1
|
Fan Y, Li X, Zhang L, Zong Z, Wang F, Huang J, Zeng L, Zhang C, Yan H, Zhang L, Zhou F. SUMOylation in Viral Replication and Antiviral Defense. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104126. [PMID: 35060688 PMCID: PMC8895153 DOI: 10.1002/advs.202104126] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/07/2021] [Indexed: 05/22/2023]
Abstract
SUMOylation is a ubiquitination-like post-translational modification that plays an essential role in the regulation of protein function. Recent studies have shown that proteins from both RNA and DNA virus families can be modified by SUMO conjugation, which facilitates viral replication. Viruses can manipulate the entire process of SUMOylation through interplay with the SUMO pathway. By contrast, SUMOylation can eliminate viral infection by regulating host antiviral immune components. A deeper understanding of how SUMOylation regulates viral proteins and cellular antiviral components is necessary for the development of effective antiviral therapies. In the present review, the regulatory mechanism of SUMOylation in viral replication and infection and the antiviral immune response, and the consequences of this regulation for viral replication and engagement with antiviral innate immunity are summarized. The potential therapeutic applications of SUMOylation in diseases caused by viruses are also discussed.
Collapse
Affiliation(s)
- Yao Fan
- Department of PharmacologyZhejiang University City College School of MedicineHangzhouZhejiang310015China
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123China
| | - Xiang Li
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Lei Zhang
- Department of Orthopaedic SurgeryThe Third Affiliated Hospital of Wenzhou Medical UniversityRui'an325200China
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Fangwei Wang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Jun Huang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Linghui Zeng
- Department of PharmacologyZhejiang University City College School of MedicineHangzhouZhejiang310015China
| | - Chong Zhang
- Department of PharmacologyZhejiang University City College School of MedicineHangzhouZhejiang310015China
| | - Haiyan Yan
- Department of PharmacologyZhejiang University City College School of MedicineHangzhouZhejiang310015China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123China
| |
Collapse
|
2
|
Collados Rodríguez M. The Fate of Speckled Protein 100 (Sp100) During Herpesviruses Infection. Front Cell Infect Microbiol 2021; 10:607526. [PMID: 33598438 PMCID: PMC7882683 DOI: 10.3389/fcimb.2020.607526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/14/2020] [Indexed: 12/27/2022] Open
Abstract
The constitutive expression of Speckled-100 (Sp100) is known to restrict the replication of many clinically important DNA viruses. This pre-existing (intrinsic) immune defense to virus infection can be further upregulated upon interferon (IFN) stimulation as a component of the innate immune response. In humans, Sp100 is encoded by a single gene locus, which can produce alternatively spliced isoforms. The widely studied Sp100A, Sp100B, Sp100C and Sp100HMG have functions associated with the transcriptional regulation of viral and cellular chromatin, either directly through their characteristic DNA-binding domains, or indirectly through post-translational modification (PTM) and associated protein interaction networks. Sp100 isoforms are resident component proteins of promyelocytic leukemia-nuclear bodies (PML-NBs), dynamic nuclear sub-structures which regulate host immune defenses against many pathogens. In the case of human herpesviruses, multiple protein antagonists are expressed to relieve viral DNA genome transcriptional silencing imposed by PML-NB and Sp100-derived proteinaceous structures, thereby stimulating viral propagation, pathogenesis, and transmission to new hosts. This review details how different Sp100 isoforms are manipulated during herpesviruses HSV1, VZV, HCMV, EBV, and KSHV infection, identifying gaps in our current knowledge, and highlighting future areas of research.
Collapse
|
3
|
Zhao B, Zhang Z, Chen X, Shen Y, Qin Y, Yang X, Xing Z, Zhang S, Long X, Zhang Y, An S, Wu H, Qi Y. The important roles of protein SUMOylation in the occurrence and development of leukemia and clinical implications. J Cell Physiol 2020; 236:3466-3480. [PMID: 33151565 DOI: 10.1002/jcp.30143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 01/01/2023]
Abstract
Leukemia is a severe malignancy of the hematopoietic system, which is characterized by uncontrolled proliferation and dedifferentiation of immature hematopoietic precursor cells in the lymphatic system and bone marrow. Leukemia is caused by alterations of the genetic and epigenetic regulation of processes underlying hematologic malignancies, including SUMO modification (SUMOylation). Small ubiquitin-like modifier (SUMO) proteins covalently or noncovalently conjugate and modify a large number of target proteins via lysine residues. SUMOylation is a small ubiquitin-like modification that is catalyzed by the SUMO-specific activating enzyme E1, the binding enzyme E2, and the ligating enzyme E3. SUMO is covalently linked to substrate proteins to regulate the cellular localization of target proteins and the interaction of target proteins with other biological macromolecules. SUMOylation has emerged as a critical regulatory mechanism for subcellular localization, protein stability, protein-protein interactions, and biological function and thus regulates normal life activities. If the SUMOylation process of proteins is affected, it will cause a cellular reaction and ultimately lead to various diseases, including leukemia. There is growing evidence showing that a large number of proteins are SUMOylated and that SUMOylated proteins play an important role in the occurrence and development of various types of leukemia. Targeting the SUMOylation of proteins alone or in combination with current treatments might provide powerful targeted therapeutic strategies for the clinical treatment of leukemia.
Collapse
Affiliation(s)
- Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shanshan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
4
|
Stoll GA, Oda SI, Chong ZS, Yu M, McLaughlin SH, Modis Y. Structure of KAP1 tripartite motif identifies molecular interfaces required for retroelement silencing. Proc Natl Acad Sci U S A 2019; 116:15042-15051. [PMID: 31289231 PMCID: PMC6660772 DOI: 10.1073/pnas.1901318116] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Transcription of transposable elements is tightly regulated to prevent genome damage. KRAB domain-containing zinc finger proteins (KRAB-ZFPs) and KRAB-associated protein 1 (KAP1/TRIM28) play a key role in regulating retrotransposons. KRAB-ZFPs recognize specific retrotransposon sequences and recruit KAP1, inducing the assembly of an epigenetic silencing complex, with chromatin remodeling activities that repress transcription of the targeted retrotransposon and adjacent genes. Our biophysical and structural data show that the tripartite motif (TRIM) of KAP1 forms antiparallel dimers, which further assemble into tetramers and higher-order oligomers in a concentration-dependent manner. Structure-based mutations in the B-box 1 domain prevent higher-order oligomerization without significant loss of retrotransposon silencing activity, indicating that, in contrast to other TRIM-family proteins, self-assembly is not essential for KAP1 function. The crystal structure of the KAP1 TRIM dimer identifies the KRAB domain binding site in the coiled-coil domain near the dyad. Mutations at this site abolished KRAB binding and transcriptional silencing activity of KAP1. This work identifies the interaction interfaces in the KAP1 TRIM responsible for self-association and KRAB binding and establishes their role in retrotransposon silencing.
Collapse
Affiliation(s)
- Guido A Stoll
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Medical Research Council Laboratory of Molecular Biology (MRC-LMB), CB2 0QH Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, CB2 0AW Cambridge, United Kingdom
| | - Shun-Ichiro Oda
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Medical Research Council Laboratory of Molecular Biology (MRC-LMB), CB2 0QH Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, CB2 0AW Cambridge, United Kingdom
| | - Zheng-Shan Chong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Medical Research Council Laboratory of Molecular Biology (MRC-LMB), CB2 0QH Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, CB2 0AW Cambridge, United Kingdom
| | - Minmin Yu
- X-ray Crystallography Facility, MRC-LMB, CB2 0QH Cambridge, United Kingdom
| | | | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Medical Research Council Laboratory of Molecular Biology (MRC-LMB), CB2 0QH Cambridge, United Kingdom;
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, CB2 0AW Cambridge, United Kingdom
| |
Collapse
|
5
|
Lallemand-Breitenbach V, de Thé H. PML nuclear bodies: from architecture to function. Curr Opin Cell Biol 2018; 52:154-161. [PMID: 29723661 DOI: 10.1016/j.ceb.2018.03.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/06/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
PML nuclear bodies are nucleated by the PML protein, which polymerizes into spherical shells where it concentrates many unrelated partner proteins. Emerging data has connected PML bodies to post-translational control, notably conjugation by SUMOs. High concentrations of SUMO-bound proteins were proposed to condense into liquid-like droplets and such phase transition may occur within NBs. Many stress pathways modulate NB formation and recent findings have directly implicated PML in oxidative stress response in vivo. PML may also undergo SUMO-dependent ubiquitination/degradation. We highlight recent advances linking PML to partner degradation and other adaptative post-translational modifications in the context of chromatin remodeling, telomere biology, senescence or viral infections.
