1
|
Yasmin IA, Dharmarajan A, Warrier S. A novel function of the Wnt antagonist secreted frizzled-related protein 4 as a transcriptional regulator of Dickkopf-1, another Wnt antagonist, in glioblastoma cell line U87MG. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119918. [PMID: 39938692 DOI: 10.1016/j.bbamcr.2025.119918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/03/2025] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Wnt/β-catenin pathway dysregulation is associated with glioblastoma multiforme (GBM) pathogenesis and Wnt antagonists are downregulated in GBM. Wnt antagonist secreted frizzled-related protein 4 (sFRP4) has a tissue-specific, anti-metastatic and anti-stemness property. Our lab previously reported that gene silencing of sFRP4 in GBM cell line U87MG increases expression of another Wnt antagonist, Dickkopf-1 (Dkk1) and sFRP4 has a DNA binding ability. These findings in accordance with the nuclear localization of sFRP4 led to our present hypothesis that sFRP4 presumably negatively regulates Dkk1 and it probably interacts with the promoter region of Dkk1. Methylation-specific PCR (MSP), chromatin accessibility real-time PCR (ChART-PCR) assay, chromatin immunoprecipitation (ChIP), and quantitative DNA-protein interaction enzyme-linked immunosorbent assay (qDPI-ELISA) were carried out to test our hypothesis. We demonstrated that sFRP4 overexpression does not alter the methylation status of the Dkk1 promoter region. sFRP4 overexpression inhibits DNA-transcription factor interaction and enables chromatin accessibility to DNase I. Pertinently, sFRP4 has strong putative binding sites in the Dkk1 promoter region and its overexpression disrupts its interaction with the Dkk1 promoter. Interestingly, sFRP4 has the strongest affinity towards the -282 to +118 bp region. Downregulation of Dkk1 by overexpressed sFRP4 occurs by inhibition of the direct interaction of sFRP4 with the promoter region of Dkk1 as observed with low concentrations of sFRP4. We report for the first time a novel function of the Wnt antagonist sFRP4 acting as a transcription factor for another Wnt antagonist Dkk1, throwing open a new vista in the complex interplay between different antagonists of the Wnt pathway.
Collapse
Affiliation(s)
- Ishmat Ara Yasmin
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India
| | - Arun Dharmarajan
- School of Human Sciences, Faculty of Life and Physical Sciences, The University of Western Australia, Perth, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560 065, India; Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600 116, India.
| |
Collapse
|
2
|
Niharika, Roy A, Sadhukhan R, Patra SK. Screening and identification of gene expression in large cohorts of clinical tissue samples unveils the major involvement of EZH2 and SOX2 in lung cancer. Cancer Genet 2025; 290-291:16-35. [PMID: 39647236 DOI: 10.1016/j.cancergen.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024]
Abstract
Lung adenocarcinoma (LUAD), the primary subtype of Non-Small Cell Lung Cancer (NSCLC), accounts for 80 % to 85 % of cases. Due to suboptimal screening method, LUAD is often detected in late stage, leading to aggressive progression and poor outcomes. Therefore, early disease prognosis for the LUAD is high priority. In order to identify early detection biomarkers, we conducted a meta-analysis of mRNA expression TCGA and GTEx datasets from LUAD patients. A total of 795 differentially expressed genes (DEGs) were identified by exploring the Network-Analyst tool and utilizing combined effect size methods. DEGs refer to genes whose expression levels are significantly different (either higher or lower) compared to their normal baseline expression levels. KEGG pathway enrichment analysis highlighted the TNF signaling pathway as being prominently associated with these DEGs. Subsequently, using the MCODE and CytoHubba plugins in Cytoscape software, we filtered out the top 10 genes. Among these, SOX2 was the only gene exhibiting higher expression, while the others were downregulated. Consequently, our subsequent research focused on SOX2. Further transcription factor-gene network analysis revealed that enhancer of zeste homolog 2 (EZH2) is a significant partner of SOX2, potentially playing a crucial role in euchromatin-heterochromatin dynamics. Structure of SOX2 protein suggest that it is a non-druggable transcription factor, literature survey suggests the same. SOX2 is considered challenging to target directly, or "non-druggable," because of several intrinsic properties that make it difficult to design effective therapeutic agents against it. The primary function of SOX2 is to bind DNA and regulates gene expression. Unlike enzymes or receptors with defined active sites or binding pockets, transcription factors typically have relatively flat or diffuse surfaces that do not offer obvious "pockets" for small molecules to bind effectively. Hence, we drove our focus to investigate on potential drug(s) targeting EZH2. Molecular docking analyses predicted most probable inhibitors of EZH2. We employed several predictive analysis tools and identified GSK343, as a promising inhibitor of EZH2.
Collapse
Affiliation(s)
- Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ratan Sadhukhan
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
3
|
Shao L, Yu H, Wang M, Chen L, Ji B, Wu T, Teng X, Su M, Han X, Shi W, Hu X, Wang Z, He H, Han G, Zhang Y, Wu Q. DKK1-SE recruits AP1 to activate the target gene DKK1 thereby promoting pancreatic cancer progression. Cell Death Dis 2024; 15:566. [PMID: 39107271 PMCID: PMC11303742 DOI: 10.1038/s41419-024-06915-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Super-enhancers are a class of DNA cis-regulatory elements that can regulate cell identity, cell fate, stem cell pluripotency, and even tumorigenesis. Increasing evidence shows that epigenetic modifications play an important role in the pathogenesis of various types of cancer. However, the current research is far from enough to reveal the complex mechanism behind it. This study found a super-enhancer enriched with abnormally active histone modifications in pancreatic ductal adenocarcinoma (PDAC), called DKK1-super-enhancer (DKK1-SE). The major active component of DKK1-SE is component enhancer e1. Mechanistically, AP1 induces chromatin remodeling in component enhancer e1 and activates the transcriptional activity of DKK1. Moreover, DKK1 was closely related to the malignant clinical features of PDAC. Deletion or knockdown of DKK1-SE significantly inhibited the proliferation, colony formation, motility, migration, and invasion of PDAC cells in vitro, and these phenomena were partly mitigated upon rescuing DKK1 expression. In vivo, DKK1-SE deficiency not only inhibited tumor proliferation but also reduced the complexity of the tumor microenvironment. This study identifies that DKK1-SE drives DKK1 expression by recruiting AP1 transcription factors, exerting oncogenic effects in PDAC, and enhancing the complexity of the tumor microenvironment.
