1
|
Lu D, Faizi M, Drown B, Simerzin A, François J, Bradshaw G, Kelleher N, Jambhekar A, Gunawardena J, Lahav G. Temporal regulation of gene expression through integration of p53 dynamics and modifications. SCIENCE ADVANCES 2024; 10:eadp2229. [PMID: 39454005 PMCID: PMC11506164 DOI: 10.1126/sciadv.adp2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
The master regulator of the DNA damage response, the transcription factor p53, orchestrates multiple downstream responses and coordinates repair processes. In response to double-strand DNA breaks, p53 exhibits pulses of expression, but how it achieves temporal coordination of downstream responses remains unclear. Here, we show that p53's posttranslational modification state is altered between its first and second pulses of expression. We show that acetylations at two sites, K373 and K382, were reduced in the second pulse, and these acetylations differentially affected p53 target genes, resulting in changes in gene expression programs over time. This interplay between dynamics and modification may offer a strategy for cellular hubs like p53 to temporally organize multiple processes in individual cells.
Collapse
Affiliation(s)
- Dan Lu
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Marjan Faizi
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Bryon Drown
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Alina Simerzin
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Joshua François
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Gary Bradshaw
- Laboratory of Systems Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Neil Kelleher
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Stoyanov M, Martinikova AS, Matejkova K, Horackova K, Zemankova P, Burdova K, Zemanova Z, Kleiblova P, Kleibl Z, Macurek L. PPM1D activity promotes cellular transformation by preventing senescence and cell death. Oncogene 2024; 43:3081-3093. [PMID: 39237765 PMCID: PMC11473410 DOI: 10.1038/s41388-024-03149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Cell cycle checkpoints, oncogene-induced senescence and programmed cell death represent intrinsic barriers to tumorigenesis. Protein phosphatase magnesium-dependent 1 (PPM1D) is a negative regulator of the tumour suppressor p53 and has been implicated in termination of the DNA damage response. Here, we addressed the consequences of increased PPM1D activity resulting from the gain-of-function truncating mutations in exon 6 of the PPM1D. We show that while control cells permanently exit the cell cycle and reside in senescence in the presence of DNA damage caused by ionising radiation or replication stress induced by the active RAS oncogene, RPE1-hTERT and BJ-hTERT cells carrying the truncated PPM1D continue proliferation in the presence of DNA damage, form micronuclei and accumulate genomic rearrangements revealed by karyotyping. Further, we show that increased PPM1D activity promotes cell growth in the soft agar and formation of tumours in xenograft models. Finally, expression profiling of the transformed clones revealed dysregulation of several oncogenic and tumour suppressor pathways. Our data support the oncogenic potential of PPM1D in the context of exposure to ionising radiation and oncogene-induced replication stress.
Collapse
Affiliation(s)
- Miroslav Stoyanov
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Andra S Martinikova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Matejkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kamila Burdova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Zemanova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Wang Y, Wang JM, Xiao Y, Hu XB, Zheng SY, Fu JL, Zhang L, Gan YW, Liang XM, Li DWC. SUMO1-regulated DBC1 promotes p53-dependent stress-induced apoptosis of lens epithelial cells. Aging (Albany NY) 2023; 15:8812-8832. [PMID: 37683133 PMCID: PMC10522365 DOI: 10.18632/aging.205001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023]
Abstract
Deleted in breast cancer 1 (DBC1) was initially identified from a homozygously deleted region in human chromosome 8p21. It has been well established that DBC1 plays a dual role during cancer development. Depending on the physiological context, it can promote or inhibit tumorigenesis. Whether it plays a role in lens pathogenesis remains elusive. In the present study, we demonstrated that DBC1 is highly expressed in lens epithelial cells from different vertebrates and in retina pigment epithelial cells as well. Moreover, DBC1 is SUMOylated through SUMO1 conjugation at K591 residue in human and mouse lens epithelial cells. The SUMOylated DBC1 is localized in the nucleus and plays an essential role in promoting stress-induced apoptosis. Silence of DBC1 attenuates oxidative stress-induced apoptosis. In contrast, overexpression of DBC1 enhances oxidative stress-induced apoptosis, and this process depends on p53. Mechanistically, DBC1 interacts with p53 to regulate its phosphorylation status at multiple sites and the SUMOylation of DBC1 enhances its interaction with p53. Together, our results identify that DBC1 is an important regulator mediating stress-induced apoptosis in lens, and thus participates in control of lens cataractogenesis.
Collapse
Affiliation(s)
- Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Jing-Miao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Xue-Bin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Shu-Yu Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Jia-Ling Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Yu-Wen Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - Xing-Miao Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, China
| |
Collapse
|
4
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
5
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:ijms232214480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
6
|
Xiao Y, Xiang JW, Gao Q, Bai YY, Huang ZX, Hu XH, Wang L, Li DWC. MAB21L1 promotes survival of lens epithelial cells through control of αB-crystallin and ATR/CHK1/p53 pathway. Aging (Albany NY) 2022; 14:6128-6148. [PMID: 35951367 PMCID: PMC9417230 DOI: 10.18632/aging.204203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022]
Abstract
The male abnormal gene family 21 (mab21), was initially identified in C. elegans. Since its identification, studies from different groups have shown that it regulates development of ocular tissues, brain, heart and liver. However, its functional mechanism remains largely unknown. Here, we demonstrate that Mab21L1 promotes survival of lens epithelial cells. Mechanistically, Mab21L1 upregulates expression of αB-crystallin. Moreover, our results show that αB-crystallin prevents stress-induced phosphorylation of p53 at S-20 and S-37 through abrogating the activation of the upstream kinases, ATR and CHK1. As a result of suppressing p53 activity by αB-crystallin, Mab21L1 downregulates expression of Bak but upregulates Mcl-1 during stress insult. Taken together, our results demonstrate that Mab21L1 promotes survival of lens epithelial cells through upregulation of αB-crystallin to suppress ATR/CHK1/p53 pathway.
Collapse
Affiliation(s)
- Yuan Xiao
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Qian Gao
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Yue-Yue Bai
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| | - Zhao-Xia Huang
- Department of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 121212, Guizhou, China
| | - Xiao-Hui Hu
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China
| | - Ling Wang
- The Academician Work Station, Changsha Medical University, Changsha 410219, Hunan, China
| | - David Wan-Cheng Li
- College of Life Sciences, Hunan Normal University, Changsha 410080, Hunan, China.,The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Tianhe, Guangzhou 510230, Guangdong, China
| |
Collapse
|
7
|
Zhang L, Wang L, Hu X, Hou M, Xiao Y, Xiang J, Xie J, Chen Z, Yang T, Nie Q, Fu J, Wang Y, Zheng S, Liu Y, Gan Y, Gao Q, Bai Y, Wang J, Qi R, Zou M, Ke Q, Zhu X, Gong L, Liu Y, Li DW. MYPT1/PP1-Mediated EZH2 Dephosphorylation at S21 Promotes Epithelial-Mesenchymal Transition in Fibrosis through Control of Multiple Families of Genes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105539. [PMID: 35293697 PMCID: PMC9108659 DOI: 10.1002/advs.202105539] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Indexed: 05/25/2023]
Abstract
The methyltransferase EZH2 plays an important role in regulating chromatin conformation and gene transcription. Phosphorylation of EZH2 at S21 by AKT kinase suppresses its function. However, protein phosphatases responsible for the dephosphorylation of EZH2-S21 remain elusive. Here, it is demonstrated that EZH2 is highly expressed in the ocular lens, and AKT-EZH2 axis is important in TGFβ-induced epithelial-mesenchymal transition (EMT). More importantly, it is identified that MYPT1/PP1 dephosphorylates EZH2-S21 and thus modulates its functions. MYPT1 knockout accelerates EMT, but expression of the EZH2-S21A mutant suppresses EMT through control of multiple families of genes. Furthermore, the phosphorylation status and gene expression modulation of EZH2 are implicated in control of anterior subcapsular cataracts (ASC) in human and mouse eyes. Together, the results identify the specific phosphatase for EZH2-S21 and reveal EZH2 dephosphorylation control of several families of genes implicated in lens EMT and ASC pathogenesis. These results provide important novel information in EZH2 function and regulation.