Collapse
Affiliation(s)
- Valérie Lallemand-Breitenbach
- INSERM U944-CNRS UMR 7212, Equipe labellisée par la Ligue Nationale contre le Cancer, France; Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, 1 Avenue Claude Vellefaux, 75475 Paris cedex 10, France; Collège de France, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Hugues de Thé
- INSERM U944-CNRS UMR 7212, Equipe labellisée par la Ligue Nationale contre le Cancer, France; Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis, 1 Avenue Claude Vellefaux, 75475 Paris cedex 10, France; Collège de France, PSL Research University, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France; Service de Biochimie, Hôpital St. Louis, AP-HP, Paris, France
| |
Collapse
|
6
|
Voisset E, Moravcsik E, Stratford EW, Jaye A, Palgrave CJ, Hills RK, Salomoni P, Kogan SC, Solomon E, Grimwade D. Pml nuclear body disruption cooperates in APL pathogenesis and impairs DNA damage repair pathways in mice. Blood 2018; 131:636-648. [PMID: 29191918 PMCID: PMC5805489 DOI: 10.1182/blood-2017-07-794784] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/26/2017] [Indexed: 01/20/2023] Open
Abstract
A hallmark of acute promyelocytic leukemia (APL) is altered nuclear architecture, with disruption of promyelocytic leukemia (PML) nuclear bodies (NBs) mediated by the PML-retinoic acid receptor α (RARα) oncoprotein. To address whether this phenomenon plays a role in disease pathogenesis, we generated a knock-in mouse model with NB disruption mediated by 2 point mutations (C62A/C65A) in the Pml RING domain. Although no leukemias developed in PmlC62A/C65A mice, these transgenic mice also expressing RARα linked to a dimerization domain (p50-RARα model) exhibited a doubling in the rate of leukemia, with a reduced latency period. Additionally, we found that response to targeted therapy with all-trans retinoic acid in vivo was dependent on NB integrity. PML-RARα is recognized to be insufficient for development of APL, requiring acquisition of cooperating mutations. We therefore investigated whether NB disruption might be mutagenic. Compared with wild-type cells, primary PmlC62A/C65A cells exhibited increased sister-chromatid exchange and chromosome abnormalities. Moreover, functional assays showed impaired homologous recombination (HR) and nonhomologous end-joining (NHEJ) repair pathways, with defective localization of Brca1 and Rad51 to sites of DNA damage. These data directly demonstrate that Pml NBs are critical for DNA damage responses, and suggest that Pml NB disruption is a central contributor to APL pathogenesis.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- DNA Damage/genetics
- DNA End-Joining Repair/genetics
- DNA Repair/genetics
- Intranuclear Inclusion Bodies/genetics
- Intranuclear Inclusion Bodies/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Transgenic
- Mutagenesis/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Promyelocytic Leukemia Protein/genetics
- Promyelocytic Leukemia Protein/physiology
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Edwige Voisset
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Eva Moravcsik
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Eva W Stratford
- Department of Tumor Biology, The Norwegian Radium Hospital/Oslo University Hospital, Oslo, Norway
| | - Amie Jaye
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | | | - Robert K Hills
- Centre for Trials Research, College of Biomedical & Life Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Scott C Kogan
- Helen Diller Family Comprehensive Cancer Center and
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Ellen Solomon
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - David Grimwade
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Avagliano Trezza R, van den Burg J, van den Oever N, Distel B. A versatile plasmid system for reconstitution and analysis of mammalian ubiquitination cascades in yeast. ACTA ACUST UNITED AC 2017; 5:150-157. [PMID: 29487861 PMCID: PMC5826702 DOI: 10.15698/mic2018.03.620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ubiquitination is a posttranslational protein modification that regulates most aspects of cellular life. The sheer number of ubiquitination enzymes that are present in a mammalian cell, over 700 in total, has thus far hampered the analysis of distinct protein ubiquitination cascades in a cellular context. To overcome this complexity we have developed a versatile vector system that allows the reconstitution of specific ubiquitination cascades in the model eukaryote Saccharomyces cerevisae (baker’s yeast). The vector system consists of 32 modular yeast shuttle plasmids allowing inducible or constitutive expression of up to four proteins of interest in a single cell. To demonstrate the validity of the system, we show that co-expression in yeast of the mammalian HECT type E3 ubiquitin ligase E6AP (E6-Associated Protein) and a model substrate faithfully recapitulates E6AP-dependent substrate ubiquitination and degradation. In addition, we show that the endogenous sumoylation pathway of S. cerevisiae can specifically sumoylate mouse PML (Promyelocytic leukemia protein). In conclusion, the yeast vector system described in this paper provides a versatile tool to study complex post-translational modifications in a cellular setting.
Collapse
Affiliation(s)
- Rossella Avagliano Trezza
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Janny van den Burg
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nico van den Oever
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
8
|
The ND10 Component Promyelocytic Leukemia Protein Acts as an E3 Ligase for SUMOylation of the Major Immediate Early Protein IE1 of Human Cytomegalovirus. J Virol 2017; 91:JVI.02335-16. [PMID: 28250117 DOI: 10.1128/jvi.02335-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
Previous studies identified the nuclear domain 10 (ND10) components promyelocytic leukemia protein (PML), hDaxx, and Sp100 as factors of an intrinsic immune response against human cytomegalovirus (HCMV). This antiviral function of ND10, however, is antagonized by viral effector proteins like IE1p72, which induces dispersal of ND10. Furthermore, we have shown that both major immediate early proteins of HCMV, IE1p72 and IE2p86, transiently colocalize with ND10 subnuclear structures and undergo modification by the covalent attachment of SUMO. Since recent reports indicate that PML acts as a SUMO E3 ligase, we asked whether the SUMOylation of IE1p72 and IE2p86 is regulated by PML. To address this, PML-depleted fibroblasts, as well as cells overexpressing individual PML isoforms, were infected with HCMV. Western blot experiments revealed a clear correlation between the degree of IE1p72 SUMO conjugation and the abundance of PML. On the other hand, the SUMOylation of IE2p86 was not affected by PML. By performing in vitro SUMOylation assays, we were able to provide direct evidence that IE1p72 is a substrate for PML-mediated SUMOylation. Interestingly, disruption of the RING finger domain of PML, which is proposed to confer SUMO E3 ligase activity, abolished PML-induced SUMOylation of IE1p72. In contrast, IE1p72 was still efficiently SUMO modified by a SUMOylation-defective PML mutant, indicating that intact ND10 bodies are not necessary for this effect. Thus, this is the first report that the E3 ligase PML is capable of stimulating the SUMOylation of a viral protein which is supposed to serve as a cellular mechanism to compromise specific functions of IE1p72.IMPORTANCE The major immediate early proteins of human cytomegalovirus, termed IE1p72 and IE2p86, have previously been shown to undergo posttranslational modification by covalent coupling to SUMO moieties at specific lysine residues. However, the enzymatic activities that are responsible for this modification have not been identified. Here, we demonstrate that the PML protein, which mediates an intrinsic immune response against HCMV, specifically serves as an E3 ligase for SUMO modification of IE1p72. Since SUMO modification of IE1p72 has previously been shown to interfere with STAT factor binding, thus compromising the interferon-antagonistic function of this viral effector protein, our finding highlights an additional mechanism through which PML is able to restrict viral infections.