Collapse
Affiliation(s)
- Lan Shao
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Haoran Yu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Mengyun Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Lu Chen
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Boshu Ji
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xiangqi Teng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Mu Su
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xiao Han
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Weikai Shi
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Xin Hu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Ziwen Wang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Guiping Han
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
4
|
Rinella L, Fiorentino G, Compagno M, Grange C, Cedrino M, Marano F, Bosco O, Vissio E, Delsedime L, D'Amelio P, Bussolati B, Arvat E, Catalano MG. Dickkopf-1 (DKK1) drives growth and metastases in castration-resistant prostate cancer. Cancer Gene Ther 2024; 31:1266-1279. [PMID: 38740881 DOI: 10.1038/s41417-024-00783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is associated with a poor prognosis and remains an incurable fatal disease. Therefore, the identification of molecular markers involved in cancer progression is urgently needed to develop more-effective therapies. The present study investigated the role of the Wnt signaling modulator Dickkopf-1 (DKK1) in the growth and metastatic progression of mCRPC. DKK1 silencing through siRNA and deletion via CRISPR/Cas9 editing were performed in two different metastatic castration-resistant prostate cancer cell lines (PC3 and DU145). A xenograft tumor model was used to assess tumor growth and metastases. In in vitro experiments, both DKK1 silencing and deletion reduced cell growth and migration of both cell lines. DKK1 knockout clones (DKK1-KO) exhibited cell cycle arrest, tubulin reorganization, and modulation of tumor metastasis-associated genes. Furthermore, in DKK1-KO cells, E-cadherin re-expression and its membrane co-localization with β-catenin were observed, contributing to reduced migration; Cadherin-11, known to increase during epithelial-mesenchymal transition, was down-regulated in DKK1-KO cells. In the xenograft mouse model, DKK1 deletion not only reduced tumor growth but also inhibited the formation of lung metastases. In conclusion, our findings support the key role of DKK1 in the growth and metastatic dissemination of mCRPC, both in vitro and in vivo.
Collapse
Affiliation(s)
- Letizia Rinella
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Mara Compagno
- Center for Experimental Research and Medical Studies (CeRMS), Molinette Hospital, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Massimo Cedrino
- Molecular Biotechnology Center, University of Turin, Turin, Italy
| | - Francesca Marano
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ornella Bosco
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elena Vissio
- Unit of Pathology, Molinette Hospital, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | - Luisa Delsedime
- Unit of Pathology, Molinette Hospital, Città della Salute e della Scienza, University of Turin, Turin, Italy
| | | | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emanuela Arvat
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
5
|
Abumustafa W, Castven D, Becker D, Salih SS, Manzoor S, Zamer BA, Talaat I, Hamad M, Marquardt JU, Muhammad JS. Inhibition of PRMT5-mediated regulation of DKK1 sensitizes colorectal cancer cells to chemotherapy. Cell Signal 2024; 119:111166. [PMID: 38588876 DOI: 10.1016/j.cellsig.2024.111166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
The Dickkopf family proteins (DKKs) are strong Wnt signaling antagonists that play a significant role in colorectal cancer (CRC) development and progression. Recent work has shown that DKKs, mainly DKK1, are associated with the induction of chemoresistance in CRC and that DKK1 expression in cancer cells correlates with that of protein arginine N-methyltransferase 5 (PRMT5). This points to the presence of a regulatory loop between DKK1 and PRMT5. Herein, we addressed the question of whether PRMT5 contributes to DKK1 expression in CRC and hence CRC chemoresistance. Both in silico and in vitro approaches were used to explore the relationship between PRMT5 and different DKK members. Our data demonstrated that DKK1 expression is significantly upregulated in CRC clinical samples, KRAS-mutated CRC in particular and that the levels of DKK1 positively correlate with PRMT5 activation. Chromatin immunoprecipitation (ChIP) data indicated a possible epigenetic role of PRMT5 in regulating DKK1, possibly through the symmetric dimethylation of H3R8. Knockdown of DKK1 or treatment with the PRMT5 inhibitor CMP5 in combination with doxorubicin yielded a synergistic anti-tumor effect in KRAS mutant, but not KRAS wild-type, CRC cells. These findings suggest that PRMT5 regulates DKK1 expression in CRC and that inhibition of PRMT5 modulates DKK1 expression in such a way that reduces CRC cell growth.
Collapse
Affiliation(s)
- Wafaa Abumustafa
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Darko Castven
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Diana Becker
- University Medical Centre of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Shahenaz Shaban Salih
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Shaista Manzoor
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Batoul Abi Zamer
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Iman Talaat
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jens Uwe Marquardt
- First Medical Department, University Medical Centre Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, and College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
6
|
Pereira F, Fernández-Barral A, Larriba MJ, Barbáchano A, González-Sancho JM. From molecular basis to clinical insights: a challenging future for the vitamin D endocrine system in colorectal cancer. FEBS J 2024; 291:2485-2518. [PMID: 37699548 DOI: 10.1111/febs.16955] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Colorectal cancer (CRC) is one of the most life-threatening neoplasias in terms of incidence and mortality worldwide. Vitamin D deficiency has been associated with an increased risk of CRC. 1α,25-Dihydroxyvitamin D3 [1,25(OH)2D3], the most active vitamin D metabolite, is a pleiotropic hormone that, through its binding to a transcription factor of the nuclear receptor superfamily, is a major regulator of the human genome. 1,25(OH)2D3 acts on colon carcinoma and stromal cells and displays tumor protective actions. Here, we review the variety of molecular mechanisms underlying the effects of 1,25(OH)2D3 in CRC, which affect multiple processes that are dysregulated during tumor initiation and progression. Additionally, we discuss the epidemiological data that associate vitamin D deficiency and CRC, and the most relevant randomized controlled trials of vitamin D3 supplementation conducted in both healthy individuals and CRC patients.
Collapse
Affiliation(s)
- Fábio Pereira
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Servicio de Oncología Radioterápica, Complejo Hospitalario Universitario de Ourense, Spain
| | - Asunción Fernández-Barral
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - María Jesús Larriba
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - Antonio Barbáchano
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
| | - José Manuel González-Sancho
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario La Paz-IdiPAZ (Hospital Universitario La Paz-Universidad Autónoma de Madrid), Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| |
Collapse
|
7
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Bao-Caamano A, Costa-Fraga N, Cayrefourcq L, Jácome MA, Rodriguez-Casanova A, Muinelo-Romay L, López-López R, Alix-Panabières C, Díaz-Lagares A. Epigenomic analysis reveals a unique DNA methylation program of metastasis-competent circulating tumor cells in colorectal cancer. Sci Rep 2023; 13:15401. [PMID: 37717096 PMCID: PMC10505142 DOI: 10.1038/s41598-023-42037-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
Circulating tumor cells (CTCs) and epigenetic alterations are involved in the development of metastasis from solid tumors, such as colorectal cancer (CRC). The aim of this study was to characterize the DNA methylation profile of metastasis-competent CTCs in CRC. The DNA methylome of the human CRC-derived cell line CTC-MCC-41 was analyzed and compared with primary (HT29, Caco2, HCT116, RKO) and metastatic (SW620 and COLO205) CRC cells. The association between methylation and the transcriptional profile of CTC-MCC-41 was also evaluated. Differentially methylated CpGs were validated with pyrosequencing and qMSP. Compared to primary and metastatic CRC cells, the methylation profile of CTC-MCC-41 was globally different and characterized by a slight predominance of hypomethylated CpGs mainly distributed in CpG-poor regions. Promoter CpG islands and shore regions of CTC-MCC-41 displayed a unique methylation profile that was associated with the transcriptional program and relevant cancer pathways, mainly Wnt signaling. The epigenetic regulation of relevant genes in CTC-MCC-41 was validated. This study provides new insights into the epigenomic landscape of metastasis-competent CTCs, revealing biological information for metastasis development, as well as new potential biomarkers and therapeutic targets for CRC patients.