Collapse
Affiliation(s)
- Lan Zhang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Ling Wang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Xue‐Bin Hu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Min Hou
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yuan Xiao
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jia‐Wen Xiang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jie Xie
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Zhi‐Gang Chen
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Tian‐Heng Yang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Qian Nie
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jia‐Ling Fu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yan Wang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Shu‐Yu Zheng
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yun‐Fei Liu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yu‐Wen Gan
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Qian Gao
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yue‐Yue Bai
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Jing‐Miao Wang
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Rui‐Li Qi
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Ming Zou
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Qin Ke
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Xing‐Fei Zhu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Lili Gong
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - Yizhi Liu
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| | - David Wan‐Cheng Li
- The State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen University#54 Xianlie South RoadGuangzhouGuangdong510060China
| |
Collapse
|
8
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
9
|
Yin Y, Jiang Z, Fu J, Li Y, Fang C, Yin X, Chen Y, Chen N, Li J, Ji Y, Su X, Qiu M, Huang W, Zhang B, Deng H, Dai L. Choline-induced SLC5A7 impairs colorectal cancer growth by stabilizing p53 protein. Cancer Lett 2021; 525:55-66. [PMID: 34562520 DOI: 10.1016/j.canlet.2021.09.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
The members of the solute carrier (SLC) superfamily are vital membrane transporters in human cells. In the present study, we determine the expression and function of SLC5 family members in colorectal cancer (CRC). Expression analysis based on The Cancer Genome Atlas database and potential clinical relation analysis based on the Oncomine database indicate that SLC5A7 is downregulated and is predicted to correlate with the staging, and prognosis response of CRC. Additional results demonstrate that SLC5A7 is downregulated and correlates with good prognosis in patients with CRC. Ectopic expression of SLC5A7 either by overexpression, or uptake of choline efficiently inhibits CRC growth. Examination of the molecular mechanism reveals that SLC5A7 promotes p53 protein expression by directly interacting with and modifying p53 and disrupting the interaction between p53 and MDM2 in wild type p53 CRC cells. Our findings establish the clear correlation between SLC5A7 and tumour growth, providing a novel potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yuan Yin
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhiyuan Jiang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiamei Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yang Li
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China; Department of Gastrointestinal Surgery, Guang'an People's Hospital, Guang'an, Sichuan, 638500, People's Republic of China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiaonan Yin
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ye Chen
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China
| | - Junshu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanhong Ji
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China
| | - Meng Qiu
- Department of Medical Oncology, Cancer Center, The State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Wei Huang
- Department of Integrated Traditional Chinese and Western Medicine, Sichuan Provincial Pancreatitis Centre and West China-Liverpool Biomedical Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Bo Zhang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
10
|
Wang L, Zhang L, Gong X, Fu J, Gan Y, Hou M, Nie Q, Xiang J, Xiao Y, Wang Y, Zheng S, Yang L, Chen H, Xiang M, Liu Y, Li DW. PP-1β and PP-2Aα modulate cAMP response element-binding protein (CREB) functions in aging control and stress response through de-regulation of αB-crystallin gene and p300-p53 signaling axis. Aging Cell 2021; 20:e13458. [PMID: 34425033 PMCID: PMC8441381 DOI: 10.1111/acel.13458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 07/04/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
The function of the transcription factor, cAMP response element‐binding protein (CREB), is activated through S133 phosphorylation by PKA and others. Regarding its inactivation, it is not well defined. cAMP response element‐binding protein plays an essential role in promoting cell proliferation, neuronal survival and the synaptic plasticity associated with long‐term memory. Our recent studies have shown that CREB is an important player in mediating stress response. Here, we have demonstrated that CREB regulates aging process through suppression of αB‐crystallin and activation of the p300‐p53‐Bak/Bax signaling axis. First, we determined that two specific protein phosphatases, PP‐1β and PP‐2Aα, can inactivate CREB through S133 dephosphorylation. Subsequently, we demonstrated that cells expressing the S133A‐CREB, a mutant mimicking constant dephosphorylation at S133, suppress CREB functions in aging control and stress response. Mechanistically, S133A‐CREB not only significantly suppresses CREB control of αB‐crystallin gene, but also represses CREB‐mediated activation of p53 acetylation and downstream Bak/Bax genes. cAMP response element‐binding protein suppression of αB‐crystallin and its activation of p53 acetylation are major molecular events observed in human cataractous lenses of different age groups. Together, our results demonstrate that PP‐1β and PP‐2Aα modulate CREB functions in aging control and stress response through de‐regulation of αB‐crystallin gene and p300‐p53‐Bax/Bak signaling axis, which regulates human cataractogenesis in the aging lens.
Collapse
Affiliation(s)
- Ling Wang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Lan Zhang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Xiao‐Dong Gong
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Jia‐Ling Fu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yu‐Wen Gan
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Min Hou
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Jia‐Wen Xiang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Shu‐Yu Zheng
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Huimin Chen
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Meng‐Qing Xiang
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| | - David Wan‐Cheng Li
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic Center Sun Yat‐sen University Guangzhou China
| |
Collapse
|
11
|
Zhang C, Xiao C, Ren G, Cai D, Long L, Li J, Li K, Tang Y, Huang T, Deng W. C-terminal-truncated hepatitis B virus X protein promotes hepatocarcinogenesis by activating the MAPK pathway. Microb Pathog 2021; 159:105136. [PMID: 34390769 DOI: 10.1016/j.micpath.2021.105136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE C-terminally truncated hepatitis B virus X (ctHBx) is frequently detected in hepatocellular carcinoma (HCC) patients with hepatitis B virus (HBV) integrated into their genomes, but the molecular mechanisms of ctHBx-related oncogenic signaling remain unclear. In this study, the effects of ctHBx on HepG2 cells were investigated by measuring ctHBx-induced changes in the cell cycle-related target proteins cell division cycle 25C (cdc25C) and p53 downstream of the mitogen-activated protein kinase (MAPK) pathway. MATERIALS AND METHODS ctHBx lentiviruses were constructed and transfected into HepG2 cells. Then, we investigated HepG2 cell line function by conducting the Cell Counting Kit-8 (CCK8) assay, clone formation assay, scratch wound testing, Transwell assays and flow cytometry to examine cell cycle and apoptosis. Western blotting (WB) was performed to detect proteins related to and downstream of the extracellular signal-regulated kinase(ERK)/c-Jun N-terminal kinase(JNK)/p38 MAPK pathway, including cdc25C and p53. RESULTS ctHBx significantly enhanced the proliferation, migration, invasion and colony-forming capability of HepG2 cells. In addition, ctHBx activated the ERK/JNK/p38 MAPK signaling pathway to regulate cell viability by affecting the expression of cyclin-related proteins, including cdc25C and p53. CONCLUSION The present study demonstrates that ctHBx promote the formation and development of HCC via regulating MAPK/cdc25C and p53 axis. ctHBx should be the driving factor of HBV-induced hepatocarcinogenesis.
Collapse
Affiliation(s)
- Chaojun Zhang
- Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Chanchan Xiao
- Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Guanhua Ren
- Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Dongmei Cai
- Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Long Long
- Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Jilin Li
- Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Kezhi Li
- Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Yanping Tang
- Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Tianren Huang
- Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei Deng
- Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
12
|
Wen J, Wang D. Deciphering the PTM codes of the tumor suppressor p53. J Mol Cell Biol 2021; 13:774-785. [PMID: 34289043 PMCID: PMC8782589 DOI: 10.1093/jmcb/mjab047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/14/2022] Open
Abstract
The genome guardian p53 functions as a transcription factor that senses numerous cellular stresses and orchestrates the corresponding transcriptional events involved in determining various cellular outcomes, including cell cycle arrest, apoptosis, senescence, DNA repair, and metabolic regulation. In response to diverse stresses, p53 undergoes multiple posttranslational modifications (PTMs) that coordinate with intimate interdependencies to precisely modulate its diverse properties in given biological contexts. Notably, PTMs can recruit ‘reader’ proteins that exclusively recognize specific modifications and facilitate the functional readout of p53. Targeting PTM–reader interplay has been developing into a promising cancer therapeutic strategy. In this review, we summarize the advances in deciphering the ‘PTM codes’ of p53, focusing particularly on the mechanisms by which the specific reader proteins functionally decipher the information harbored within these PTMs of p53. We also highlight the potential applications of intervention with p53 PTM–reader interactions in cancer therapy and discuss perspectives on the ‘PTMomic’ study of p53 and other proteins.
Collapse
Affiliation(s)
- Jia Wen
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| | - Donglai Wang
- State Key Laboratory of Medical Molecular Biology & Department of Medical Genetics, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
13
|
Gong XD, Wang Y, Hu XB, Zheng SY, Fu JL, Nie Q, Wang L, Hou M, Xiang JW, Xiao Y, Gao Q, Bai YY, Liu YZ, Li DWC. Aging-dependent loss of GAP junction proteins Cx46 and Cx50 in the fiber cells of human and mouse lenses accounts for the diminished coupling conductance. Aging (Albany NY) 2021; 13:17568-17591. [PMID: 34226295 PMCID: PMC8312418 DOI: 10.18632/aging.203247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
The homeostasis of the ocular lens is maintained by a microcirculation system propagated through gap junction channels. It is well established that the intercellular communications of the lens become deteriorative during aging. However, the molecular basis for this change in human lenses has not been well defined. Here, we present evidence to show that over 90% of Cx46 and Cx50 are lost in the fiber cells of normal human lenses aged 50 and above. From transparent to cataractous lenses, while Cx43 was upregulated, both Cx46 and Cx50 were significantly down-regulated in the lens epithelia. During aging of mouse lenses, Cx43 remained unchanged, but both Cx46 and Cx50 were significantly downregulated. Under oxidative stress treatment, mouse lenses develop in vitro cataractogenesis. Associated with this process, Cx43 was significantly upregulated, in contrast, Cx46 and Cx50 were sharply downregulated. Together, our results for the first time reveal that downregulation in Cx46 and Cx50 levels appears to be the major reason for the diminished coupling conductance, and the aging-dependent loss of Cx46 and Cx50 promotes senile cataractogenesis.