Collapse
|
9
|
Tessier S, Martin-Martin N, de Thé H, Carracedo A, Lallemand-Breitenbach V. Promyelocytic Leukemia Protein, a Protein at the Crossroad of Oxidative Stress and Metabolism. Antioxid Redox Signal 2017; 26:432-444. [PMID: 27758112 DOI: 10.1089/ars.2016.6898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Cellular metabolic activity impacts the production of reactive oxygen species (ROS), both positively through mitochondrial oxidative processes and negatively by promoting the production of reducing agents (including NADPH and reduced glutathione). A defined metabolic state in cancer cells is critical for cell growth and long-term self-renewal, and such state is intrinsically associated with redox balance. Promyelocytic leukemia protein (PML) regulates several biological processes, at least in part, through its ability to control the assembly of PML nuclear bodies (PML NBs). Recent Advances: PML is oxidation-prone, and oxidative stress promotes NB biogenesis. These nuclear subdomains recruit many nuclear proteins and regulate their SUMOylation and other post-translational modifications. Some of these cargos-such as p53, SIRT1, AKT, and mammalian target of rapamycin (mTOR)-are key regulators of cell fate. PML was also recently shown to regulate oxidation. CRITICAL ISSUES While it was long considered primarily as a tumor suppressor protein, PML-regulated metabolic switch uncovered that this protein could promote survival and/or stemness of some normal or cancer cells. In this study, we review the recent findings on this multifunctional protein. FUTURE DIRECTIONS Studying PML scaffolding functions as well as its fine role in the activation of p53 or fatty acid oxidation will bring new insights in how PML could bridge oxidative stress, senescence, cell death, and metabolism. Antioxid. Redox Signal. 26, 432-444.
Collapse
Affiliation(s)
- Sarah Tessier
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France
| | | | - Hugues de Thé
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France .,6 AP-HP, Service de Biochimie, Hôpital St. Louis , Paris, France
| | - Arkaitz Carracedo
- 5 CIC bioGUNE , Bizkaia Technology Part, Derio, Spain .,7 IKERBASQUE , Basque Foundation for Science, Bilbao, Spain .,8 Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Valérie Lallemand-Breitenbach
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France
| |
Collapse
|
10
|
The Human Cytomegalovirus IE1 Protein Antagonizes PML Nuclear Body-Mediated Intrinsic Immunity via the Inhibition of PML De Novo SUMOylation. J Virol 2017; 91:JVI.02049-16. [PMID: 27903803 DOI: 10.1128/jvi.02049-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022] Open
Abstract
PML nuclear bodies (NBs) are accumulations of cellular proteins embedded in a scaffold-like structure built by SUMO-modified PML/TRIM19. PML and other NB proteins act as cellular restriction factors against human cytomegalovirus (HCMV); however, this intrinsic defense is counteracted by the immediate early protein 1 (IE1) of HCMV. IE1 directly interacts with the PML coiled-coil domain via its globular core region and disrupts NB foci by inducing a loss of PML SUMOylation. Here, we demonstrate that IE1 acts via abrogating the de novo SUMOylation of PML. In order to overcome reversible SUMOylation dynamics, we made use of a cell-based assay that combines inducible IE1 expression with a SUMO mutant resistant to SUMO proteases. Interestingly, we observed that IE1 expression did not affect preSUMOylated PML; however, it clearly prevented de novo SUMO conjugation. Consistent results were obtained by in vitro SUMOylation assays, demonstrating that IE1 alone is sufficient for this effect. Furthermore, IE1 acts in a selective manner, since K160 was identified as the main target lysine. This is strengthened by the fact that IE1 also prevents As2O3-mediated hyperSUMOylation of K160, thereby blocking PML degradation. Since IE1 did not interfere with coiled-coil-mediated PML dimerization, we propose that IE1 affects PML autoSUMOylation either by directly abrogating PML E3 ligase function or by preventing access to SUMO sites. Thus, our data suggest a novel mechanism for how a viral protein counteracts a cellular restriction factor by selectively preventing the de novo SUMOylation at specific lysine residues without affecting global protein SUMOylation. IMPORTANCE The human cytomegalovirus IE1 protein acts as an important antagonist of a cellular restriction mechanism that is mediated by subnuclear structures termed PML nuclear bodies. This function of IE1 is required for efficient viral replication and thus constitutes a potential target for antiviral strategies. In this paper, we further elucidate the molecular mechanism for how IE1 antagonizes PML NBs. We show that tight binding of IE1 to PML interferes with the de novo SUMOylation of a distinct lysine residue that is also the target of stress-mediated hyperSUMOylation of PML. This is of importance since it represents a novel mechanism used by a viral antagonist of intrinsic immunity. Furthermore, it highlights the possibility of developing small molecules that specifically abrogate this PML-antagonistic activity of IE1 and thus inhibit viral replication.
Collapse
|
11
|
Sahin U, de Thé H, Lallemand-Breitenbach V. PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus 2015; 5:499-507. [PMID: 25482067 DOI: 10.4161/19491034.2014.970104] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
PML Nuclear Bodies (NBs) have fascinated cell biologists due to their exquisitely dynamic nature and their involvement in human diseases, notably acute promyelocytic leukemia. NBs, as well as their master organizer--the PML protein--exhibit multiple connections with stress responses. Initially viewed as a tumor suppressor, PML recently re-emerged as a multifaceted protein, capable of controlling numerous aspects of cellular homeostasis. NBs recruit many functionally diverse proteins and function as stress-regulated sumoylation factories. SUMO-initiated partner retention can subsequently facilitate a variety of other post-translational modifications, as well as partner degradation. With this newly elucidated central role of stress-enhanced sumoylation, it should now be possible to build a working model for the different NB-regulated cellular activities. Moreover, pharmacological manipulation of NB formation by interferons or oxidants holds the promise of clearing many undesirable proteins for clinical management of malignant, viral or neurodegenerative diseases.
Collapse
Affiliation(s)
- Umut Sahin
- a University Paris Diderot; Sorbonne Paris Cité ; Hôpital St. Louis ; Paris , France
| | | | | |
Collapse
|
12
|
A Phospho-SIM in the Antiviral Protein PML is Required for Its Recruitment to HSV-1 Genomes. Cells 2014; 3:1131-58. [PMID: 25513827 PMCID: PMC4276917 DOI: 10.3390/cells3041131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/08/2014] [Accepted: 11/03/2014] [Indexed: 01/22/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a significant human pathogen that infects a large portion of the human population. Cells deploy a variety of defenses to limit the extent to which the virus can replicate. One such factor is the promyelocytic leukemia (PML) protein, the nucleating and organizing factor of nuclear domain 10 (ND10). PML responds to a number of stimuli and is implicated in intrinsic and innate cellular antiviral defenses against HSV-1. While the role of PML in a number of cellular pathways is controlled by post-translational modifications, the effects of phosphorylation on its antiviral activity toward HSV-1 have been largely unexplored. Consequently, we mapped phosphorylation sites on PML, mutated these and other known phosphorylation sites on PML isoform I (PML-I), and examined their effects on a number of PML's activities. Our results show that phosphorylation at most sites on PML-I is dispensable for the formation of ND10s and colocalization between PML-I and the HSV-1 regulatory protein, ICP0, which antagonizes PML-I function. However, inhibiting phosphorylation at sites near the SUMO-interaction motif (SIM) of PML-I impairs its ability to respond to HSV-1 infection. Overall, our data suggest that PML phosphorylation regulates its antiviral activity against HSV-1.