Collapse
Grants
- ISCIII and the European Regional Development Fund (FEDER), reference number PI18/00307. Juan Rodés, Instituto de Salud Carlos III (ISCIII) and Servizo Galego de Saúde (SERGAS), reference number JR17/00016
- PFIS, Instituto de Salud Carlos III (ISCIII) and Fondo Social Europeo, reference number FI19/00240
- Xunta de Galicia, reference number IN606A-2020/004
- Axencia Galega de Innovación (GAIN), Vicepresidencia Segunda e Consellería de Economía, Empresa e Innovación. Reference number IN853B 2018/03
- ISCIII and the European Regional Development Fund (FEDER), reference number PI18/00307. Instituto de Salud Carlos III (ISCII), reference number CP20/00129
- European Union Horizon 2020 Research and Innovation program under the Marie Skłodowska-Curie grant agreement No. 765492, The National Institute of Cancer (INCa, http://www.e-cancer.fr), SIRIC Montpellier Cancer Grant INCa_Inserm_DGOS_12553, and the ERA-NET TRANSCAN 2 JTC 2016 PROLIPSY, la Fondation ARC pour la Recherche sur le cancer and les Fonds de dotation AFER pour la recherche médicale
Collapse
Affiliation(s)
- Aida Bao-Caamano
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Nicolás Costa-Fraga
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, IURC, 641, Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France
| | - María Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Faculty of Science, Universidade da Coruña, A Coruña, Spain
| | - Aitor Rodriguez-Casanova
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Laura Muinelo-Romay
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- Liquid Biopsy Analysis Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain
| | - Rafael López-López
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
- Roche-Chus Joint Unit, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago (IDIS), 15706, Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain.
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain.
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells, University Medical Center of Montpellier, IURC, 641, Avenue du Doyen Gaston Giraud, 34093, Montpellier Cedex 5, France.
- CREEC, MIVEGEC, University of Montpellier, CNRS, IRD, Montpellier, France.
- European Liquid Biopsy Society (ELBS), Hamburg, Germany.
| | - Angel Díaz-Lagares
- Epigenomics Unit, Cancer Epigenomics, Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), University Clinical Hospital of Santiago (CHUS/SERGAS), 15706, Santiago de Compostela, Spain.
- Galician Precision Oncology Research Group (ONCOGAL), Medicine and Dentistry School, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain.
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), ISCIII, 28029, Madrid, Spain.
- Department of Clinical Analysis, University Hospital Complex of Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Yi JM, Kang T, Han YK, Park HY, Yang JH, Bae J, Suh J, Kim T, Kim J, Cui Y, Suzuki H, Kumegawa K, Kim SJ, Zhao Y, Park IJ, Hong S, Chung J, Lee S. Human Neuralized is a novel tumour suppressor targeting Wnt/β-catenin signalling in colon cancer. EMBO Rep 2023; 24:e56335. [PMID: 37341560 PMCID: PMC10398657 DOI: 10.15252/embr.202256335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023] Open
Abstract
While there is growing evidence that many epigenetically silenced genes in cancer are tumour suppressor candidates, their significance in cancer biology remains unclear. Here, we identify human Neuralized (NEURL), which acts as a novel tumour suppressor targeting oncogenic Wnt/β-catenin signalling in human cancers. The expression of NEURL is epigenetically regulated and markedly suppressed in human colorectal cancer. We, therefore, considered NEURL to be a bona fide tumour suppressor in colorectal cancer and demonstrate that this tumour suppressive function depends on NEURL-mediated oncogenic β-catenin degradation. We find that NEURL acts as an E3 ubiquitin ligase, interacting directly with oncogenic β-catenin, and reducing its cytoplasmic levels in a GSK3β- and β-TrCP-independent manner, indicating that NEURL-β-catenin interactions can lead to a disruption of the canonical Wnt/β-catenin pathway. This study suggests that NEURL is a therapeutic target against human cancers and that it acts by regulating oncogenic Wnt/β-catenin signalling.