Collapse
Affiliation(s)
- Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yan Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Xue-Bin Hu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Shu-Yu Zheng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Min Hou
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Qian Gao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yue-Yue Bai
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - Yi-Zhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong 510230, China
| |
Collapse
|
14
|
Xiao C, Mei F, Ren G, Long L, Chen M, Fang X, Li J, Li K, Tang Y, Huang T, Deng W. Synergistic Effect of MC-LR and C-Terminal Truncated HBx on HepG2 Cells and Their Effects on PP2A Mediated Downstream Target of MAPK Signaling Pathway. Front Genet 2020; 11:537785. [PMID: 33193609 PMCID: PMC7593820 DOI: 10.3389/fgene.2020.537785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
C-terminally truncated hepatitis B virus (HBV) X (ctHBx) infection and exposure to microcystins-LR (MC-LR) can lead to human hepatitis and liver cancer, but the mechanism associated with their synergistically effects not been fully elucidated. The ctHBx (HBxΔ4 and HBxΔ32) lentivirus were constructed and transfected into the HepG2 cells. Then we investigated the function of MC-LR and ctHBx using the molecular biology approaches, including enzyme-linked immunosorbent assay, clone formation assay, scratch wound testing, transwell assays, carried out flow cytometry respectively to examine cell cycle and apoptosis in each group, and detected the related proteins of HBx, MEK/ERK/JNK/p38 in mitogen-activated protein kinase (MAPK) pathway and the downstream proteins such as cdc2, cdc25C, and p53 by western blotting. We found that the protein phosphorylase 2A (PP2A) enzyme activity in MC-LR and HBxΔ32/HBxΔ4 groups decreased more than in MC-LR and HBx group at the same time point and MC-LR concentration (P < 0.05). Meanwhile the proliferation, migration, invasion and colony formation capability of HepG2 cells were significantly enhanced in MC-LR and ctHBx groups (P < 0.05). In addition the proportion of S stage cells in the MC-LR-treated HBxΔ32/HBxΔ4 groups was significantly greater than that in the untreated groups (P < 0.05). Furthermore, the protein expression of MAPK signaling pathway including phospho-MEK1/2, ERKl/2, p38, and JNK were up-regulated by MC-LR and HBxΔ32, and the expression of cyclin-related proteins, including p53, cdc25C, and cdc2 were also activated (P < 0.05). Taken together, our findings revealed the essential significance of the MC-LR and ctHBx on the PP2A/MAPK/p53, cdc25C and cdc2 axis in the formation and development of HCC and identified MC-LR and ctHBx as potential causal cofactors of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Chanchan Xiao
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Fanbiao Mei
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guanhua Ren
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Long Long
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Maojian Chen
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiang Fang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jilin Li
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kezhi Li
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yanping Tang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianren Huang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wei Deng
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
15
|
Liu J, Zhang C, Wang X, Hu W, Feng Z. Tumor suppressor p53 cross-talks with TRIM family proteins. Genes Dis 2020; 8:463-474. [PMID: 34179310 PMCID: PMC8209353 DOI: 10.1016/j.gendis.2020.07.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
p53 is a key tumor suppressor. As a transcription factor, p53 accumulates in cells in response to various stress signals and selectively transcribes its target genes to regulate a wide variety of cellular stress responses to exert its function in tumor suppression. In addition to tumor suppression, p53 is also involved in many other physiological and pathological processes, e.g. anti-infection, immune response, development, reproduction, neurodegeneration and aging. To maintain its proper function, p53 is under tight and delicate regulation through different mechanisms, particularly the posttranslational modifications. The tripartite motif (TRIM) family proteins are a large group of proteins characterized by the RING, B-Box and coiled-coil (RBCC) domains at the N-terminus. TRIM proteins play important roles in regulation of many fundamental biological processes, including cell proliferation and death, DNA repair, transcription, and immune response. Alterations of TRIM proteins have been linked to many diseases including cancer, infectious diseases, developmental disorders, and neurodegeneration. Interestingly, recent studies have revealed that many TRIM proteins are involved in the regulation of p53, and at the same time, many TRIM proteins are also regulated by p53. Here, we review the cross-talk between p53 and TRIM proteins, and its impact upon cellular biological processes as well as cancer and other diseases.
Collapse
Affiliation(s)
- Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Xue Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA
| |
Collapse
|
16
|
Cell Cycle and DNA Repair Regulation in the Damage Response: Protein Phosphatases Take Over the Reins. Int J Mol Sci 2020; 21:ijms21020446. [PMID: 31936707 PMCID: PMC7014277 DOI: 10.3390/ijms21020446] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/29/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022] Open
Abstract
Cells are constantly suffering genotoxic stresses that affect the integrity of our genetic material. Genotoxic insults must be repaired to avoid the loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental abnormalities and tumorigenesis. To combat this threat, eukaryotic cells have evolved a set of sophisticated molecular mechanisms that are collectively known as the DNA damage response (DDR). This surveillance system controls several aspects of the cellular response, including the detection of lesions, a temporary cell cycle arrest, and the repair of the broken DNA. While the regulation of the DDR by numerous kinases has been well documented over the last decade, the complex roles of protein dephosphorylation have only recently begun to be investigated. Here, we review recent progress in the characterization of DDR-related protein phosphatases during the response to a DNA lesion, focusing mainly on their ability to modulate the DNA damage checkpoint and the repair of the damaged DNA. We also discuss their protein composition and structure, target specificity, and biochemical regulation along the different stages encompassed in the DDR. The compilation of this information will allow us to better comprehend the physiological significance of protein dephosphorylation in the maintenance of genome integrity and cell viability in response to genotoxic stress.
Collapse
|
17
|
Ye T, Wan X, Li J, Feng J, Guo J, Li G, Liu J. The Clinical Significance of PPEF1 as a Promising Biomarker and Its Potential Mechanism in Breast Cancer. Onco Targets Ther 2020; 13:199-214. [PMID: 32021267 PMCID: PMC6955604 DOI: 10.2147/ott.s229432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
Background Breast cancer (BC) is the leading cause of malignancy death in females worldwide. While intense efforts have been made to elucidate the pathogeny, the molecular mechanism of BC remains elusive. Thus, this study aimed to investigate the role of PPEF1 in the progression of BC and further explore the better clinical significance. Methods The diagnostic and prognostic values of elevated PPEF1 expression in BC were unveiled via public databases analysis. In addition, Gene Ontology (GO), Gene Set Enrichment Analysis (GSEA) and Protein–protein interaction (PPI) analysis were performed to explore the potential functions and molecular mechanisms of PPEF1 in BC progression. Experimentally, transwell and CCK-8 assays were carried out to estimate the effects of PPEF1 on the BC metastasis. Meanwhile, the differential expressions of PPEF1 in paraffin-embedded tissues and serum samples were, respectively, analyzed by Immunohistochemical (IHC) analysis and enzyme-linked immunosorbent assay (ELISA) kit. Results The transcriptional levels of PPEF1 were higher in BC than in normal breast tissues or adjacent normal tissues. Moreover, survival analysis revealed that higher PPEF1 expression was negatively associated with overall survival (OS), all events-free (AE-free) and metastatic recurrence-free (MR-free) survival, and further was an independent risk factor of unfavorable prognosis in BC patients. Additionally, the present study provided the first evidence that PPEF1 participated in multiple biological processes and underly signaling pathways involving in tumorigenesis and development of BC. Furthermore, PPEF1 promotes the BC progression and can be used as a noninvasive diagnostic marker. Noteworthy, the combined determination of serum PPEF1 and traditional tumor markers can enhance diagnostic accuracy thus is of vital importance in the early diagnosis of BC. Conclusion PPEF1 exerted a tumorigenic role and involved in molecular mechanism of tumorigenesis in BC which served as a promising biomarker for prognosis and diagnosis.
Collapse
Affiliation(s)
- Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jingyuan Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jinglan Guo
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Guangrong Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| |
Collapse
|
18
|
Nie Q, Xie J, Gong X, Luo Z, Wang L, Liu F, Xiang JW, Xiao Y, Fu JL, Liu Y, Chen Z, Yang L, Chen H, Gan Y, Li DWC. Analysis of the Differential Expression Patterns of Sumoylation Enzymes E1, E2 and E3 in Ocular Cell Lines. Curr Mol Med 2019; 18:509-515. [PMID: 30636610 DOI: 10.2174/1566524019666190112143636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 01/26/2023]
Abstract
PURPOSE Protein sumoylation is a well established regulatory mechanism to control many cellular processes such as chromatin structure dynamics, transcriptional regulation of gene expression, cell proliferation and differentiation, cell transformation and carcinogenesis, autophagy and senescence. In the vertebrate vision system, we and others have revealed that sumoylation plays important roles in regulating differentiation of several ocular tissues during eye development. To further elucidate the functional mechanisms of sumoylation, in vitro assay systems are needed. Currently, the five major cell lines including αTN4-1, FHL124, HLE, N/N1003A and ARPE-19 have been extensively used to test the biochemical and molecular aspects of normal vision physiology and various disease processes. Thus, we conducted the study on the expression patterns of the three types of sumoylation enzymes, the activating enzymes SAE1 and UBA2, the conjugating enzyme UBC9, and the ligating enzymes such as RanBP2 and PIAS1 in these ocular cell lines. METHODS The 5 major ocular cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) containing fetal bovine serum (FBS) or rabbit serum (RBS) and 1% Penicillin- Streptomycin. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS we have obtained the following results: 1) For the mRNAs encoding E1 SAE1 and UBA2, E2 UBC9 and E3 PIAS1, the highest level of expression was observed in αTN4-1 cells; For the mRNA encoding RanBP2, the highest level of expression was detected in N/N1003A cells; 2) In contrast to the mRNA expression patterns, a similar level of the SAE1 protein was observed in the all five cell lines, and so is true with UBA2 protein in all cells except for N/N1003A where over fourfold of enrichment in UBA2 protein was observed compared with other cell lines; 3) A similar level of UBC9 protein was also detected in all cells except for N/N1003A where more than one-fold of decrease in UBC9 level was found compared with other cell lines; 4) For E3 ligases, we did not identify the regular PIAS1 band in N/N1003A cells, the remaining cells have a level of PIAS1 with difference of less than 0.6-fold; all cells except for FHL124 cells have a similar level of RanBP2, and a 70% drop in RanBP2 was observed in FHL124 cell. CONCLUSIONS Our determination of the differential expression patterns of the three types of sumoylation enzymes in the 5 ocular cell lines help to understand sumoylation functions in vertebrate eye.