Collapse
|
13
|
Sahin U, Ferhi O, Jeanne M, Benhenda S, Berthier C, Jollivet F, Niwa-Kawakita M, Faklaris O, Setterblad N, de Thé H, Lallemand-Breitenbach V. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. ACTA ACUST UNITED AC 2014; 204:931-45. [PMID: 24637324 PMCID: PMC3998805 DOI: 10.1083/jcb.201305148] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PML multimerization into nuclear bodies following its oxidation promotes sumoylation and sequestration of partner proteins in these structures. The promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are stress-responsive domains where many partner proteins accumulate. Here, we clarify the basis for NB formation and identify stress-induced partner sumoylation as the primary NB function. NB nucleation does not rely primarily on intermolecular interactions between the PML SUMO-interacting motif (SIM) and SUMO, but instead results from oxidation-mediated PML multimerization. Oxidized PML spherical meshes recruit UBC9, which enhances PML sumoylation, allow partner recruitment through SIM interactions, and ultimately enhance partner sumoylation. Intermolecular SUMO–SIM interactions then enforce partner sequestration within the NB inner core. Accordingly, oxidative stress enhances NB formation and global sumoylation in vivo. Some NB-associated sumoylated partners also become polyubiquitinated by RNF4, precipitating their proteasomal degradation. As several partners are protein-modifying enzymes, NBs could act as sensors that facilitate and confer oxidative stress sensitivity not only to sumoylation but also to other post-translational modifications, thereby explaining alterations of stress response upon PML or NB loss.
Collapse
Affiliation(s)
- Umut Sahin
- Université Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis 1, 75475 Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li J, Zou WX, Chang KS. Inhibition of Sp1 functions by its sequestration into PML nuclear bodies. PLoS One 2014; 9:e94450. [PMID: 24728382 PMCID: PMC3984170 DOI: 10.1371/journal.pone.0094450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/16/2014] [Indexed: 01/17/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are comprised of PML and a striking variety of its associated proteins. Various cellular functions have been attributed to PML NBs, including the regulation of gene expression. We report here that induced expression of PML recruits Sp1 into PML NBs, leading to the reduction of Sp1 transactivation function. Specifically, Chromatin immunoprecipitation (ChIP) assay demonstrated that induced expression of PML significantly diminishes the amount of Sp1 binding to its target gene promoter, immunofluorescence staining showed dramatic increase in the co-localization between PML and Sp1 upon induction of PML expression, moreover, PML and Sp1 co-fractionated in the core nuclear matrix. Our study further showed that PML promotes SUMOylation of Sp1 in a RING-motif-dependent manner, SUMOylation of Sp1 facilitates physical interaction between Sp1 and PML and recruitment of Sp1 into the PML NBs, the SUMO binding motif of PML was also important for its interaction with Sp1. The results of this study demonstrate a novel mechanism by which PML regulates gene expression through sequestration of the transcription factor into PML NBs.
Collapse
Affiliation(s)
- June Li
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JL); (KC)
| | - Wen-Xin Zou
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Kun-Sang Chang
- Department of Translational Molecular Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JL); (KC)
| |
Collapse
|
15
|
Chung I, Osterwald S, Deeg KI, Rippe K. PML body meets telomere: the beginning of an ALTernate ending? Nucleus 2012; 3:263-75. [PMID: 22572954 PMCID: PMC3414403 DOI: 10.4161/nucl.20326] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The unlimited proliferation potential of cancer cells requires the maintenance of their telomeres. This is frequently accomplished by reactivation of telomerase. However, in a significant fraction of tumors an alternative lengthening of telomeres (ALT) mechanism is active. The molecular mechanism of the ALT pathway remains elusive. In particular, the role of characteristic complexes of promyelocytic leukemia nuclear bodies (PML-NBs) with telomeres, the ALT-associated PML-NBs (APBs), is currently under investigation. Here, we review recent findings on the assembly, structure and functions of APBs. It is discussed how genomic aberrations in ALT-positive cancer cells could result in the formation of APBs and in ALT activity. We conclude that they are important functional intermediates in what is considered the canonical ALT pathway and discuss deregulations of cellular pathways that contribute to the emergence of the ALT phenotype.
Collapse
Affiliation(s)
- Inn Chung
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, Heidelberg, Germany
| | | | | | | |
Collapse
|
16
|
A fraction of neurofibromin interacts with PML bodies in the nucleus of the CCF astrocytoma cell line. Biochem Biophys Res Commun 2012; 418:689-94. [DOI: 10.1016/j.bbrc.2012.01.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 02/07/2023]
|
17
|
Liu YC, Lin MC, Chen HC, Tam MF, Lin LY. The role of small ubiquitin-like modifier-interacting motif in the assembly and regulation of metal-responsive transcription factor 1. J Biol Chem 2011; 286:42818-29. [PMID: 22021037 PMCID: PMC3234853 DOI: 10.1074/jbc.m111.253203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 10/17/2011] [Indexed: 11/06/2022] Open
Abstract
Metal-responsive transcription factor 1 (MTF-1) is an essential protein required for mouse embryonic development. We report here the occurrence of sumoylation on MTF-1. Mutational studies demonstrated that sumoylation occurs on the lysine residue at position 627 (Lys(627)) of mouse MTF-1. Small ubiquitin-like modifier (SUMO)-1 was fused to the C terminus of MTF-1 to mimic the sumoylated form of the protein and it suppressed the transcriptional activity of MTF-1. The nuclear translocation activity, DNA-binding activity, and protein stability of SUMO-fused MTF-1 are similar to that of wild type MTF-1. The level of sumoylation was reduced by metal in a dose- and time-dependent manner. The fact that zinc reduces MTF-1 sumoylation makes the suppressive role of sumoylated MTF-1 in transcription physiologically less significant because the SUMO moiety of MTF-1 is removed when MTF-1 translocates into nucleus. We further identified a SUMO-interacting motif (SIM) on MTF-1. Remarkably, MTF-1 binds sumoylated MTF-1 and/or other cellular factors in a SIM-dependent manner. This interaction was disrupted by treating cells with zinc. Gel permeation chromatography demonstrated that MTF-1 forms SIM-dependent complexes. This cross-interaction transpires in the cytoplasm and markedly reduces upon nuclear translocation. It can therefore be concluded that SUMO conjugation and the SIM on MTF-1 do not play a critical role in suppressing transcriptional activity. Instead, MTF-1 forms complexes with cellular factors through SIM and SUMO moiety in the cytoplasm. The result explores a new understanding for the mode of MTF-1 assembly and regulation in cells.
Collapse
Affiliation(s)
- Ya-Chuan Liu
- From the Institute of Molecular and Cellular Biology, and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan and
| | - Meng-Chieh Lin
- From the Institute of Molecular and Cellular Biology, and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan and
| | - Hsiang-Chi Chen
- From the Institute of Molecular and Cellular Biology, and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan and
| | - Ming F. Tam
- the Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Lih-Yuan Lin
- From the Institute of Molecular and Cellular Biology, and Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan and
| |
Collapse
|
18
|
Chung I, Leonhardt H, Rippe K. De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation. J Cell Sci 2011; 124:3603-18. [PMID: 22045732 DOI: 10.1242/jcs.084681] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Telomerase-negative tumor cells use an alternative lengthening of telomeres (ALT) pathway that involves DNA recombination and repair to maintain their proliferative potential. The cytological hallmark of this process is the accumulation of promyelocytic leukemia (PML) nuclear protein at telomeric DNA to form ALT-associated PML bodies (APBs). Here, the de novo formation of a telomeric PML nuclear subcompartment was investigated by recruiting APB protein components. We show that functionally distinct proteins were able to initiate the formation of bona fide APBs with high efficiency in a self-organizing and self-propagating manner. These included: (1) PML and Sp100 as the constituting components of PML nuclear bodies, (2) telomere repeat binding factors 1 and 2 (TRF1 and TRF2, respectively), (3) the DNA repair protein NBS1 and (4) the SUMO E3 ligase MMS21, as well as the isolated SUMO1 domain, through an interacting domain of another protein factor. By contrast, the repair factors Rad9, Rad17 and Rad51 were less efficient in APB nucleation but were recruited to preassembled APBs. The artificially created APBs induced telomeric extension through a DNA repair mechanism, as inferred from their colocalization with sites of non-replicative DNA synthesis and histone H2A.X phosphorylation, and an increase of the telomere repeat length. These activities were absent after recruitment of the APB factors to a pericentric locus and establish APBs as functional intermediates of the ALT pathway.