Collapse
Affiliation(s)
- Joo Mi Yi
- Department of Microbiology and Immunology, College of MedicineInje UniversityBusanSouth Korea
| | - Tae‐Hong Kang
- Department of Biological ScienceDong‐A UniversityBusanSouth Korea
| | - Yu Kyeong Han
- Department of Microbiology and Immunology, College of MedicineInje UniversityBusanSouth Korea
| | - Ha Young Park
- Department of Pathology, College of MedicineInje UniversityBusanSouth Korea
| | - Ju Hwan Yang
- Department of Physiology and Convergence Medical Science, Institute of Health SciencesGyeongsang National University Medical SchoolJinjuSouth Korea
| | - Jin‐Han Bae
- Department of Integrated Biological Science, College of Natural SciencesPusan National UniversityBusanSouth Korea
| | - Jung‐Soo Suh
- Department of Integrated Biological Science, College of Natural SciencesPusan National UniversityBusanSouth Korea
| | - Tae‐Jin Kim
- Department of Integrated Biological Science, College of Natural SciencesPusan National UniversityBusanSouth Korea
| | - Joong‐Gook Kim
- Research CenterDongnam Institute of Radiological and Medical SciencesBusanSouth Korea
| | - Yan‐Hong Cui
- Department of Life Science, Research Institute for Natural SciencesHanyang UniversitySeoulSouth Korea
- Section of Dermatology, Department of MedicineUniversity of ChicagoChicagoILUSA
| | - Hiromu Suzuki
- Department of Molecular BiologySapporo Medical University School of MedicineSapporoJapan
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT‐Ganken ProgramJapanese Foundation for Cancer ResearchTokyoJapan
| | - Sung Joo Kim
- Department of Pathology, Kyung Hee University Hospital at GangdongKyung Hee University School of MedicineSeoulSouth Korea
| | - Yi Zhao
- Institute for Translation Medicine, Qingdao UniversityQingdaoChina
| | - In Ja Park
- Department of Colon and Rectal Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Seung‐Mo Hong
- Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
| | - Joon‐Yong Chung
- Molecular Imaging Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaMDUSA
| | - Su‐Jae Lee
- Fibrosis & Cancer Targeting BiotechnologySeoulSouth Korea
| |
Collapse
|
10
|
Erazo-Oliveras A, Muñoz-Vega M, Mlih M, Thiriveedi V, Salinas ML, Rivera-Rodríguez JM, Kim E, Wright RC, Wang X, Landrock KK, Goldsby JS, Mullens DA, Roper J, Karpac J, Chapkin RS. Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat Commun 2023; 14:4342. [PMID: 37468468 PMCID: PMC10356786 DOI: 10.1038/s41467-023-39640-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Although the role of the Wnt pathway in colon carcinogenesis has been described previously, it has been recently demonstrated that Wnt signaling originates from highly dynamic nano-assemblies at the plasma membrane. However, little is known regarding the role of oncogenic APC in reshaping Wnt nanodomains. This is noteworthy, because oncogenic APC does not act autonomously and requires activation of Wnt effectors upstream of APC to drive aberrant Wnt signaling. Here, we demonstrate the role of oncogenic APC in increasing plasma membrane free cholesterol and rigidity, thereby modulating Wnt signaling hubs. This results in an overactivation of Wnt signaling in the colon. Finally, using the Drosophila sterol auxotroph model, we demonstrate the unique ability of exogenous free cholesterol to disrupt plasma membrane homeostasis and drive Wnt signaling in a wildtype APC background. Collectively, these findings provide a link between oncogenic APC, loss of plasma membrane homeostasis and CRC development.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mohamed Mlih
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Venkataramana Thiriveedi
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jaileen M Rivera-Rodríguez
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Eunjoo Kim
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Destiny A Mullens
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason Karpac
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA.
- Center for Environmental Health Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
11
|
Zou Y, Wang Z, Shao L, Xia Z, Lan Y, Yu Z, Yao J, Luo Z. DNA methylation of DKK-1 may correlate with pathological bone formation in ankylosing spondylitis. Immun Inflamm Dis 2023; 11:e911. [PMID: 37506134 PMCID: PMC10326833 DOI: 10.1002/iid3.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Accepted: 05/29/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE To investigate DNA methylation (DNAm) status of dickkopf-associated protein 1 (DKK-1) in ossified hip capsule synovium and serum among patients with ankylosing spondylitis (AS). METHODS Western blot was applied to detect the level of DKK-1 protein expression in hip joint capsule tissues from four patients with AS as well as four patients with femoral neck fracture (FNF) caused by trauma as control. DKK-1 gene promoter methylation (GPM) was examined by methylation-specific polymerase chain reaction. Reverse transcription-polymerase chain reaction was performed to examine the messenger RNA (mRNA) levels of DKK-1, β-catenin, and Wnt3a in both tissue and serum. The DNAm status of serum DKK-1 was measured among 36 patients with AS and syndesmophytes (AS + syndesmophytes group), 40 patients with AS but no syndesmophyte (AS group), and 42 healthy individuals (control group). Also, the serum levels of DKK-1 were measured by enzyme-linked immunosorbent assay. The modified New York criteria (mNYC) together with the modified Stoke Ankylosing Spondylitis Spinal Score (mSASSS) were adopted to examine the radiographic progression of AS. The receiver operating characteristic (ROC) curve was applied to investigate the diagnostic value of the methylation rate of DKK-1 with regard to radiographic progression. RESULTS The expressions of DKK-1 protein and mRNA in hip joint capsule tissues of AS patients were significantly lower, while DKK-1 GPM rate, β-catenin mRNA, and Wnt3a mRNA were markedly higher when compared with FNF group. For serum samples, the DKK-1 methylation rate was significantly higher in AS+ syndesmophytes group in contrast to AS group and healthy controls. Serum levels of DKK-1 protein and mRNA in AS with syndesmophytes group were markedly decreased, while β-catenin mRNA and Wnt3a mRNA expressions were significantly increased than AS with no syndesmophyte group and the healthy control group. AS patients in Grade 4 showed a significantly higher serum DKK-1 GPM rate than those in Grade 3 based on mNYC. Serum DKK-1 GPM level was markedly and positively correlated with mSASSS. Serum levels of DKK-1 in AS+ syndesmophytes group were markedly lower compared with AS but no syndesmophyte group and healthy controls. ROC curve analysis indicated that serum DKK-1 methylation rate serves as a decent indicator for AS radiographic progression. CONCLUSION DNAm of DKK-1 may correlate with pathological bone formation in AS, which may provide new strategies for the treatment of AS abnormal bone formation.
Collapse
Affiliation(s)
- Yu‐Cong Zou
- Department of RehabilitationThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
- Deaprtment of RehabilitationThe 5th Affiliated Hospital of Foshan UniversityFoshanGuangdong ProvinceChina
| | - Zhi‐Jun Wang
- Department of RehabilitationThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Li‐Cheng Shao
- Department of Internal MedicineThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Zhi‐Hong Xia
- Department of Internal MedicineThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Yi‐Feng Lan
- Department of RadiologyThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Zhi‐Hui Yu
- Department of Laboratory medicineThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Jia‐Yu Yao
- Department of Internal MedicineThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| | - Zi‐Rui Luo
- Department of RehabilitationThe 5th People's Hospital of Foshan CityFoshanGuangdong ProvinceChina
| |
Collapse
|
12
|
Groenewald W, Lund AH, Gay DM. The Role of WNT Pathway Mutations in Cancer Development and an Overview of Therapeutic Options. Cells 2023; 12:990. [PMID: 37048063 PMCID: PMC10093220 DOI: 10.3390/cells12070990] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
It is well established that mutations in the canonical WNT-signalling pathway play a major role in various cancers. Critical to developing new therapeutic strategies is understanding which cancers are driven by WNT pathway activation and at what level these mutations occur within the pathway. Some cancers harbour mutations in genes whose protein products operate at the receptor level of the WNT pathway. For instance, tumours with RNF43 or RSPO mutations, still require exogenous WNT ligands to drive WNT signalling (ligand-dependent mutations). Conversely, mutations within the cytoplasmic segment of the Wnt pathway, such as in APC and CTNNB1, lead to constitutive WNT pathway activation even in the absence of WNT ligands (ligand-independent). Here, we review the predominant driving mutations found in cancer that lead to WNT pathway activation, as well as explore some of the therapeutic interventions currently available against tumours harbouring either ligand-dependent or ligand-independent mutations. Finally, we discuss a potentially new therapeutic avenue by targeting the translational apparatus downstream from WNT signalling.