Collapse
Affiliation(s)
- Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jie Xie
- Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaodong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhongwen Luo
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Fangyuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yunfei Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Huimin Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuwen Gan
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China.,Key Laboratory of Protein Chemistry and Developmental Biology, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
19
|
Tang X, Chen Z, Deng M, Wang L, Nie Q, Xiang JW, Xiao Y, Yang L, Liu Y, Li DWC. The Sumoylation Modulated Tumor Suppressor p53 Regulates Cell Cycle Checking Genes to Mediate Lens Differentiation. Curr Mol Med 2019; 18:556-565. [PMID: 30636605 DOI: 10.2174/1566524019666190111154450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/25/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The tumor suppressor p53 is a master regulator of apoptosis and also plays a key role in cell cycle checking. In our previous studies, we demonstrated that p53 directly regulates Bak in mouse JB6 cells and that p53-Bak signaling axis plays an important role in mediating EGCG-induced apoptosis. Furthermore, we have recently demonstrated that the same p53-Bak apoptotic signaling axis executes an essential role in regulating lens cell differentiation. In addition, we have also shown that p53 controls both transcription factors, C-Maf and Prox-1 as well as lens crystallin genes, αA, β- and γ-crystallins. Here, we have examined whether p53 also regulates other known target genes during its modulation of lens differentiation. The human and mouse lens epithelial cells, FHL124 and αTN4-1 were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 10% fetal bovine serum (FBS) and 1% Penicillin-Streptomycin. METHODS Mice used in this study were handled in compliance with the "Protocol for the Care and Use of Laboratory Animals" (Sun Yat-sen University). Adult mice were used for the collection of lens cells. These samples were used for extraction of total proteins. A total of 32 embryonic mice {8 at 14.5 ED, 8 at 17.5 ED and 8 newborns for wild type} were used for immunohistochemistry, which were used for co-localization study. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS Immunohistochemistry revealed that both the cell cycle checking genes, p21 and Gadd45α and the apoptotic genes, Bcl-2 and PUMA, display developmental changes associated with p53 during mouse lens development. Knockdown of p53 in the mouse lens epithelial cells caused inhibition of lens differentiation. Associated with this inhibition, the cell cycle genes displayed significant downreglation, the apoptotic genes was also attenuated but to a much less degree. In addition, we found that bFGF can induce dose-dependent upregulation of the upstream kinases, CHK1/2 and ERK1/2, both known to phosphorylate p53 and activate the later. Furthermore, We showed that in both developing lens and human lens epithelial cells, p53 can be co-localized with the catalytic subunit of the protein phoshphatase-1 (PP-1), suggesting that PP-1 regulates p53 phosphorylation status both in vivo and in vitro. CONCLUSION Taken together, our results suggest that during mouse lens development, p53 activity is regulated by ERK and CHK kinases-mediated activation, and by PP-1-mediated inactivation. p53 can regulate multiple groups of genes to mediate lens differentiation.
Collapse
Affiliation(s)
- Xiangcheng Tang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhigang Chen
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Mi Deng
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Qian Nie
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yizhi Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| |
Collapse
|
20
|
Zhou Y, Millott R, Kim HJ, Peng S, Edwards RA, Skene-Arnold T, Hammel M, Lees-Miller SP, Tainer JA, Holmes CFB, Glover JNM. Flexible Tethering of ASPP Proteins Facilitates PP-1c Catalysis. Structure 2019; 27:1485-1496.e4. [PMID: 31402222 DOI: 10.1016/j.str.2019.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 06/14/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
ASPP (apoptosis-stimulating proteins of p53) proteins bind PP-1c (protein phosphatase 1) and regulate p53 impacting cancer cell growth and apoptosis. Here we determine the crystal structure of the oncogenic ASPP protein, iASPP, bound to PP-1c. The structure reveals a 1:1 complex that relies on interactions of the iASPP SILK and RVxF motifs with PP-1c, plus interactions of the PP-1c PxxPxR motif with the iASPP SH3 domain. Small-angle X-ray scattering analyses suggest that the crystal structure undergoes slow interconversion with more extended conformations in solution. We show that iASPP, and the tumor suppressor ASPP2, enhance the catalytic activity of PP-1c against the small-molecule substrate, pNPP as well as p53. The combined results suggest that PxxPxR binding to iASPP SH3 domain is critical for complex formation, and that the modular ASPP-PP-1c interface provides dynamic flexibility that enables functional binding and dephosphorylation of p53 and other diverse protein substrates.
Collapse
Affiliation(s)
- Yeyun Zhou
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Robyn Millott
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Hyeong Jin Kim
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Shiyun Peng
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ross A Edwards
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Tamara Skene-Arnold
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Michal Hammel
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A Tainer
- Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles F B Holmes
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - J N Mark Glover
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
21
|
Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol 2019; 11:564-577. [PMID: 31282934 PMCID: PMC6736412 DOI: 10.1093/jmcb/mjz060] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 02/05/2023] Open
Abstract
The last 40 years have witnessed how p53 rose from a viral binding protein to a central factor in both stress responses and tumor suppression. The exquisite regulation of p53 functions is of vital importance for cell fate decisions. Among the multiple layers of mechanisms controlling p53 function, posttranslational modifications (PTMs) represent an efficient and precise way. Major p53 PTMs include phosphorylation, ubiquitination, acetylation, and methylation. Meanwhile, other PTMs like sumoylation, neddylation, O-GlcNAcylation, adenosine diphosphate (ADP)-ribosylation, hydroxylation, and β-hydroxybutyrylation are also shown to play various roles in p53 regulation. By independent action or interaction, PTMs affect p53 stability, conformation, localization, and binding partners. Deregulation of the PTM-related pathway is among the major causes of p53-associated developmental disorders or diseases, especially in cancers. This review focuses on the roles of different p53 modification types and shows how these modifications are orchestrated to produce various outcomes by modulating p53 activities or targeted to treat different diseases caused by p53 dysregulation.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Omid Tavana
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.,Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
22
|
Inhibition of protein phosphatase 1 stimulates noncanonical ER stress eIF2α activation to enhance fisetin-induced chemosensitivity in HDAC inhibitor-resistant hepatocellular carcinoma cells. Cancers (Basel) 2019; 11:cancers11070918. [PMID: 31261976 PMCID: PMC6678694 DOI: 10.3390/cancers11070918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/14/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common fatal type of malignant tumor that has highly metastatic and recurrent properties. Fisetin is a natural flavonoid found in various vegetables and fruits which exhibits anti-cancer and anti-inflammatory properties, as well as other effects. Thus, we hypothesized that fisetin can act as an adjuvant therapy in cancer or drug-resistant cancer cells, and further investigated the molecular mechanisms underlying the development of drug-resistance in HCC cells. We found that fisetin effectively inhibited the cell viability of not only parental cells but also histone deacetylase inhibitors-resistant (HDACis-R) cells and enhanced the chemosensitivity of HCC cells. Interestingly, fisetin did not induce cell apoptosis through the activation of the endoplasmic reticulum (ER) stress sensor of protein kinase R (PKR)-like endoplasmic reticulum kinase, but rather through the non-canonical pathway of the protein phosphatase 1 (PP1)-mediated suppression of eIF2α phosphorylation. Moreover, fisetin-induced cell apoptosis was reversed by treatment with PP1 activator or eIF2α siRNA in HCC cells. Based on these observations, we suggest that PP1-eIF2α pathways are significantly involved in the effect of fisetin on HCC apoptosis. Thus, fisetin may act as a novel anticancer drug and new chemotherapy adjuvant which can improve the efficacy of chemotherapeutic agents and diminish their side-effects.
Collapse
|
23
|
Lucero M, Suarez AE, Chambers JW. Phosphoregulation on mitochondria: Integration of cell and organelle responses. CNS Neurosci Ther 2019; 25:837-858. [PMID: 31025544 PMCID: PMC6566066 DOI: 10.1111/cns.13141] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/29/2019] [Accepted: 04/04/2019] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are highly integrated organelles that are crucial to cell adaptation and mitigating adverse physiology. Recent studies demonstrate that fundamental signal transduction pathways incorporate mitochondrial substrates into their biological programs. Reversible phosphorylation is emerging as a useful mechanism to modulate mitochondrial function in accordance with cellular changes. Critical serine/threonine protein kinases, such as the c-Jun N-terminal kinase (JNK), protein kinase A (PKA), PTEN-induced kinase-1 (PINK1), and AMP-dependent protein kinase (AMPK), readily translocate to the outer mitochondrial membrane (OMM), the interface of mitochondria-cell communication. OMM protein kinases phosphorylate diverse mitochondrial substrates that have discrete effects on organelle dynamics, protein import, respiratory complex activity, antioxidant capacity, and apoptosis. OMM phosphorylation events can be tempered through the actions of local protein phosphatases, such as mitogen-activated protein kinase phosphatase-1 (MKP-1) and protein phosphatase 2A (PP2A), to regulate the extent and duration of signaling. The central mediators of OMM signal transduction are the scaffold proteins because the relative abundance of these accessory proteins determines the magnitude and duration of a signaling event on the mitochondrial surface, which dictates the biological outcome of a local signal transduction pathway. The concentrations of scaffold proteins, such as A-kinase anchoring proteins (AKAPs) and Sab (or SH3 binding protein 5-SH3BP5), have been shown to influence neuronal survival and vulnerability, respectively, in models of Parkinson's disease (PD), highlighting the importance of OMM signaling to health and disease. Despite recent progress, much remains to be discovered concerning the mechanisms of OMM signaling. Nonetheless, enhancing beneficial OMM signaling events and inhibiting detrimental protein-protein interactions on the mitochondrial surface may represent highly selective approaches to restore mitochondrial health and homeostasis and mitigate organelle dysfunction in conditions such as PD.
Collapse
Affiliation(s)
- Maribel Lucero
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Ana E Suarez
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| | - Jeremy W Chambers
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, the Biomolecular Sciences Institute, Florida International University, Miami, Florida
| |
Collapse
|
24
|
Ramos F, Villoria MT, Alonso-Rodríguez E, Clemente-Blanco A. Role of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DNA damage response. Cell Stress 2019; 3:70-85. [PMID: 31225502 PMCID: PMC6551743 DOI: 10.15698/cst2019.03.178] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Maintenance of genome integrity is fundamental for cellular physiology. Our hereditary information encoded in the DNA is intrinsically susceptible to suffer variations, mostly due to the constant presence of endogenous and environmental genotoxic stresses. Genomic insults must be repaired to avoid loss or inappropriate transmission of the genetic information, a situation that could lead to the appearance of developmental anomalies and tumorigenesis. To safeguard our genome, cells have evolved a series of mechanisms collectively known as the DNA damage response (DDR). This surveillance system regulates multiple features of the cellular response, including the detection of the lesion, a transient cell cycle arrest and the restoration of the broken DNA molecule. While the role of multiple kinases in the DDR has been well documented over the last years, the intricate roles of protein dephosphorylation have only recently begun to be addressed. In this review, we have compiled recent information about the function of protein phosphatases PP1, PP2A, PP4 and Cdc14 in the DDR, focusing mainly on their capacity to regulate the DNA damage checkpoint and the repair mechanism encompassed in the restoration of a DNA lesion.