Collapse
Affiliation(s)
- Inn Chung
- German Cancer Research Center & BioQuant, Research Group Genome Organization & Function, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
19
|
Foran E, Bogush A, Goffredo M, Roncaglia P, Gustincich S, Pasinelli P, Trotti D. Motor neuron impairment mediated by a sumoylated fragment of the glial glutamate transporter EAAT2. Glia 2011; 59:1719-31. [PMID: 21769946 DOI: 10.1002/glia.21218] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/16/2011] [Indexed: 12/12/2022]
Abstract
Dysregulation of glutamate handling ensuing downregulation of expression and activity levels of the astroglial glutamate transporter EAAT2 is implicated in excitotoxic degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). We previously reported that EAAT2 (a.k.a. GLT-1) is cleaved by caspase-3 at its cytosolic carboxy-terminus domain. This cleavage results in impaired glutamate transport activity and generates a proteolytic fragment (CTE) that we found to be post-translationally conjugated by SUMO1. We show here that this sumoylated CTE fragment accumulates in the nucleus of spinal cord astrocytes of the SOD1-G93A mouse model of ALS at symptomatic stages of disease. Astrocytic expression of CTE, artificially tagged with SUMO1 (CTE-SUMO1) to mimic the native sumoylated fragment, recapitulates the nuclear accumulation pattern of the endogenous EAAT2-derived proteolytic fragment. Moreover, in a co-culture binary system, expression of CTE-SUMO1 in spinal cord astrocytes initiates extrinsic toxicity by inducing caspase-3 activation in motor neuron-derived NSC-34 cells or axonal growth impairment in primary motor neurons. Interestingly, prolonged nuclear accumulation of CTE-SUMO1 is intrinsically toxic to spinal cord astrocytes, although this gliotoxic effect of CTE-SUMO1 occurs later than the indirect, noncell autonomous toxic effect on motor neurons. As more evidence on the implication of SUMO substrates in neurodegenerative diseases emerges, our observations strongly suggest that the nuclear accumulation in spinal cord astrocytes of a sumoylated proteolytic fragment of the astroglial glutamate transporter EAAT2 could participate to the pathogenesis of ALS and suggest a novel, unconventional role for EAAT2 in motor neuron degeneration.
Collapse
Affiliation(s)
- Emily Foran
- Weinberg Unit for ALS Research, Department of Neuroscience, Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Chu Y, Yang X. SUMO E3 ligase activity of TRIM proteins. Oncogene 2011; 30:1108-16. [PMID: 20972456 PMCID: PMC3103664 DOI: 10.1038/onc.2010.462] [Citation(s) in RCA: 162] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 12/11/2022]
Abstract
SUMOylation governs numerous cellular processes and is essential to most eukaryotic life. Despite increasing recognition of the importance of this process, an extremely limited number of small ubiquitin-like modifier (SUMO) protein ligases (E3s) have been identified. Here we show that at least some members of the functionally diverse tripartite motif (TRIM) superfamily are SUMO E3s. These TRIM proteins bind both the SUMO-conjugating enzyme Ubc9 and substrates and strongly enhance transfer of SUMOs from Ubc9 to these substrates. Among the substrates of TRIM SUMO E3s are the tumor suppressor p53 and its principal antagonist Mdm2. The E3 activity depends on the TRIM motif, suggesting it to be the first widespread SUMO E3 motif. Given the large number of TRIM proteins, our results may greatly expand the identified SUMO E3s. Furthermore, TRIM E3 activity may be an important contributor to SUMOylation specificity and the versatile functions of TRIM proteins.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| | - Xiaolu Yang
- Department of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| |
Collapse
|
21
|
Geoffroy MC, Jaffray EG, Walker KJ, Hay RT. Arsenic-induced SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol Biol Cell 2010; 21:4227-39. [PMID: 20943951 PMCID: PMC2993750 DOI: 10.1091/mbc.e10-05-0449] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin ligase, RNF4, in response to arsenic. We show that arsenic induces rapid reorganization of the cell nucleus by SUMO modification of nuclear body associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML. In acute promyelocytic leukemia (APL), the promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). Arsenic is an effective treatment for this disease as it induces SUMO-dependent ubiquitin-mediated proteasomal degradation of the PML-RAR fusion protein. Here we analyze the nuclear trafficking dynamics of PML and its SUMO-dependent ubiquitin E3 ligase, RNF4 in response to arsenic. After administration of arsenic, PML immediately transits into nuclear bodies where it undergoes SUMO modification. This initial recruitment of PML into nuclear bodies is not dependent on RNF4, but RNF4 quickly follows PML into the nuclear bodies where it is responsible for ubiquitylation of SUMO-modified PML and its degradation by the proteasome. While arsenic restricts the mobility of PML, FRAP analysis indicates that RNF4 continues to rapidly shuttle into PML nuclear bodies in a SUMO-dependent manner. Under these conditions FRET studies indicate that RNF4 interacts with SUMO in PML bodies but not directly with PML. These studies indicate that arsenic induces the rapid reorganization of the cell nucleus by SUMO modification of nuclear body-associated PML and uptake of the ubiquitin E3 ligase RNF4 leading to the ubiquitin-mediated degradation of PML.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | | |
Collapse
|
22
|
Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, Peres L, Berthier C, Soilihi H, Raught B, de Thé H. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell 2010; 18:88-98. [PMID: 20609355 DOI: 10.1016/j.ccr.2010.06.003] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/05/2010] [Accepted: 06/10/2010] [Indexed: 11/26/2022]
Abstract
As(2)O(3) cures acute promyelocytic leukemia (APL) by initiating PML/RARA oncoprotein degradation, through sumoylation of its PML moiety. However, how As(2)O(3) initiates PML sumoylation has remained largely unexplained. As(2)O(3) binds vicinal cysteines and increases reactive oxygen species (ROS) production. We demonstrate that upon As(2)O(3) exposure, PML undergoes ROS-initiated intermolecular disulfide formation and binds arsenic directly. Disulfide-linked PML or PML/RARA multimers form nuclear matrix-associated nuclear bodies (NBs), become sumoylated and are degraded. Hematopoietic progenitors transformed by an As(2)O(3)-binding PML/RARA mutant exhibit defective As(2)O(3) response. Conversely, nonarsenical oxidants elicit PML/RARA multimerization, NB-association, degradation, and leukemia response in vivo, but do not affect PLZF/RARA-driven APLs. Thus, PML oxidation regulates NB-biogenesis, while oxidation-enforced PML/RARA multimerization and direct arsenic-binding cooperate to enforce APL's exquisite As(2)O(3) sensitivity.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Arsenic Trioxide
- Arsenicals/pharmacology
- Blotting, Western
- CHO Cells
- COS Cells
- Chlorocebus aethiops
- Cricetinae
- Cricetulus
- Disulfides/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Intranuclear Inclusion Bodies/metabolism
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Mice
- Mice, Knockout
- Mutation/genetics
- Nuclear Proteins/physiology
- Oncogene Proteins, Fusion/chemistry
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oxides/pharmacology
- Promyelocytic Leukemia Protein
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors
- Protein Processing, Post-Translational
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Small Ubiquitin-Related Modifier Proteins/metabolism
- Transcription Factors/physiology
- Tumor Suppressor Proteins/physiology
Collapse
Affiliation(s)
- Marion Jeanne
- Inserm/Centre National de la Recherche Scientifique (CNRS)/Université Paris Diderot/Institut Universitaire Hématologie U944/UMR7212, Laboratoire associé de la Ligue Nationale contre le Cancer, Hôpital St Louis, 1, Av. C. Vellefaux, 75475 Paris, Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PML nuclear bodies are matrix-associated domains that recruit an astonishing variety of seemingly unrelated proteins. Since their discovery in the early 1960s, PML bodies have fascinated cell biologists because of their beauty and their tight association with cellular disorders. The identification of PML, a gene involved in an oncogenic chromosomal translocation, as the key organizer of these domains drew instant interest onto them. The multiple levels of PML body regulation by a specific posttranslational modification, sumoylation, have raised several unsolved issues. Functionally, PML bodies may sequester, modify or degrade partner proteins, but in many ways, PML bodies still constitute an enigma.
