; 184:731-7. [PMID: 20639048 DOI: 10.1016/j.juro.2010.03.108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Indexed: 12/31/2022]
Abstract
PURPOSE Identifying tumor suppressor genes silenced by promoter CpG methylation uncovers mechanisms of tumorigenesis and identifies new epigenetic biomarkers for early cancer detection. DLEC1 is located at 3p22.3, a critical tumor suppressor gene locus for renal cell carcinoma. We explored its epigenetic alteration in renal cell carcinoma and possible clinicopathological association. MATERIALS AND METHODS We examined DLEC1 expression and methylation by semiquantitative reverse transcriptase and methylation specific polymerase chain reaction in 9 renal cell carcinoma cell lines and 81 primary tumors. We also analyzed the relationship between DLEC1 methylation and clinicopathological features in patients with renal cell carcinoma. We assessed DLEC1 inhibition of renal cell carcinoma cell growth by colony formation assay. RESULTS DLEC1 methylation and down-regulation were detected in all renal cell carcinoma cell lines. Treatment with 5-aza-2'-deoxycytidine (Sigma) and/or trichostatin A (Cayman Chemical, Ann Arbor, Michigan) reversed methylation and restored DLEC1 expression, indicating that methylation directly mediates its silencing. Aberrant methylation was further detected in 25 of 81 primary tumors (31%) but only 1 of 53 nonmalignant renal tissues (2%) showed methylation. DLEC1 methylation status was significantly associated with TNM classification and grade in patients with renal cell carcinoma (chi-square test p = 0.01 and 0.04, respectively). DLEC1 ectopic expression in silenced renal cell carcinoma cells resulted in substantial tumor cell clonogenicity inhibition. CONCLUSIONS To our knowledge we report for the first time that DLEC1 is often down-regulated by CpG methylation and shows tumor inhibitory function in renal cell carcinoma cells, indicating its role as a tumor suppressor. DLEC1 tumor specific methylation may serve as a biomarker for early detection and prognosis prediction of this tumor.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Urology, Peking University First Hospital and Institute of Urology, Peking University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|