Collapse
Affiliation(s)
| | - Anders H. Lund
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Michael Gay
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
13
|
Wang X, Liang B, Li J, Pi X, Zhang P, Zhou X, Chen X, Zhou S, Yang R. Identification and characterization of four immune-related signatures in keloid. Front Immunol 2022; 13:942446. [PMID: 35967426 PMCID: PMC9365668 DOI: 10.3389/fimmu.2022.942446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
A keloid is a fibroproliferative disorder of unknown etiopathogenesis that requires ill-defined treatment. Existing evidence indicates that the immune system plays an important role in the occurrence and development of keloid. However, there is still a lack of research on the immune-related signatures of keloid. Here we identified immune-related signatures in keloid and explored their pathological mechanisms. Transcriptomic datasets (GSE7890, GSE92566, and GSE44270) of keloid and normal skin tissues were obtained from the Gene Expression Omnibus database. The overlap of differentially expressed genes and immune-related genes was considered as differentially expressed immune-related genes (DEIGs). Functional analysis, expression, and distribution were applied to explore the function and characteristics of DEIGs, and the expression of these DEIGs in keloid and normal skin tissues was verified by immunohistochemistry. Finally, we conducted interactive network analysis and immune infiltration analysis to determine the therapeutic potential and immune correlation. We identified four DEIGs (LGR5, PTN, JAG1, and DKK1). In these datasets, only GSE7890 met the screening criteria. In the GSE7890 dataset, DKK1 and PTN were downregulated in keloid, whereas JAG1 and LGR5 were upregulated in keloid. In addition, we obtained the same conclusion through immunohistochemistry. Functional analysis indicated that these four DEIGs were mainly involved in stem cell, cell cycle, UV response, and therapy resistance. Through interactive network analysis, we found that these DEIGs were associated with drugs currently used to treat keloid, such as hydrocortisone, androstanolone, irinotecan, oxaliplatin, BHQ-880, and lecoleucovorin. Finally, many immune cells, including CD8+ T cells, resting memory CD4+ T cells, and M1 macrophages, were obtained by immune infiltration analysis. In conclusion, we identified four immune signaling molecules associated with keloid (LGR5, PTN, JAG1, and DKK1). These immune-related signaling molecules may be important modules in the pathogenesis of keloid. Additionally, we developed novel therapeutic targets for the treatment of this challenging disease.
Collapse
Affiliation(s)
- Xiaoxiang Wang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Bo Liang
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiehua Li
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
| | - Xiaobing Pi
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
| | - Peng Zhang
- Neijiang Health Vocational College, Neijiang, China
| | - Xinzhu Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| | - Sitong Zhou
- Department of Dermatology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| | - Ronghua Yang
- Guangdong Medical University, Zhanjiang, China
- Department of Burn and Plastic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- *Correspondence: Xiaodong Chen, ; Sitong Zhou, ; Ronghua Yang,
| |
Collapse
|
14
|
Dahlmann M, Monks A, Harris ED, Kobelt D, Osterland M, Khaireddine F, Herrmann P, Kemmner W, Burock S, Walther W, Shoemaker RH, Stein U. Combination of Wnt/β-Catenin Targets S100A4 and DKK1 Improves Prognosis of Human Colorectal Cancer. Cancers (Basel) 2021; 14:cancers14010037. [PMID: 35008201 PMCID: PMC8750436 DOI: 10.3390/cancers14010037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metastasis is directly linked to colorectal cancer (CRC) patient survival. Wnt signaling through β-catenin plays a key role. Metastasis-inducing S100A4 is a Wnt/β-catenin target gene and a prognostic biomarker for CRC and other cancer types. We aimed to identify S100A4-dependent expression alterations to better understand CRC progression and metastasis for improved patient survival. S100A4-induced transcriptome arrays, confirmatory studies in isogenic CRC cell lines with defined β-catenin genotypes, and functional metastasis studies were performed. S100A4-regulated transcriptome examination revealed the transcriptional cross-regulation of metastasis-inducing S100A4 with Wnt pathway antagonist Dickkopf-1 (DKK1). S100A4 overexpression down-regulated DKK1, S100A4 knock-down increased DKK1. Recombinant DKK1 reduced S100A4 expression and S100A4-mediated cell migration. In xenografted mice, systemic S100A4-shRNA application increased intratumoral DKK1. The inverse correlation of S100A4 and DKK1 was confirmed in five independent publicly available CRC expression datasets. Combinatorial analysis of S100A4 and DKK1 in two additional independent CRC patient cohorts improved prognosis of overall and metastasis-free survival. The newly discovered transcriptional cross-regulation of Wnt target S100A4 and Wnt antagonist DKK1 is predominated by an S100A4-induced Wnt signaling feedback loop, increasing cell motility and metastasis risk. S100A4 and DKK1 combination improves the identification of CRC patients at high risk.
Collapse
Affiliation(s)
- Mathias Dahlmann
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Anne Monks
- Molecular Pharmacology Laboratory, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD 21702, USA; (A.M.); (E.D.H.)
| | - Erik D. Harris
- Molecular Pharmacology Laboratory, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD 21702, USA; (A.M.); (E.D.H.)
| | - Dennis Kobelt
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Marc Osterland
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Fadi Khaireddine
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Pia Herrmann
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Wolfgang Kemmner
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Susen Burock
- Charité Comprehensive Cancer Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt—Universität zu Berlin, Invalidenstraße 80, 10117 Berlin, Germany;
| | - Wolfgang Walther
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
| | - Robert H. Shoemaker
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute-Frederick, Building 440, Frederick, MD 21702, USA;
| | - Ulrike Stein
- Experimental and Clinical Research Center, a Cooperation between the Charité—Universitätsmedizin Berlin and the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Lindenberger Weg 80, 13125 Berlin, Germany; (M.D.); (D.K.); (M.O.); (F.K.); (P.H.); (W.K.); (W.W.)