Collapse
Affiliation(s)
- Valérie Lallemand-Breitenbach
- INSERM/CNRS/Université Paris Diderot/Institut Universitaire Hématologie U944/ UMR7212, Laboratoire associé de la Ligue Nationale contre le Cancer, Hôpital St. Louis, 1, Av. C. Vellefaux 75475 Paris Cedex 10, France
| | | |
Collapse
|
24
|
Lang M, Jegou T, Chung I, Richter K, Münch S, Udvarhelyi A, Cremer C, Hemmerich P, Engelhardt J, Hell SW, Rippe K. Three-dimensional organization of promyelocytic leukemia nuclear bodies. J Cell Sci 2010; 123:392-400. [PMID: 20130140 DOI: 10.1242/jcs.053496] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Promyelocytic leukemia nuclear bodies (PML-NBs) are mobile subnuclear organelles formed by PML and Sp100 protein. They have been reported to have a role in transcription, DNA replication and repair, telomere lengthening, cell cycle control and tumor suppression. We have conducted high-resolution 4Pi fluorescence laser-scanning microscopy studies complemented with correlative electron microscopy and investigations of the accessibility of the PML-NB subcompartment. During interphase PML-NBs adopt a spherical organization characterized by the assembly of PML and Sp100 proteins into patches within a 50- to 100-nm-thick shell. This spherical shell of PML and Sp100 imposes little constraint to the exchange of components between the PML-NB interior and the nucleoplasm. Post-translational SUMO modifications, telomere repeats and heterochromatin protein 1 were found to localize in characteristic patterns with respect to PML and Sp100. From our findings, we derived a model that explains how the three-dimensional organization of PML-NBs serves to concentrate different biological activities while allowing for an efficient exchange of components.
Collapse
Affiliation(s)
- Marion Lang
- Division of High Resolution Optical Microscopy, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Van Damme E, Laukens K, Dang TH, Van Ostade X. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci 2010; 6:51-67. [PMID: 20087442 PMCID: PMC2808052 DOI: 10.7150/ijbs.6.51] [Citation(s) in RCA: 158] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/09/2010] [Indexed: 12/22/2022] Open
Abstract
Promyelocytic Leukaemia Protein nuclear bodies (PML-NBs) are dynamic nuclear protein aggregates. To gain insight in PML-NB function, reductionist and high throughput techniques have been employed to identify PML-NB proteins. Here we present a manually curated network of the PML-NB interactome based on extensive literature review including database information. By compiling 'the PML-ome', we highlighted the presence of interactors in the Small Ubiquitin Like Modifier (SUMO) conjugation pathway. Additionally, we show an enrichment of SUMOylatable proteins in the PML-NBs through an in-house prediction algorithm. Therefore, based on the PML network, we hypothesize that PML-NBs may function as a nuclear SUMOylation hotspot.
Collapse
Affiliation(s)
- Ellen Van Damme
- Laboratory of Protein Chemistry, Proteomics and Signal Transduction, Department of Biomedical Sciences, University of Antwerp (Campus Drie Eiken), Universiteitsplein 1 - Building T, Wilrijk, Belgium.
| | | | | | | |
Collapse
|
26
|
Briers S, Crawford C, Bickmore WA, Sutherland HG. KRAB zinc-finger proteins localise to novel KAP1-containing foci that are adjacent to PML nuclear bodies. J Cell Sci 2009; 122:937-46. [PMID: 19258395 PMCID: PMC2720929 DOI: 10.1242/jcs.034793] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2008] [Indexed: 12/25/2022] Open
Abstract
The KRAB-zinc finger proteins (KRAB-ZFPs) represent a very large, but poorly understood, family of transcriptional regulators in mammals. They are thought to repress transcription via their interaction with KRAB-associated protein 1 (KAP1), which then assembles a complex of chromatin modifiers to lay down histone marks that are associated with inactive chromatin. Studies of KRAB-ZFP/KAP1-mediated gene silencing, using reporter constructs and ectopically expressed proteins, have shown colocalisation of both KAP1 and repressed reporter target genes to domains of constitutive heterochromatin in the nucleus. However, we show here that although KAP1 does indeed become recruited to pericentric heterochromatin during differentiation of mouse embryonic stem (ES) cells, endogenous KRAB-ZFPs do not. Rather, KRAB-ZFPs and KAP1 relocalise to novel nucleoplasmic foci that we have termed KRAB- and KAP1-associated (KAKA) foci. HP1s can also concentrate in these foci and there is a close spatial relationship between KAKA nuclear foci and PML nuclear bodies. Finally, we reveal differential requirements for the recruitment of KAP1 to pericentric heterochromatin and KAKA foci, and suggest that KAKA foci may contain sumoylated KAP1 - the form of the protein that is active in transcriptional repression.
Collapse
Affiliation(s)
- Stephanie Briers
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | | | | | | |
Collapse
|
27
|
Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X, Blandino G. PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell 2009; 32:803-14. [PMID: 19111660 DOI: 10.1016/j.molcel.2008.11.019] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 09/24/2008] [Accepted: 11/01/2008] [Indexed: 01/03/2023]
Abstract
p73 has been identified as a structural and functional homolog of the tumor suppressor p53. The transcriptional coactivator Yes-associated protein (YAP) has been demonstrated to interact with and to enhance p73-dependent apoptosis in response to DNA damage. Here, we show the existence of a proapoptotic autoregulatory feedback loop between p73, YAP, and the promyelocytic leukemia (PML) tumor suppressor gene. We demonstrate that PML is a direct transcriptional target of p73/YAP, and we show that PML transcriptional activation by p73/YAP is under the negative control of the proto-oncogenic Akt/PKB kinase. Importantly, we find that PML and YAP physically interact through their PVPVY and WW domains, respectively, causing PML-mediated sumoylation and stabilization of YAP. Hence, we determine a mechanistic pathway in response to DNA damage that could have relevant implications for the treatment of human cancer.