Collapse
Affiliation(s)
- Facundo Ramos
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - María Teresa Villoria
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Esmeralda Alonso-Rodríguez
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group. Institute of Functional Biology and Genomics (IBFG). Spanish National Research Council (CSIC), University of Salamanca (USAL), C/Zacarías González 2, Salamanca 37007, SPAIN
| |
Collapse
|
25
|
Lubelsky Y, Shaul Y. Recruitment of the protein phosphatase-1 catalytic subunit to promoters by the dual-function transcription factor RFX1. Biochem Biophys Res Commun 2019; 509:1015-1020. [PMID: 30654936 DOI: 10.1016/j.bbrc.2019.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/03/2019] [Indexed: 01/06/2023]
Abstract
RFX proteins are a family of conserved DNA binding proteins involved in various, essential cellular and developmental processes. RFX1 is a ubiquitously expressed, dual-activity transcription factor capable of both activation and repression of target genes. The exact mechanism by which RFX1 regulates its target is not known yet. In this work, we show that the C-terminal repression domain of RFX1 interacts with the Serine/Threonine protein phosphatase PP1c, and that interaction with RFX1 can target PP1c to specific sites in the genome. Given that PP1c was shown to de-phosphorylate several transcription factors, as well as the regulatory C-terminal domain of RNA Polymerase II the recruitment of PP1c to promoters may be a mechanism by which RFX1 regulates the target genes.
Collapse
Affiliation(s)
- Yoav Lubelsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Yosef Shaul
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
26
|
Wang J, Shen T, Zhu W, Dou L, Gu H, Zhang L, Yang Z, Chen H, Zhou Q, Sánchez ER, Field LJ, Mayo LD, Xie Z, Xiao D, Lin X, Shou W, Yong W. Protein phosphatase 5 and the tumor suppressor p53 down-regulate each other's activities in mice. J Biol Chem 2018; 293:18218-18229. [PMID: 30262665 DOI: 10.1074/jbc.ra118.004256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/17/2018] [Indexed: 12/20/2022] Open
Abstract
Protein phosphatase 5 (PP5), a serine/threonine phosphatase, has a wide range of biological functions and exhibits elevated expression in tumor cells. We previously reported that pp5-deficient mice have altered ataxia-telangiectasia mutated (ATM)-mediated signaling and function. However, this regulation was likely indirect, as ATM is not a known PP5 substrate. In the current study, we found that pp5-deficient mice are hypersensitive to genotoxic stress. This hypersensitivity was associated with the marked up-regulation of the tumor suppressor tumor protein p53 and its downstream targets cyclin-dependent kinase inhibitor 1A (p21), MDM2 proto-oncogene (MDM2), and phosphatase and tensin homolog (PTEN) in pp5-deficient tissues and cells. These observations suggested that PP5 plays a role in regulating p53 stability and function. Experiments conducted with p53 +/- pp5 +/- or p53 +/- pp5 -/- mice revealed that complete loss of PP5 reduces tumorigenesis in the p53 +/- mice. Biochemical analyses further revealed that PP5 directly interacts with and dephosphorylates p53 at multiple serine/threonine residues, resulting in inhibition of p53-mediated transcriptional activity. Interestingly, PP5 expression was significantly up-regulated in p53-deficient cells, and further analysis of pp5 promoter activity revealed that p53 strongly represses PP5 transcription. Our results suggest a reciprocal regulatory interplay between PP5 and p53, providing an important feedback mechanism for the cellular response to genotoxic stress.
Collapse
Affiliation(s)
- Jun Wang
- From the Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China,; School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tao Shen
- DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Wuqiang Zhu
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Longyu Dou
- From the Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Hao Gu
- From the Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Lingling Zhang
- From the Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zhenyun Yang
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hanying Chen
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Qi Zhou
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Edwin R Sánchez
- Department of Physiology and Pharmacology, College of Medicine, University of Toledo, Toledo, Ohio 43614, and
| | - Loren J Field
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Lindsey D Mayo
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Zhongwen Xie
- School of Life Sciences, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deyong Xiao
- Fountain Valley Institute of Life Sciences and Fountain Valley Biomedical Technology Company, Dalian Hi-Tech Industrial Zone, Dalian 116023, China
| | - Xia Lin
- DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030
| | - Weinian Shou
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202,.
| | - Weidong Yong
- From the Comparative Medical Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing 100021, China,; Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202,.
| |
Collapse
|
27
|
Baskaran R, Velmurugan BK. Protein phosphatase 2A as therapeutic targets in various disease models. Life Sci 2018; 210:40-46. [PMID: 30170071 DOI: 10.1016/j.lfs.2018.08.063] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/25/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022]
Abstract
There are a large number of signalling pathways responsible for transmitting information within the cell. Although cellular signalling is thought to be majorly governed by protein kinases 'cascade effects'; their antagonists protein phosphatases also play a crucial dual role in signal transduction. By dephosphorylating the proteins involved in signalling pathways, phosphatases may lead to their activation and sometimes they may terminate a signal generated by kinases activity. Due to counterbalancing the function of phosphorylation, the protein phosphatases are very important to signal transduction processes and thus the control of phosphatase activity is as significant as kinases, in the regulation of a plethora of cellular processes. In general, the protein phosphatases are comprised of a catalytic subunit with one or more regulatory and/or targeting subunits associated with it. The Protein Phosphatase 2A (PP2A), a member of serine/threonine phosphatases family, is ubiquitously expressed a remarkably conserved enzyme in the cell. Its catalytic activity has been highly regulated and may have enormous therapeutic potential which is still untapped. It has specificities for a number of substrates which witnessed its involvement in various signalling modules of cell cycle regulation, cell morphology and development. Thus it can be an appropriate target for studying different diseases associated with abnormal signal transduction pathways such as neurodegenerative diseases and malignancies. This review will focus on the structure and regulatory pathways of PP2A. The de-regulation of PP2A in some specific pathology such as Cancer, Heart diseases, Neurodegenerative disorders and Diabetes will also be touched upon.
Collapse
Affiliation(s)
- Rathinasamy Baskaran
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Bharath Kumar Velmurugan
- Toxicology and Biomedicine Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
28
|
Oleson BJ, Naatz A, Proudfoot SC, Yeo CT, Corbett JA. Role of Protein Phosphatase 1 and Inhibitor of Protein Phosphatase 1 in Nitric Oxide-Dependent Inhibition of the DNA Damage Response in Pancreatic β-Cells. Diabetes 2018; 67:898-910. [PMID: 29444892 PMCID: PMC5909998 DOI: 10.2337/db17-1062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/02/2018] [Indexed: 11/13/2022]
Abstract
Nitric oxide is produced at micromolar levels by pancreatic β-cells during exposure to proinflammatory cytokines. While classically viewed as damaging, nitric oxide also activates pathways that promote β-cell survival. We have shown that nitric oxide, in a cell type-selective manner, inhibits the DNA damage response (DDR) and, in doing so, protects β-cells from DNA damage-induced apoptosis. This study explores potential mechanisms by which nitric oxide inhibits DDR signaling. We show that inhibition of DDR signaling (measured by γH2AX formation and the phosphorylation of KAP1) is selective for nitric oxide, as other forms of reactive oxygen/nitrogen species do not impair DDR signaling. The kinetics and broad range of DDR substrates that are inhibited suggest that protein phosphatase activation may be one mechanism by which nitric oxide attenuates DDR signaling in β-cells. While protein phosphatase 1 (PP1) is a primary regulator of DDR signaling and an inhibitor of PP1 (IPP1) is selectively expressed only in β-cells, disruption of either IPP1 or PP1 does not modify the inhibitory actions of nitric oxide on DDR signaling in β-cells. These findings support a PP1-independent mechanism by which nitric oxide selectively impairs DDR signaling and protects β-cells from DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Sarah C Proudfoot
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - Chay Teng Yeo
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
29
|
Lazo PA. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cell Signal 2017; 33:49-58. [PMID: 28189587 DOI: 10.1016/j.cellsig.2017.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
Abstract
The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
30
|
Belenky M, Breitbart H. Role and regulation of Glycogen synthase kinase-3 beta in bovine spermatozoa. Mol Reprod Dev 2016; 84:8-18. [PMID: 27864906 DOI: 10.1002/mrd.22759] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/24/2016] [Indexed: 11/08/2022]
Abstract
The serine/threonine kinase Glycogen synthase kinase 3 (GSK-3) is a master switch that regulates a multitude of cellular pathways, including the acrosome reaction in sperm. In epididymal sperm cells, for example, GSK-3 activity correlates with inhibition of motility-yet no direct pathways connecting GSK-3 activation with loss of motility have been described. Indeed, the details of how GSK-3 is regulated during sperm capacitation and the acrosome reaction remains obscure. To this end, we addressed the involvement of the GSK-3 beta isoform in several known pathways that contribute to motility and the acrosome reaction. We established that Protein kinase A (PKA) is the main regulator of GSK-3β in sperm, as pre-treatment of cells with a GSK-3 inhibitor prior to addition of H89, an inhibitor of PKA, attenuated the motility loss induced by blocking PKA activity. Both induced and spontaneous acrosome reactions also occurred less frequently in sperm treated with GSK-3 inhibitors. Finally, we observed a slow decline in phosphorylation of GSK-3β on Ser 9, which represents an inhibited state, during sperm capacitation; this phenotype is reversed during the induced acrosome reaction, in parallel to activation of Protein phosphatase 1. These results suggest that maintenance of sperm motility and acrosome reaction timing are mediated by PKA through the regulation of GSK-3 beta activity. Mol. Reprod. Dev. 84: 8-18, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael Belenky
- The Mina Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Haim Breitbart
- The Mina Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
31
|
McCubrey JA, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Libra M, Cervello M, Montalto G, Yang LV, Abrams SL, Steelman LS. Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Adv Biol Regul 2016; 63:32-48. [PMID: 27776972 DOI: 10.1016/j.jbior.2016.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
TP53 is a critical tumor suppressor gene that regulates cell cycle progression, apoptosis, cellular senescence and many other properties critical for control of normal cellular growth and death. Due to the pleiotropic effects that TP53 has on gene expression and cellular physiology, mutations at this tumor suppressor gene result in diverse physiological effects. T53 mutations are frequently detected in numerous cancers. The expression of TP53 can be induced by various agents used to treat cancer patients such as chemotherapeutic drugs and ionizing radiation. Radiation will induce Ataxia telangiectasia mutated (ATM) and other kinases that results in the phosphorylation and activation of TP53. TP53 is also negatively regulated by other mechanisms, such as ubiquitination by ligases such as MDM2. While TP53 has been documented to control the expression of many "classical" genes (e.g., p21Cip-1, PUMA, Bax) by transcriptional mechanisms for quite some time, more recently TP53 has been shown to regulate microRNA (miR) gene expression. Different miRs can promote oncogenesis (oncomiR) whereas others act to inhibit tumor progression (tumor suppressor miRs). Targeted therapies to stabilize TP53 have been developed by various approaches, MDM2/MDM4 inhibitors have been developed to stabilize TP53 in TP53-wild type (WT) tumors. In addition, small molecules have been isolated that will reactivate certain mutant TP53s. Both of these types of inhibitors are in clinical trials. Understanding the actions of TP53 may yield novel approaches to suppress cancer, aging and other health problems.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Guiseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
32
|
Abstract
The understanding of manganese (Mn) biology, in particular its cellular regulation and role in neurological disease, is an area of expanding interest. Mn is an essential micronutrient that is required for the activity of a diverse set of enzymatic proteins (e.g., arginase and glutamine synthase). Although necessary for life, Mn is toxic in excess. Thus, maintaining appropriate levels of intracellular Mn is critical. Unlike other essential metals, cell-level homeostatic mechanisms of Mn have not been identified. In this review, we discuss common forms of Mn exposure, absorption, and transport via regulated uptake/exchange at the gut and blood-brain barrier and via biliary excretion. We present the current understanding of cellular uptake and efflux as well as subcellular storage and transport of Mn. In addition, we highlight the Mn-dependent and Mn-responsive pathways implicated in the growing evidence of its role in Parkinson's disease and Huntington's disease. We conclude with suggestions for future focuses of Mn health-related research.