- German Cancer Consortium, 69121 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
15
|
Gao S, Jin Y, Zhang H. Pan-Cancer Analyses Reveal Oncogenic and Immunological Role of Dickkopf-1 (DKK1). Front Genet 2021; 12:757897. [PMID: 34899842 PMCID: PMC8654726 DOI: 10.3389/fgene.2021.757897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
WNT signaling pathway inhibitor Dickkopf-1 (DKK1) is related to cancer progression; however, its diagnostic and prognostic potential have not been investigated in a pan-cancer perspective. In this study, multiple bioinformatic analyses were conducted to evaluate therapeutic value of DKK1 in human cancers. The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) project served as data resources. The Wilcoxon rank test was performed to evaluate the expression difference of DKK1 between cancer tissues and normal tissues. A Kaplan-Meier curve and Cox regression were used for prognosis evaluation. Single-sample gene set enrichment analysis (ssGSEA) was used to evaluate the association of DKK1 expression with the immune cell infiltration. The potential function of DKK1 was explored by STRING and clusterProfiler. We found that the expression level of DKK1 is significantly different in different cancer types. Importantly, we demonstrated that DKK1 is an independent risk factor in ESCA, LUAD, MESO, and STAD. Further analysis revealed that DKK1 had a large effect on the immune cell infiltration and markers of certain immune cells, such as Th1 and Th2 cells. PPI network analysis and further pathway enrichment analysis indicated that DKK1 was mainly involved in the WNT signaling pathway. Our findings suggested that DKK1 might serve as a marker of prognosis for certain cancers by affecting the WNT signaling pathway and tumor immune microenvironment.
Collapse
Affiliation(s)
- Shuang Gao
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Ye Jin
- College of Life Science, North China University of Science and Technology, Tangshan, China
| | - Hongmei Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, China.,School of Clinical Medicine, North China University of Science and Technology, Tangshan, China.,Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
16
|
Kornsuthisopon C, Photichailert S, Nowwarote N, Tompkins KA, Osathanon T. Wnt signaling in dental pulp homeostasis and dentin regeneration. Arch Oral Biol 2021; 134:105322. [PMID: 34844087 DOI: 10.1016/j.archoralbio.2021.105322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Wnt signaling is crucial in the physiological and pathological processes of dental pulp tissues. The present study described the effects of Wnt signaling in dental pulp homeostasis and regeneration. DESIGN Publications in Pubmed and Scopus database were searched, and a narrative review was performed. The roles of Wnt signaling in dental pulp tissue were reviewed and discussed. RESULT In vitro and in vivo evidence have confirmed the involvement of Wnt signaling in tooth development, dental pulp homeostasis, and physiological processes in dental pulp responses. Manipulating Wnt signaling components generates beneficial effects on pulp healing, dentin repair, and epigenetic regulation related to stemness maintenance, implying that Wnt signaling is a potential therapeutic target for future clinical dental applications. Additionally, an overview of the epigenetic control of dental pulp stem cells by Wnt signaling is provided. CONCLUSION This review provides basic knowledge on Wnt signaling and outlines its functions in dental pulp tissues, focusing on their potential as therapeutic treatments by targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suphalak Photichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, INSERM UMRS 1138, Molecular Oral Pathophysiology and Universite de Paris, Dental Faculty Garanciere, Oral Biology Department, Paris F-75006, France
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
17
|
Kikuchi A, Matsumoto S, Sada R. Dickkopf signaling, beyond Wnt-mediated biology. Semin Cell Dev Biol 2021; 125:55-65. [PMID: 34801396 DOI: 10.1016/j.semcdb.2021.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Dickkopf1 (DKK1) was originally identified as a secreted protein that antagonizes Wnt signaling. Although DKK1 is essential for the developmental process, its functions in postnatal and adult life are unclear. However, evidence is accumulating that DKK1 is involved in tumorigenesis in a manner unrelated to Wnt signaling. In addition, recent studies have revealed that DKK1 may control immune reactions, although the relationship of this to Wnt signaling is unknown. Other DKK family members, DKK2-4, are likely to have their own functions. Here, we review the possible novel functions of DKKs. We summarize the characteristics of receptors of DKKs and the signaling mechanisms through DKKs and their receptors, provide evidence showing that DKKs are involved in tumor aggressiveness independently of Wnt signaling, and emphasize promising cancer therapies targeting DKKs and receptors. Lastly, we discuss various physiological and pathological processes controlled by DKKs.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan.
| | - Shinji Matsumoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| | - Ryota Sada
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamada-oka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
18
|
Frizzled 7 Activates β-Catenin-Dependent and β-Catenin-Independent Wnt Signalling Pathways During Developmental Morphogenesis: Implications for Therapeutic Targeting in Colorectal Cancer. Handb Exp Pharmacol 2021. [PMID: 34455486 DOI: 10.1007/164_2021_524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
Frizzled7 activates β-catenin-dependent and β-catenin-independent Wnt signalling pathways, is highly conserved through evolution from the ancient phylum hydra to man, plays essential roles in stem cells, tissue homeostasis and regeneration in the adult, and is upregulated in diverse cancers. Much of what is known about the core components of the Wnt signalling pathways was derived from studying the function of Frizzled7 orthologues in the development of lower organism. As we interrogate Frizzled7 signalling and function for therapeutic targeting in cancer, it is timely to revisit lower organisms to gain insight into the context dependent and dynamic nature of Wnt signalling for effective drug design.
Collapse
|
19
|
Nørgaard K, Müller C, Christensen N, Chiloeches ML, Madsen CL, Nielsen SS, Thingholm TE, Belcheva A. Loss of mismatch repair signaling impairs the WNT-bone morphogenetic protein crosstalk and the colonic homeostasis. J Mol Cell Biol 2021; 12:410-423. [PMID: 31065691 PMCID: PMC7333479 DOI: 10.1093/jmcb/mjz031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/14/2018] [Accepted: 03/17/2019] [Indexed: 01/05/2023] Open
Abstract
The fine balance between proliferation, differentiation, and apoptosis in the colonic epithelium is tightly controlled by the interplay between WNT, Notch, and bone morphogenetic protein (BMP) signaling. How these complex networks coordinate the colonic homeostasis, especially if cancer predisposing mutations such as mutations in the DNA mismatch repair (MMR) are present, is unclear. Inactivation of the MMR system has long been linked to colorectal cancer; however, little is known about its role in the regulation of the colonic homeostasis. It has been shown that loss of MMR promotes the proliferation of colon epithelial cells that renders them highly susceptible to transformation. The mechanism through which MMR mediates this effect, yet, remains to be determined. Using an MMR-deficient mouse model, we show that increased methylation of Dickkopf1 impacts its expression, and consequently, the ability to negatively regulate WNT signaling. As a result, excessive levels of active β-catenin promote strong crypt progenitor-like phenotype and abnormal proliferation. Under these settings, the development and function of the goblet cells are affected. MMR-deficient mice have fewer goblet cells with enlarged mucin-loaded vesicles. We further show that MMR inactivation impacts the WNT–BMP signaling crosstalk.