Collapse
Affiliation(s)
- Eleonora Lapi
- Ludwig Institute for Cancer Research, University of Oxford Branch, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Borden KLB. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using an RNA regulon? BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1783:2145-54. [PMID: 18616965 PMCID: PMC2652867 DOI: 10.1016/j.bbamcr.2008.06.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/03/2008] [Accepted: 06/10/2008] [Indexed: 12/26/2022]
Abstract
The promyelocytic leukemia protein PML and its associated nuclear bodies are hot topics of investigation. This interest arises for multiple reasons including the tight link between the integrity of PML nuclear bodies and several disease states and the impact of the PML protein and PML nuclear bodies on proliferation, apoptosis and viral infection. Unfortunately, an understanding of the molecular underpinnings of PML nuclear body function remains elusive. Here, a general overview of the PML field is provided and is extended to discuss whether some of the basic tenets of "PML-ology" are still valid. For instance, recent findings suggest that some components of PML nuclear bodies form bodies in the absence of the PML protein. Also, a new model for PML nuclear body function is proposed which provides a unifying framework for its effects on diverse biochemical pathways such as Akt signaling and the p53-Mdm2 axis. In this model, the PML protein acts as an inhibitor of gene expression post-transcriptionally via inhibiting a network node in the eIF4E RNA regulon. An example is given for how the PML RNA regulon model provided the basis for the development of a new anti-cancer strategy being tested in the clinic.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada H4M 1J6.
| |
Collapse
|
29
|
Cooperation of sumoylated chromosomal proteins in rDNA maintenance. PLoS Genet 2008; 4:e1000215. [PMID: 18846224 PMCID: PMC2563031 DOI: 10.1371/journal.pgen.1000215] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 09/03/2008] [Indexed: 11/19/2022] Open
Abstract
SUMO is a posttranslational modifier that can modulate protein activities, interactions, and localizations. As the GFP-Smt3p fusion protein has a preference for subnucleolar localization, especially when deconjugation is impaired, the nucleolar role of SUMO can be the key to its biological functions. Using conditional triple SUMO E3 mutants, we show that defects in sumoylation impair rDNA maintenance, i.e., the rDNA segregation is defective and the rDNA copy number decreases in these mutants. Upon characterization of sumoylated proteins involved in rDNA maintenance, we established that Top1p and Top2p, which are sumoylated by Siz1p/Siz2p, most likely collaborate with substrates of Mms21p to maintain rDNA integrity. Cohesin and condensin subunits, which both play important roles in rDNA stability and structures, are potential substrates of Mms21, as their sumoylation depends on Mms21p, but not Siz1p and Siz2p. In addition, binding of cohesin and condensin to rDNA is altered in the mms21-CH E3-deficient mutant. Disruption of the SUMO (small ubiquitin-like modifier) pathway by mutations is lethal in mammals and in budding yeast; however, the essential nature of its role remains unknown, mainly because only a small fraction of most substrate proteins is SUMO-modified. We argue that the clustering of SUMO modifications among subunits of multiprotein complexes or within biochemical pathways indicates that SUMO-modified fractions of target proteins may have specific cooperative activities, distinct from the functions of individual unmodified proteins. SUMO conjugation-mediated functions in nucleolar processes can potentially be examples of such specific cooperative pathways, as we show that SUMO conjugates have a strong preference for nucleolar localization in budding yeast. Moreover, we demonstrate that stable maintenance of the nucleolar DNA and nucleolus is dependent on the putative functional interaction between the sumoylation of topoisomerases I and II (by Siz1p/Siz2p) and substrates of Mms21p SUMO-conjugating activity.
Collapse
|
30
|
Weidtkamp-Peters S, Lenser T, Negorev D, Gerstner N, Hofmann TG, Schwanitz G, Hoischen C, Maul G, Dittrich P, Hemmerich P. Dynamics of component exchange at PML nuclear bodies. J Cell Sci 2008; 121:2731-43. [PMID: 18664490 DOI: 10.1242/jcs.031922] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PML nuclear bodies (NBs) are involved in the regulation of key nuclear pathways but their biochemical function in nuclear metabolism is unknown. In this study PML NB assembly dynamics were assessed by live cell imaging and mathematic modeling of its major component parts. We show that all six nuclear PML isoforms exhibit individual exchange rates at NBs and identify PML V as a scaffold subunit. SP100 exchanges at least five times faster at NBs than PML proteins. Turnover dynamics of PML and SP100 at NBs is modulated by SUMOylation. Exchange is not temperature-dependent but depletion of cellular ATP levels induces protein immobilization at NBs. The PML-RARalpha oncogene exhibits a strong NB retention effect on wild-type PML proteins. HIPK2 requires an active kinase for PML NB targeting and elevated levels of PML IV increase its residence time. DAXX and BLM turn over rapidly and completely at PML NBs within seconds. These findings provide a kinetics model for factor exchange at PML NBs and highlight potential mechanisms to regulate intranuclear trafficking of specific factors at these domains.
Collapse
|
31
|
Weisshaar SR, Keusekotten K, Krause A, Horst C, Springer HM, Göttsche K, Dohmen RJ, Praefcke GJK. Arsenic trioxide stimulates SUMO-2/3 modification leading to RNF4-dependent proteolytic targeting of PML. FEBS Lett 2008; 582:3174-8. [PMID: 18708055 DOI: 10.1016/j.febslet.2008.08.008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/07/2008] [Accepted: 08/08/2008] [Indexed: 11/18/2022]
Abstract
We have recently reported that poly-SUMO-2/3 conjugates are subject to a ubiquitin-dependent proteolytic control in human cells. Here we show that arsenic trioxide (ATO) increases SUMO-2/3 modification of promyelocytic leukemia (PML) leading to its subsequent ubiquitylation in vivo. The SUMO-binding ubiquitin ligase RNF4 mediates this modification and causes disruption of PML nuclear bodies upon treatment with ATO. Reconstitution of SUMO-dependent ubiquitylation of PML by RNF4 in vitro and in a yeast trans vivo system revealed a preference of RNF4 for chain forming SUMOs. Polysumoylation of PML in response to ATO thus leads to its recognition and ubiquitylation by RNF4.
Collapse
Affiliation(s)
- Stefan R Weisshaar
- Center for Molecular Medicine Cologne (CMMC), Institute for Genetics, Zülpicher Strasse 47, 50674 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Krieghoff-Henning E, Hofmann TG. Role of nuclear bodies in apoptosis signalling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2185-94. [PMID: 18680765 DOI: 10.1016/j.bbamcr.2008.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 06/20/2008] [Accepted: 07/04/2008] [Indexed: 01/10/2023]
Abstract
Promyelocytic leukemia nuclear bodies (PML NBs) are dynamic macromolecular multiprotein complexes that recruit and release a plethora of proteins. A considerable number of PML NB components play vital roles in apoptosis, senescence regulation and tumour suppression. The molecular basis by which PML NBs control these cellular responses is still just beginning to be understood. In addition to PML itself, numerous further tumour suppressors including transcriptional regulator p53, acetyl transferase CBP (CREB binding protein) and protein kinase HIPK2 (homeodomain interacting protein kinase 2) are recruited to PML NBs in response to genotoxic stress or oncogenic transformation and drive the senescence and apoptosis response by regulating p53 activity. Moreover, in response to death-receptor activation, PML NBs may act as nuclear depots that release apoptotic factors, such as the FLASH (FLICE-associated huge) protein, to amplify the death signal. PML NBs are also associated with other nuclear domains including Cajal bodies and nucleoli and share apoptotic regulators with these domains, implying crosstalk between NBs in apoptosis regulation. In conclusion, PML NBs appear to regulate cell death decisions through different, pathway-specific molecular mechanisms.
Collapse
Affiliation(s)
- Eva Krieghoff-Henning
- Cellular Senescence Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | |
Collapse
|
33
|
Salomoni P, Ferguson BJ, Wyllie AH, Rich T. New insights into the role of PML in tumour suppression. Cell Res 2008; 18:622-40. [PMID: 18504460 DOI: 10.1038/cr.2008.58] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The PML gene is involved in the t(15;17) translocation of acute promyelocytic leukaemia (APL), which generates the oncogenic fusion protein PML (promyelocytic leukaemia protein)-retinoic acid receptor alpha. The PML protein localises to a subnuclear structure called the PML nuclear domain (PML-ND), of which PML is the essential structural component. In APL, PML-NDs are disrupted, thus implicating these structures in the pathogenesis of this leukaemia. Unexpectedly, recent studies indicate that PML and the PML-ND play a tumour suppressive role in several different types of human neoplasms in addition to APL. Because of PML's extreme versatility and involvement in multiple cellular pathways, understanding the mechanisms underlying its function, and therefore role in tumour suppression, has been a challenging task. In this review, we attempt to critically appraise the more recent advances in this field and propose new avenues of investigation.