Collapse
Affiliation(s)
- Kyle J Horning
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232; , ,
| | | | | | | | | |
Collapse
|
33
|
Kiely M, Kiely PA. PP2A: The Wolf in Sheep's Clothing? Cancers (Basel) 2015; 7:648-69. [PMID: 25867001 PMCID: PMC4491676 DOI: 10.3390/cancers7020648] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022] Open
Abstract
Protein Phosphatase 2A (PP2A) is a major serine/threonine phosphatase in cells. It consists of a catalytic subunit (C), a structural subunit (A), and a regulatory/variable B-type subunit. PP2A has a critical role to play in homeostasis where its predominant function is as a phosphatase that regulates the major cell signaling pathways in cells. Changes in the assembly, activity and substrate specificity of the PP2A holoenzyme have a direct role in disease and are a major contributor to the maintenance of the transformed phenotype in cancer. We have learned a lot about how PP2A functions from specific mutations that disrupt the core assembly of PP2A and from viral proteins that target PP2A and inhibit its effect as a phosphatase. This prompted various studies revealing that restoration of PP2A activity benefits some cancer patients. However, our understanding of the mechanism of action of this is limited because of the complex nature of PP2A holoenzyme assembly and because it acts through a wide variety of signaling pathways. Information on PP2A is also conflicting as there are situations whereby inactivation of PP2A induces apoptosis in many cancer cells. In this review we discuss this relationship and we also address many of the pertinent and topical questions that relate to novel therapeutic strategies aimed at altering PP2A activity.
Collapse
Affiliation(s)
- Maeve Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666, Ireland.
| | - Patrick A Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666, Ireland.
- Stokes Institute, University of Limerick 78666, Limerick, Ireland.
| |
Collapse
|
34
|
Kumari R, Kohli S, Das S. p53 regulation upon genotoxic stress: intricacies and complexities. Mol Cell Oncol 2014; 1:e969653. [PMID: 27308356 DOI: 10.4161/23723548.2014.969653] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/02/2014] [Accepted: 09/02/2014] [Indexed: 12/11/2022]
Abstract
p53, the revered savior of genomic integrity, receives signals from diverse stress sensors and strategizes to maintain cellular homeostasis. However, the predominance of p53 overshadows the fact that this herculean task is no one-man show; rather, there is a huge army of regulators that reign over p53 at various levels to avoid an unnecessary surge in its levels and sculpt it dynamically to favor one cellular outcome over another. This governance starts right at the time of p53 translation, which is gated by proteins that bind to p53 mRNA and keep a stringent check on p53 protein levels. The same effect is also achieved by ubiquitylases and deubiquitylases that fine-tune p53 turnover and miRNAs that modulate p53 levels, adding precision to this entire scheme. In addition, extensive covalent modifications and differential protein interactions allow p53 to trigger a tailor-made response for a given circumstance. To magnify the marvel, these various tiers of regulation operate simultaneously and in various combinations. In this review, we have tried to provide a glimpse into this bewildering labyrinth. We believe that further studies will result in a better understanding of p53 regulation and that new insights will help unravel many aspects of cancer biology.
Collapse
Affiliation(s)
- Rajni Kumari
- Molecular Oncology Laboratory; National Institute of Immunology ; New Delhi, India
| | - Saishruti Kohli
- Molecular Oncology Laboratory; National Institute of Immunology ; New Delhi, India
| | - Sanjeev Das
- Molecular Oncology Laboratory; National Institute of Immunology ; New Delhi, India
| |
Collapse
|
35
|
Vorontsova I, Lam L, Delpire E, Lim J, Donaldson P. Identification of the WNK-SPAK/OSR1 signaling pathway in rodent and human lenses. Invest Ophthalmol Vis Sci 2014; 56:310-21. [PMID: 25515571 DOI: 10.1167/iovs.14-15911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify whether the kinases that regulate the activity of cation chloride cotransporters (CCC) in other tissues are also expressed in rat and human lenses. METHODS The expression of with-no-lysine kinase (WNK 1, 3, 4), oxidative stress response kinase 1 (OSR1), and Ste20-like proline alanine rich kinase (SPAK) were determined at either the transcript or protein levels in the rat and human lenses by reverse-transcriptase PCR and/or Western blotting, respectively. Selected kinases were regionally and subcellularly characterized in rat and human lenses. The transparency, wet weight, and tissue morphology of lenses extracted from SPAK knock-out animals was compared with wild-type lenses. RESULTS WNK 1, 3, 4, SPAK, and OSR1 were identified at the transcript level in rat lenses and WNK1, 4, SPAK, and OSR1 expression confirmed at the protein level in both rat and human lenses. SPAK and OSR1 were found to associate with membranes as peripheral proteins and exhibited distinct subcellular and region-specific expression profiles throughout the lens. No significant difference in the wet weight of SPAK knock-out lenses was detected relative to wild-type lenses. However, SPAK knock-out lenses showed an increased susceptibility to opacification. CONCLUSIONS Our results show that the WNK 1, 3, 4, OSR1, and SPAK signaling system known to play a role in regulating the phosphorylation status, and hence activity of the CCCs in other tissues, is also present in the rat and human lenses. The increased susceptibility of SPAK lenses to opacification suggests that disruption of this signaling pathway may compromise the ability of the lens to control its volume, and its ability to maintain its transparency.
Collapse
Affiliation(s)
- Irene Vorontsova
- Department of Optometry and Vision Science, University of Auckland, New Zealand The New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Leo Lam
- Department of Optometry and Vision Science, University of Auckland, New Zealand The New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Julie Lim
- Department of Optometry and Vision Science, University of Auckland, New Zealand The New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Paul Donaldson
- Department of Optometry and Vision Science, University of Auckland, New Zealand The New Zealand National Eye Centre, University of Auckland, New Zealand School of Medical Sciences, University of Auckland, New Zealand
| |
Collapse
|
36
|
Lee KY, Bae JS, Yoon S, Hwang DS. Dephosphorylation of Orc2 by protein phosphatase 1 promotes the binding of the origin recognition complex to chromatin. Biochem Biophys Res Commun 2014; 448:385-9. [PMID: 24792176 DOI: 10.1016/j.bbrc.2014.04.109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/22/2014] [Indexed: 01/21/2023]
Abstract
Phosphorylation of Orc2, one of the six subunits of the origin recognition complex (ORC), by cyclin A/CDK2 during S phase leads to the dissociation of Orc2, Orc3, Orc4, and Orc5 subunits (Orc2-5) from human chromatin and replication origins. Dephosphorylation of the phosphorylated Orc2 by protein phosphatase 1 (PP1) is accompanied by the binding of the dissociated subunits to chromatin. Here we show that PP1 physically interacts with Orc2. The binding of PP1 to Orc2 and the dephosphorylation of Orc2 by PP1 occurred in a cell cycle-dependent manner through an interaction with 119-KSVSF-123, which is the consensus motif for the binding of PP1, of Orc2. The dephosphorylation of Orc2 by PP1 is required for the binding of Orc2 to chromatin. These results support that PP1 dephosphorylates Orc2 to promote the binding of ORC to chromatin and replication origins for the subsequent round of the cell cycle.