Collapse
Affiliation(s)
- Katrine Nørgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Carolin Müller
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nadja Christensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - María L Chiloeches
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Cesilie L Madsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Sabine S Nielsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Tine E Thingholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.,Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 25, 5230 Odense M, Denmark
| | - Antoaneta Belcheva
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
20
|
Boughanem H, Izquierdo AG, Hernández-Alonso P, Arranz-Salas I, Casanueva FF, Tinahones FJ, Crujeiras AB, Macias-Gonzalez M. An Epigenetic Signature is Associated with Serum 25-Hydroxyvitamin D in Colorectal Cancer Tumors. Mol Nutr Food Res 2021; 65:e2100125. [PMID: 34289228 DOI: 10.1002/mnfr.202100125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/02/2021] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Vitamin D has been widely associated with colorectal cancer (CRC) through different insights. This study aims to explore the association between serum 25-hydroxyvitamin D (25(OH)D) and the global DNA methylation in tumor from CRC patients. METHODS AND RESULTS A genome-wide DNA methylation analysis is conducted in 20 CRC patients under categorical (10 patients have 25(OH)D <30 ng mL-1 ; 10 patients with 25(OH)D ≥30 ng mL-1 ) and continuous models of 25(OH)D. A total of 95 differentially methylated CpGs (DMCpGs) are detected under the categorical model (false discovery rate (FDR) < 0.05), while 16 DMCpGs are found under the continuous model. Regional analysis showed eight vitamin D-associated differentially methylated regions (DMR). Between them, a DMR is the most significant at cAMP-Dependent Protein Kinase Inhibitor Alpha (PKIA) locus. Furthermore, seven genes, including PKIA gene, have more or equal than two significant DMCpGs. The protein networking analysis found pathways implicated in cell adhesion and extracellular matrix, as well as signaling transduction. CONCLUSIONS This study identifies novel epigenetic loci associated with serum 25(OH)D status. Interestingly, also, a positive association between vitamin D and DNA methylation in the CRC context is found, suggesting a role in CRC. Further studies are warranted to clarify and replicate these results.
Collapse
Affiliation(s)
- Hatim Boughanem
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, 29016, Spain
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, 15706, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Pablo Hernández-Alonso
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, 29016, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain.,Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Hospital Universitari San Joan de Reus, Reus, Spain.,Institut d'Investigació Pere Virgili (IISPV), Reus, Spain
| | - Isabel Arranz-Salas
- UGC de Anatomía Patológica, Hospital Universitario Virgen de la Victoria, Málaga, 29010, Spain
| | - Felipe F Casanueva
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, 15706, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, 29016, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS/SERGAS), Santiago de Compostela, 15706, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, 29016, Spain.,CIBER in Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
21
|
Ghorbani M, Azghandi M, Kerachian MA. Aberrantly methylated-differentially genes and pathways among Iranian patients with colorectal cancer. Cancer Cell Int 2021; 21:346. [PMID: 34217303 PMCID: PMC8255023 DOI: 10.1186/s12935-021-02053-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/25/2021] [Indexed: 12/03/2022] Open
Abstract
Background Methylation plays an important role in colorectal cancer (CRC) pathogenesis. The goal of this study was to identify aberrantly differentially methylated genes (DMGs) and pathways through bioinformatics analysis among Iranian CRC patients using Methylation Next Generation Sequencing. Methods This study has integrated results of SureSelectXT Methyl-Seq Target with the potential key candidate genes and pathways in CRC. Six CRC and six samples of normal colon were integrated and deeply analyzed. In addition to this gene methylation profiling, several other gene methylation profiling datasets were obtained from Gene Expression Omnibus (GEO) and TCGA datasets. DMGs were sorted and candidate genes and enrichment pathways were analyzed. DMGs-associated protein–protein interaction network (PPI) was constructed based on the STRING online database. Results Totally, 320 genes were detected as common genes between our patients and selected GEO and TCGA datasets from the Agilent SureSelect analysis with selecting criteria of p-value < 0.05 and FC ≥ 1.5. DMGs were identified from hyper-DMGs PPI network complex and 10 KEGG pathways were identified. The most important modules were extracted from MCODE, as most of the corresponding genes were involved in cellular process and protein binding. Conclusions Hub genes including WNT2, SFRP2, ZNF726 and BMP2 were suggested as potentially diagnostic and therapeutic targets for CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02053-0.
Collapse
Affiliation(s)
- Mahla Ghorbani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran.,Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran
| | - Marjan Azghandi
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran.,Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Cancer Genetics Research Unit, Reza Radiotherapy and Oncology Center, Mashhad, Iran. .,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Kimura H, Sada R, Takada N, Harada A, Doki Y, Eguchi H, Yamamoto H, Kikuchi A. The Dickkopf1 and FOXM1 positive feedback loop promotes tumor growth in pancreatic and esophageal cancers. Oncogene 2021; 40:4486-4502. [PMID: 34117362 PMCID: PMC8249240 DOI: 10.1038/s41388-021-01860-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Dickkopf1 (DKK1) is overexpressed in various cancers and promotes cancer cell proliferation by binding to cytoskeleton-associated protein 4 (CKAP4). However, the mechanisms underlying DKK1 expression are poorly understood. RNA sequence analysis revealed that expression of the transcription factor forkhead box M1 (FOXM1) and its target genes concordantly fluctuated with expression of DKK1 in pancreatic ductal adenocarcinoma (PDAC) cells. DKK1 knockdown decreased FOXM1 expression and vice versa in PDAC and esophageal squamous cell carcinoma (ESCC) cells. Inhibition of either the DKK1-CKAP4-AKT pathway or the ERK pathway suppressed FOXM1 expression, and simultaneous inhibition of both pathways showed synergistic effects. A FOXM1 binding site was identified in the 5'-untranslated region of the DKK1 gene, and its depletion decreased DKK1 expression and cancer cell proliferation. Clinicopathological and database analysis revealed that PDAC and ESCC patients who simultaneously express DKK1 and FOXM1 have a poorer prognosis. Multivariate analysis demonstrated that expression of both DKK1 and FOXM1 is the independent prognostic factor in ESCC patients. Although it has been reported that FOXM1 enhances Wnt signaling, FOXM1 induced DKK1 expression independently of Wnt signaling in PDAC and ESCC cells. These results suggest that DKK1 and FOXM1 create a positive feedback loop to promote cancer cell proliferation.