Collapse
Affiliation(s)
- P Salomoni
- MRC Toxicology Unit, Lancaster Road Box 138, Leicester, LE 9HN, UK.
| | | | | | | |
Collapse
|
34
|
Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 2007; 8:1006-16. [PMID: 17928811 DOI: 10.1038/nrm2277] [Citation(s) in RCA: 716] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The promyelocytic leukaemia (PML) tumour suppressor protein epitomizes the PML-nuclear body (PML-NB) and is crucially required for the proper assembly of this macromolecular nuclear structure. Unlike other, more specialized subnuclear structures such as Cajal and Polycomb group bodies, PML-NBs are functionally promiscuous and have been implicated in the regulation of diverse cellular functions. PML-NBs are dynamic structures that favour the sequestration and release of proteins, mediate their post-translational modifications and promote specific nuclear events in response to various cellular stresses. Recent data suggest that PML-NBs may be heterogeneous in composition, mobility and function.
Collapse
Affiliation(s)
- Rosa Bernardi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
35
|
Kerscher O. SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep 2007; 8:550-5. [PMID: 17545995 PMCID: PMC2002525 DOI: 10.1038/sj.embor.7400980] [Citation(s) in RCA: 333] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 04/17/2007] [Indexed: 02/07/2023] Open
Abstract
The small ubiquitin-like modifier, SUMO, can be covalently linked to specific proteins and many substrates carrying this modification have been identified. However, for some proteins, the role that SUMO modification imparts remains obscure. Our understanding of SUMO biology and function has been significantly advanced by the recent discovery of proteins and protein domains that contain SUMO-interacting motifs (SIMs), which interact non-covalently with SUMO. Unlike the motifs and domains that mediate ubiquitin binding, the diversity of SIMs seems limited. Nevertheless, SIMs have already increased our understanding of how SUMO affects DNA repair, transcriptional activation, nuclear body formation and protein turnover. This review takes a detailed look at how SIMs were identified, how they specifically bind to SUMO, their crucial roles in multi-step enzymatic processes, and how they direct the assembly and disassembly of dimeric and multimeric protein complexes.
Collapse
Affiliation(s)
- Oliver Kerscher
- Biology Department, Millington Hall, Room 328, Landrum Drive, College of William and Mary, Williamsburg, Virginia 23185, USA.
| |
Collapse
|
36
|
Mascle XH, Germain-Desprez D, Huynh P, Estephan P, Aubry M. Sumoylation of the transcriptional intermediary factor 1beta (TIF1beta), the Co-repressor of the KRAB Multifinger proteins, is required for its transcriptional activity and is modulated by the KRAB domain. J Biol Chem 2007; 282:10190-202. [PMID: 17298944 DOI: 10.1074/jbc.m611429200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Small ubiquitin-related modifier (SUMO) has emerged as a key post-translational modulator of protein functions. Here we show that TIF1beta, a developmental regulator proposed to act as a universal co-repressor for the large family of KRAB domain-containing zinc finger proteins, is a heavily SUMO-modified substrate. A combined analysis of deletion and punctual mutants identified TIF1beta as a multilysine acceptor for SUMO which specifically targets six lysine residues (Lys(554), Lys(575), Lys(676), Lys(750), Lys(779), and Lys(804)) within the TIF1beta C-terminal repressive region. Reporter gene assays indicate that TIF1beta requires SUMO-modification for its repressive activity. Indeed, sumoylation-less mutants failed to recapitulate TIF1beta-dependent repression. TIF1beta homodimerization properties and interaction with the KRAB domain are preserved in the mutants with lysine to arginine substitutions as confirmed by in vivo bioluminescence resonance energy transfer (BRET). Using histone deacetylase (HDAC) inhibitors, we also demonstrate that TIF1beta sumoylation is a prerequisite for the recruitment of HDAC and that TIF1beta SUMO-dependent repressive activity involves both HDAC-dependent and HDAC-independent components. Finally, we report that, in addition to relying on the integrity of its PHD finger and on its self-oligomerization, TIF1beta sumoylation is positively regulated by its interaction with KRAB domain-containing proteins. Altogether, our results provide new mechanistic insights into TIF1beta transcriptional repression and suggest that KRAB multifinger proteins not only recruit TIF1beta co-repressor to target genes but also increase its repressive activity through enhancement of its sumoylation.
Collapse
Affiliation(s)
- Xavier H Mascle
- Department of Biochemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
37
|
Park SW, Hu X, Gupta P, Lin YP, Ha SG, Wei LN. SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nat Struct Mol Biol 2006; 14:68-75. [PMID: 17187077 DOI: 10.1038/nsmb1185] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 11/29/2006] [Indexed: 11/08/2022]
Abstract
The Tr2 orphan nuclear receptor can be SUMOylated, resulting in the replacement of coregulators recruited to the regulatory region of its endogenous target gene, Oct4. UnSUMOylated Tr2 activates Oct4, enhancing embryonal carcinoma-cell proliferation, and is localized to the promyelocytic leukemia (Pml) nuclear bodies. When its abundance is elevated, Tr2 is SUMOylated at Lys238 and seems to be released from the nuclear bodies to act as a repressor. SUMOylation of Tr2 induces an exchange of its coregulators: corepressor Rip140 replaces coactivator Pcaf, which switches Tr2 from an activator to a repressor. This involves dynamic partitioning of Tr2 into Pml-containing and Pml-free pools. These results support a model where SUMOylation-dependent partitioning and differential coregulator recruitment contribute to the maintenance of a homeostatic supply of activating, as opposed to repressive, Tr2, thus fine-tuning Oct4 expression and regulating stem-cell proliferation.
Collapse
Affiliation(s)
- Sung Wook Park
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
38
|
Shen TH, Lin HK, Scaglioni PP, Yung TM, Pandolfi PP. The mechanisms of PML-nuclear body formation. Mol Cell 2006; 24:331-9. [PMID: 17081985 PMCID: PMC1978182 DOI: 10.1016/j.molcel.2006.09.013] [Citation(s) in RCA: 413] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 07/28/2006] [Accepted: 09/18/2006] [Indexed: 12/18/2022]
Abstract
PML nuclear bodies (NBs) are nuclear structures that have been implicated in processes such as transcriptional regulation, genome stability, response to viral infection, apoptosis, and tumor suppression. PML has been found to be essential for the formation of the NBs, as these structures do not form in Pml null cells, although PML add back fully rescues their formation. However, the basis for such a structural role of PML is unknown. We demonstrate that PML contains a SUMO binding motif that is independent of its SUMOylation sites and is surprisingly necessary for PML-NB formation. We demonstrate that the PML RING domain is critical for PML SUMOylation and PML-NB formation. We propose a model for PML-NB formation whereby PML SUMOylation and noncovalent binding of PML to SUMOylated PML through the SUMO binding motif constitutes the nucleation event for subsequent recruitment of SUMOylated proteins and/or proteins containing SUMO binding motifs to the PML NBs.
Collapse
Affiliation(s)
- Tian Huai Shen
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Hui-Kuan Lin
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Pier Paolo Scaglioni
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Thomas M. Yung
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | - Pier Paolo Pandolfi
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
- *To whom correspondence should be addressed: Pier Paolo Pandolfi, M.D., Ph.D., Cancer Biology and Genetics, Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 110, New York, New York 10021, Tel: (212) 639-6168; Fax: (212) 717-3102;
| |
Collapse
|