Collapse
Affiliation(s)
- Kyung Yong Lee
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - June Sung Bae
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sangwook Yoon
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Deog Su Hwang
- Department of Biological Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
37
|
The roles of miR-200c in colon cancer and associated molecular mechanisms. Tumour Biol 2014; 35:6475-83. [PMID: 24682933 DOI: 10.1007/s13277-014-1860-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/18/2014] [Indexed: 02/07/2023] Open
Abstract
The expression of miR-200c has been widely reported to be elevated in tumor tissues and sera of patients with colorectal cancer (CRC) and has been found to correlate with poor prognosis. However, how miR-200c regulates the apoptosis, survival, invasion, metastasis, and tumor growth in colon cancer cells remains to be fully elucidated. This study seeks to further investigate the role of miR-200c in colon cancer development. The expression of miR-200c in tumor and peritumoral tissues of 101 colon cancer patients was measured by real-time PCR. miR-200c expression in HCT-116 and HT-29 colon cancer cells was silenced by adenovirus-carried expression of antisense mRNA against miR-200c. The protein levels of PTEN, p53 Ser(15), PP1, and activated caspase-3 in HCT-116 and HT-29 cells were measured by Western blot. This study demonstrated that the expression of miR-200c was significantly higher in tumor tissues than in peritumoral tissues of colon cancer patients. The elevated miR-200c expression significantly correlated with the TNM stage, lymph node metastasis, and invasion of colon cancer. Silencing miR-200c expression significantly induced cell apoptosis, inhibited long-term survival, invasion, and metastasis, and delayed xenograft tumor growth. Importantly, silencing miR-200c expression sensitized the therapeutic effect of Ara-C (Cytarabine). The effects of silencing miR-200c expression were associated with upregulation of PTEN protein and p53 Ser(15) phosphorylation levels in HCT-116 cells and PTEN protein expression in HT-29 cells. In conclusion, miR-200c functions as an oncogene in colon cancer cells through regulating tumor cell apoptosis, survival, invasion, and metastasis as well as xenograft tumor growth through inhibition of PTEN expression and p53 phosphorylation.
Collapse
|
38
|
Korrodi-Gregório L, Silva JV, Santos-Sousa L, Freitas MJ, Felgueiras J, Fardilha M. TGF-β cascade regulation by PPP1 and its interactors -impact on prostate cancer development and therapy. J Cell Mol Med 2014; 18:555-67. [PMID: 24629090 PMCID: PMC4000109 DOI: 10.1111/jcmm.12266] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022] Open
Abstract
Protein phosphorylation is a key mechanism by which normal and cancer cells regulate their main transduction pathways. Protein kinases and phosphatases are precisely orchestrated to achieve the (de)phosphorylation of candidate proteins. Indeed, cellular health is dependent on the fine-tune of phosphorylation systems, which when deregulated lead to cancer. Transforming growth factor beta (TGF-β) pathway involvement in the genesis of prostate cancer has long been established. Many of its members were shown to be hypo- or hyperphosphorylated during the process of malignancy. A major phosphatase that is responsible for the vast majority of the serine/threonine dephosphorylation is the phosphoprotein phosphatase 1 (PPP1). PPP1 has been associated with the dephosphorylation of several proteins involved in the TGF-β cascade. This review will discuss the role of PPP1 in the regulation of several TGF-β signalling members and how the subversion of this pathway is related to prostate cancer development. Furthermore, current challenges on the protein phosphatases field as new targets to cancer therapy will be addressed.
Collapse
Affiliation(s)
- Luís Korrodi-Gregório
- Signal Transduction Laboratory, Centre for Cell Biology, Biology Department, Health Sciences Department, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
39
|
Duong FHT, Dill MT, Matter MS, Makowska Z, Calabrese D, Dietsche T, Ketterer S, Terracciano L, Heim MH. Protein phosphatase 2A promotes hepatocellular carcinogenesis in the diethylnitrosamine mouse model through inhibition of p53. Carcinogenesis 2013; 35:114-22. [PMID: 23901063 DOI: 10.1093/carcin/bgt258] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Most HCCs develop in cirrhotic livers. Alcoholic liver disease, chronic hepatitis B and chronic hepatitis C are the most common underlying liver diseases. Hepatitis C virus (HCV)-specific mechanisms that contribute to HCC are presently unknown. Transgenic expression of HCV proteins in the mouse liver induces an overexpression of the protein phosphatase 2A catalytic subunit (PP2Ac). We have previously reported that HCV-induced PP2Ac overexpression modulates histone methylation and acetylation and inhibits DNA damage repair. In this study, we analyze tumor formation and gene expression using HCV transgenic mice that overexpress PP2Ac and liver tissues from patients with HCC. We demonstrate that PP2Ac overexpression interferes with p53-induced apoptosis. Injection of the carcinogen, diethylnitrosamine, induced significantly more and larger liver tumors in HCV transgenic mice that overexpress PP2Ac compared with control mice. In human liver biopsies from patients with HCC, PP2Ac expression was significantly higher in HCC tissue compared with non-tumorous liver tissue from the same patients. Our findings demonstrate an important role of PP2Ac overexpression in liver carcinogenesis and provide insights into the molecular pathogenesis of HCV-induced HCC.
Collapse
|
40
|
Molecular mechanisms underlying the interaction of protein phosphatase-1c with ASPP proteins. Biochem J 2013; 449:649-59. [PMID: 23088536 DOI: 10.1042/bj20120506] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The serine/threonine PP-1c (protein phosphatase-1 catalytic subunit) is regulated by association with multiple regulatory subunits. Human ASPPs (apoptosis-stimulating proteins of p53) comprise three family members: ASPP1, ASPP2 and iASPP (inhibitory ASPP), which is uniquely overexpressed in many cancers. While ASPP2 and iASPP are known to bind PP-1c, we now identify novel and distinct molecular interactions that allow all three ASPPs to bind differentially to PP-1c isoforms and p53. iASPP lacks a PP-1c-binding RVXF motif; however, we show it interacts with PP-1c via a RARL sequence with a Kd value of 26 nM. Molecular modelling and mutagenesis of PP-1c-ASPP protein complexes identified two additional modes of interaction. First, two positively charged residues, Lys260 and Arg261 on PP-1c, interact with all ASPP family members. Secondly, the C-terminus of the PP-1c α, β and γ isoforms contain a type-2 SH3 (Src homology 3) poly-proline motif (PxxPxR), which binds directly to the SH3 domains of ASPP1, ASPP2 and iASPP. In PP-1cγ this comprises residues 309-314 (PVTPPR). When the Px(T)PxR motif is deleted or mutated via insertion of a phosphorylation site mimic (T311D), PP-1c fails to bind to all three ASPP proteins. Overall, we provide the first direct evidence for PP-1c binding via its C-terminus to an SH3 protein domain.
Collapse
|
41
|
Shimada M, Nakanishi M. Response to DNA damage: why do we need to focus on protein phosphatases? Front Oncol 2013; 3:8. [PMID: 23386996 PMCID: PMC3560363 DOI: 10.3389/fonc.2013.00008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 01/09/2013] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic cells are continuously threatened by unavoidable errors during normal DNA replication or various sources of genotoxic stresses that cause DNA damage or stalled replication. To maintain genomic integrity, cells have developed a coordinated signaling network, known as the DNA damage response (DDR). Following DNA damage, sensor molecules detect the presence of DNA damage and transmit signals to downstream transducer molecules. This in turn conveys the signals to numerous effectors, which initiate a large number of specific biological responses, including transient cell cycle arrest mediated by checkpoints, DNA repair, and apoptosis. It is recently becoming clear that dephosphorylation events are involved in keeping DDR factors inactive during normal cell growth. Moreover, dephosphorylation is required to shut off checkpoint arrest following DNA damage and has been implicated in the activation of the DDR. Spatial and temporal regulation of phosphorylation events is essential for the DDR, and fine-tuning of phosphorylation is partly mediated by protein phosphatases. While the role of kinases in the DDR has been well documented, the complex roles of protein dephosphorylation have only recently begun to be investigated. Therefore, it is important to focus on the role of phosphatases and to determine how their activity is regulated upon DNA damage. In this work, we summarize current knowledge on the involvement of serine/threonine phosphatases, especially the protein phosphatase 1, protein phosphatase 2A, and protein phosphatase Mg2+/Mn2+-dependent families, in the DDR.
Collapse
Affiliation(s)
- Midori Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University Nagoya, Japan
| | | |
Collapse
|
42
|
Poltz R, Naumann M. Dynamics of p53 and NF-κB regulation in response to DNA damage and identification of target proteins suitable for therapeutic intervention. BMC SYSTEMS BIOLOGY 2012; 6:125. [PMID: 22979979 PMCID: PMC3473366 DOI: 10.1186/1752-0509-6-125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 08/28/2012] [Indexed: 12/16/2022]
Abstract
Background The genome is continuously attacked by a variety of agents that cause DNA damage. Recognition of DNA lesions activates the cellular DNA damage response (DDR), which comprises a network of signal transduction pathways to maintain genome integrity. In response to severe DNA damage, cells undergo apoptosis to avoid transformation into tumour cells, or alternatively, the cells enter permanent cell cycle arrest, called senescence. Most tumour cells have defects in pathways leading to DNA repair or apoptosis. In addition, apoptosis could be counteracted by nuclear factor kappa B (NF-κB), the main anti-apoptotic transcription factor in the DDR. Despite the high clinical relevance, the interplay of the DDR pathways is poorly understood. For therapeutic purposes DNA damage signalling processes are induced to induce apoptosis in tumour cells. However, the efficiency of radio- and chemotherapy is strongly hampered by cell survival pathways in tumour cells. In this study logical modelling was performed to facilitate understanding of the complexity of the signal transduction networks in the DDR and to provide cancer treatment options. Results Our comprehensive discrete logical model provided new insights into the dynamics of the DDR in human epithelial tumours. We identified new mechanisms by which the cell regulates the dynamics of the activation of the tumour suppressor p53 and NF-κB. Simulating therapeutic intervention by agents causing DNA single-strand breaks (SSBs) or DNA double-strand breaks (DSBs) we identified candidate target proteins for sensitization of carcinomas to therapeutic intervention. Further, we enlightened the DDR in different genetic diseases, and by failure mode analysis we defined molecular defects putatively contributing to carcinogenesis. Conclusion By logic modelling we identified candidate target proteins that could be suitable for radio- and chemotherapy, and contributes to the design of more effective therapies.
Collapse
Affiliation(s)
- Rainer Poltz
- Institute of Experimental Internal Medicine, Otto von Guericke University, Leipziger Str, 44, Magdeburg, 39120, Germany
| | | |
Collapse
|
43
|
Transcriptional Regulation of the p53 Tumor Suppressor Gene in S-Phase of the Cell-Cycle and the Cellular Response to DNA Damage. Biochem Res Int 2012; 2012:808934. [PMID: 22830025 PMCID: PMC3400299 DOI: 10.1155/2012/808934] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/18/2022] Open
Abstract
The p53 tumor suppressor induces the transcription of genes that negatively regulate progression of the cell cycle in response to DNA damage or other cellular stressors and thus participates in maintaining genome stability. Numerous studies have demonstrated that p53 transcription is activated before or during early S-phase in cells progressing from G0/G1 into S-phase through the combined action of two DNA-binding factors RBP-Jκ and C/EBPβ-2. Here, we review evidence that this induction occurs to provide available p53 mRNA in order to prepare the cell for DNA damage in S-phase, this ensuring a rapid response to DNA damage before exiting this stage of the cell cycle.
Collapse
|
44
|
Sadagopan S, Veettil MV, Chakraborty S, Sharma-Walia N, Paudel N, Bottero V, Chandran B. Angiogenin functionally interacts with p53 and regulates p53-mediated apoptosis and cell survival. Oncogene 2012; 31:4835-47. [PMID: 22266868 PMCID: PMC3337890 DOI: 10.1038/onc.2011.648] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenin, a 14-kDa multi-functional pro-angiogenic growth factor, is up-regulated in several types of cancers. Anti-angiogenin monoclonal antibodies used as antagonists inhibited the establishment, progression, and metastasis of human cancer cells in athymic mice (Olson et al. 1994). Silencing angiogenin and inhibition of angiogenin’s nuclear translocation blocked cell survival and induced cell death in B-lymphoma and endothelial cells latently infected with Kaposi sarcoma associated herpesvirus (KSHV) (Sadagopan et al. 2009) suggesting that actively proliferating cancer cells could be inducing angiogenin for inhibiting apoptotic pathways. However, the mechanism of cell survival and apoptosis regulation by angiogenin and their functional significance in cancer is not known. We demonstrate that angiogenin interacts with p53 and colocalizes in the nucleus. Silencing endogenous angiogenin induced p53 promoter activation and p53 target gene (p53, p21 and Bax) expression, down-regulated anti-apoptotic Bcl-2 gene expression and increased p53 mediated cell death. In contrast, angiogenin expression blocked pro-apoptotic Bax and p21 expression, induced Bcl-2 and blocked cell death. Angiogenin also co-immunoprecipitated with p53 regulator protein Mdm2. Angiogenin expression resulted in the inhibition of p53 phosphorylation, increased p53-Mdm2 interaction, and consequently increased ubiquitination of p53. Taken together these studies demonstrate that angiogenin promotes the inhibition of p53 function to mediate anti-apoptosis and cell survival. Our results reveal for the first time a novel p53 interacting function of angiogenin in anti-apoptosis and survival of cancer cells and suggest that targeting angiogenin could be an effective therapy for several cancers.
Collapse
Affiliation(s)
- S Sadagopan
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Valbuena A, Sanz-García M, López-Sánchez I, Vega FM, Lazo PA. Roles of VRK1 as a new player in the control of biological processes required for cell division. Cell Signal 2011; 23:1267-72. [PMID: 21514377 DOI: 10.1016/j.cellsig.2011.04.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/04/2011] [Indexed: 11/28/2022]
Abstract
Cell division, in addition to an accurate transmission of genetic information to daughter cells, also requires the temporal and spatial coordination of several biological processes without which cell division would not be feasible. These processes include the temporal coordination of DNA replication and chromosome segregation, regulation of nuclear envelope disassembly and assembly, chromatin condensation and Golgi fragmentation for its redistribution into daughter cells, among others. However, little is known regarding regulatory proteins and signalling pathways that might participate in the coordination of all these different biological functions. Such regulatory players should directly have a role in the processes leading to cell division. VRK1 (Vaccinia-related kinase 1) is an early response gene required for cyclin D1 expression, regulates p53 by a specific Thr18 phosphorylation, controls chromatin condensation by histone phosphorylation, nuclear envelope assembly by phosphorylation of BANF1, and participates in signalling required for Golgi fragmentation late in the G2 phase. We propose that VRK1, a Ser-Thr kinase, might be a candidate to play an important coordinator role in these cell division processes as part of a novel signalling pathway.
Collapse
Affiliation(s)
- Alberto Valbuena
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
46
|
Abstract
The EDD (E3 identified by differential display) gene, first identified as a progestin-induced gene in T-47D breast cancer cells, encodes an E3 ubiquitin ligase with a HECT domain. It was reported that EDD is involved in the G(2)/M progression through ubiquitination of phospho-katanin p60. Previous study has also shown that EDD can act as a transcription cofactor independently of its E3 ligase activity. In this study, we uncover a new role for EDD during cell cycle progression in an E3 ligase-independent manner. We demonstrate that EDD can physically interact with p53 and that this interaction blocks the phosphorylation of p53 by ataxia telangiectasia mutated (ATM). Silencing of EDD induces phosphorylation of p53 at Ser(15) and activates p53 target genes in fibroblasts and some transformed cells without activation of DNA damage response. The G(1)/S arrest induced by EDD depletion depends on p53. On the other hand, overexpression of EDD inhibits p53-Ser(15) phosphorylation and suppresses the induction of p53 target genes during DNA damage, and this effect does not require its E3 ligase activity. Thus, through binding to p53, EDD actively inhibits p53 phosphorylation by ATM and plays a role in ensuring smooth G(1)/S progression.
Collapse
Affiliation(s)
- Shiyun Ling
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
47
|
Abstract
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.
Collapse
Affiliation(s)
- Ikuko Kitazumi
- Bio Process Research and Development Laboratories, Kyowa Hakko Kirin Co. Ltd, Takasaki, Gunma, Japan
| | | |
Collapse
|
48
|
Freeman AK, Monteiro AN. Phosphatases in the cellular response to DNA damage. Cell Commun Signal 2010; 8:27. [PMID: 20860841 PMCID: PMC2954851 DOI: 10.1186/1478-811x-8-27] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 09/22/2010] [Indexed: 12/11/2022] Open
Abstract
In the last fifteen years, rapid progress has been made in delineating the cellular response to DNA damage. The DNA damage response network is composed of a large number of proteins with different functions that detect and signal the presence of DNA damage in order to coordinate DNA repair with a variety of cellular processes, notably cell cycle progression. This signal, which radiates from the chromatin template, is driven primarily by phosphorylation events, mainly on serine and threonine residues. While we have accumulated detailed information about kinases and their substrates our understanding of the role of phosphatases in the DNA damage response is still preliminary. Identifying the phosphatases and their regulation will be instrumental to obtain a complete picture of the dynamics of the DNA damage response. Here we give an overview of the DNA damage response in mammalian cells and then review the data on the role of different phosphatases and discuss their biological relevance.
Collapse
Affiliation(s)
- Alyson K Freeman
- Risk Assessment, Detection, and Intervention Program, H, Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, 33612, USA.
| | | |
Collapse
|
49
|
Abstract
The cellular response to DNA damage is a crucial surveillance mechanism that maintains genomic integrity and prevents cancer progression. Previous studies identified multiple Ser/Thr protein kinases that have pivotal roles in the activation of this response. It is interesting that a growing body of evidence suggests that these kinases and their substrates are under tight modulation by numerous Ser/Thr phosphatases. In this study, we review recent reports that reveal new functions and regulation of these phosphatases. Similar to the kinases in this pathway, phosphatases may also be intimately involved in cancer progression and present valuable targets for cancer therapy.
Collapse
|
50
|
Shang X, Vasudevan SA, Yu Y, Ge N, Ludwig AD, Wesson CL, Wang K, Burlingame SM, Zhao YJ, Rao PH, Lu X, Russell HV, Okcu MF, Hicks MJ, Shohet JM, Donehower LA, Nuchtern JG, Yang J. Dual-specificity phosphatase 26 is a novel p53 phosphatase and inhibits p53 tumor suppressor functions in human neuroblastoma. Oncogene 2010; 29:4938-46. [PMID: 20562916 DOI: 10.1038/onc.2010.244] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemoresistance is a major cause of treatment failure and poor outcome in neuroblastoma. In this study, we investigated the expression and function of dual-specificity phosphatase 26 (DUSP26), also known as mitogen-activated protein kinase phophatase-8, in human neuroblastoma. We found that DUSP26 was expressed in a majority of neuroblastoma cell lines and tissue specimens. Importantly, we found that DUSP26 promotes the resistance of human neuroblastoma to doxorubicin-induced apoptosis by acting as a p53 phosphatase to downregulate p53 tumor suppressor function in neuroblastoma cells. Inhibiting DUSP26 expression in the IMR-32 neuroblastoma cell line enhanced doxorubicin-induced p53 phosphorylation at Ser20 and Ser37, p21, Puma, Bax expression as well as apoptosis. In contrast, DUSP26 overexpression in the SK-N-SH cell line inhibited doxorubicin-induced p53 phosphorylation at Ser20 and Ser37, p21, Puma, Bax expression and apoptosis. Using in vitro and in vivo assays, we found that DUSP26 binds to p53 and dephosphorylates p53 at Ser20 and Ser37. In this report, we show that DUSP26 functions as a p53 phosphatase, which suppresses downstream p53 activity in response to genotoxic stress. This suggests that inhibition of this phosphatase may increase neuroblastoma chemosensitivity and DUSP26 is a novel therapeutic target for this aggressive pediatric malignancy.
Collapse
Affiliation(s)
- X Shang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|