Collapse
Affiliation(s)
- Hirokazu Kimura
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryota Sada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Naoki Takada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akikazu Harada
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, Suita, Japan.
| |
Collapse
|
23
|
Noe O, Filipiak L, Royfman R, Campbell A, Lin L, Hamouda D, Stanbery L, Nemunaitis J. Adenomatous polyposis coli in cancer and therapeutic implications. Oncol Rev 2021; 15:534. [PMID: 34267890 PMCID: PMC8256374 DOI: 10.4081/oncol.2021.534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Inactivating mutations of the adenomatous polyposis coli (APC) gene and consequential upregulation of the Wnt signaling pathway are critical initiators in the development of colorectal cancer (CRC), the third most common cancer in the United States for both men and women. Emerging evidence suggests APCmutations are also found in gastric, breast and other cancers. The APC gene, located on chromosome 5q, is responsible for negatively regulating the b-catenin/Wnt pathway by creating a destruction complex with Axin/Axin2, GSK-3b, and CK1. In the event of an APC mutation, b-catenin accumulates, translocates to the cell nucleus and increases the transcription of Wnt target genes that have carcinogenic consequences in gastrointestinal epithelial stem cells. A literature review was conducted to highlight carcinogenesis related to APC mutations, as well as preclinical and clinical studies for potential therapies that target steps in inflammatory pathways, including IL-6 transduction, and Wnt pathway signaling regulation. Although a range of molecular targets have been explored in murine models, relatively few pharmacological agents have led to substantial increases in survival for patients with colorectal cancer clinically. This article reviews a range of molecular targets that may be efficacious targets for tumors with APC mutations.
Collapse
Affiliation(s)
- Olivia Noe
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Louis Filipiak
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel Royfman
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Austin Campbell
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Laura Stanbery
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | | |
Collapse
|
24
|
Kafka A, Bukovac A, Brglez E, Jarmek AM, Poljak K, Brlek P, Žarković K, Njirić N, Pećina-Šlaus N. Methylation Patterns of DKK1, DKK3 and GSK3β Are Accompanied with Different Expression Levels in Human Astrocytoma. Cancers (Basel) 2021; 13:cancers13112530. [PMID: 34064046 PMCID: PMC8196684 DOI: 10.3390/cancers13112530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/24/2023] Open
Abstract
In the present study, we investigated genetic and epigenetic changes and protein expression levels of negative regulators of Wnt signaling, DKK1, DKK3, and APC as well as glycogen synthase kinase 3 (GSK3β) and β-catenin in 64 human astrocytomas of grades II-IV. Methylation-specific PCR revealed promoter methylation of DKK1, DKK3, and GSK3β in 38%, 43%, and 18% of samples, respectively. Grade IV comprised the lowest number of methylated GSK3β cases and highest of DKK3. Evaluation of the immunostaining using H-score was performed for β-catenin, both total and unphosphorylated (active) forms. Additionally, active (pY216) and inactive (pS9) forms of GSK3β protein were also analyzed. Spearman's correlation confirmed the prevalence of β-catenin's active form (rs = 0.634, p < 0.001) in astrocytoma tumor cells. The Wilcoxon test revealed that astrocytoma with higher levels of the active pGSK3β-Y216 form had lower expression levels of its inactive form (p < 0.0001, Z = -5.332). Changes in APC's exon 11 were observed in 44.44% of samples by PCR/RFLP. Astrocytomas with changes of APC had higher H-score values of total β-catenin compared to the group without genetic changes (t = -2.264, p = 0.038). Furthermore, a positive correlation between samples with methylated DKK3 promoter and the expression of active pGSK3β-Y216 (rs = 0.356, p = 0.011) was established. Our results emphasize the importance of methylation for the regulation of Wnt signaling. Large deletions of the APC gene associated with increased β-catenin levels, together with oncogenic effects of both β-catenin and GSK3β, are clearly involved in astrocytoma evolution. Our findings contribute to a better understanding of the etiology of gliomas. Further studies should elucidate the clinical and therapeutic relevance of the observed molecular alterations.
Collapse
Affiliation(s)
- Anja Kafka
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
- Correspondence:
| | - Anja Bukovac
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Emilija Brglez
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Ana-Marija Jarmek
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Karolina Poljak
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Petar Brlek
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
| | - Kamelija Žarković
- Department of Pathology, School of Medicine, University of Zagreb, Šalata 10, 10 000 Zagreb, Croatia;
- Division of Pathology, University Hospital Center “Zagreb”, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Niko Njirić
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Neurosurgery, University Hospital Center “Zagreb”, School of Medicine, University of Zagreb, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Nives Pećina-Šlaus
- Laboratory of Neuro-Oncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata 12, 10 000 Zagreb, Croatia; (A.B.); (E.B.); (A.-M.J.); (K.P.); (P.B.); (N.N.); (N.P.-Š.)
- Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
25
|
Targeting Wnt Signaling in Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13102351. [PMID: 34068065 PMCID: PMC8152465 DOI: 10.3390/cancers13102351] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Wnt has diverse regulatory roles at multiple cellular levels and numerous targeting points, and aberrant Wnt signaling has crucial roles in carcinogenesis, metastasis, cancer recurrence, and chemotherapy resistance; based on these facts, Wnt represents an appealing therapeutic target for cancer treatment. Although preclinical data supports a role for the Wnt signaling pathway in uterine carcinogenesis, this area remains understudied. In this review, we identify the functions of several oncogenes of the Wnt/β-catenin signaling pathway in tumorigenesis and address the translation approach with potent Wnt inhibitors that have already been established or are being investigated to target key components of the pathway. Further research is likely to expand the potential for both biomarker and cancer drug development. There is a scarcity of treatment choices for advanced and recurrent endometrial cancer; investigating the sophisticated connections of Wnt signaling networks in endometrial cancer could address the unmet need for new therapeutic targets. Abstract This review presents new findings on Wnt signaling in endometrial carcinoma and implications for possible future treatments. The Wnt proteins are essential mediators in cell signaling during vertebrate embryo development. Recent biochemical and genetic studies have provided significant insight into Wnt signaling, in particular in cell cycle regulation, inflammation, and cancer. The role of Wnt signaling is well established in gastrointestinal and breast cancers, but its function in gynecologic cancers, especially in endometrial cancers, has not been well elucidated. Development of a subset of endometrial carcinomas has been attributed to activation of the APC/β-catenin signaling pathway (due to β-catenin mutations) and downregulation of Wnt antagonists by epigenetic silencing. The Wnt pathway also appears to be linked to estrogen and progesterone, and new findings implicate it in mTOR and Hedgehog signaling. Therapeutic interference of Wnt signaling remains a significant challenge. Herein, we discuss the Wnt-activating mechanisms in endometrial cancer and review the current advances and challenges in drug discovery.
Collapse
|
26
|
Villota H, Röthlisberger S, Pedroza-Díaz J. Modulation of the Canonical Wnt Signaling Pathway by Dietary Polyphenols, an Opportunity for Colorectal Cancer Chemoprevention and Treatment. Nutr Cancer 2021; 74:384-404. [PMID: 33596716 DOI: 10.1080/01635581.2021.1884730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the last few decades there has been a rise in the worldwide incidence of colorectal cancer which can be traced back to the influence of well-known modifiable risk factors such as lifestyle, diet and obesity. Conversely, the consumption of fruits, vegetables and fiber decreases the risk of CRC, which is why dietary polyphenols have aroused interest in recent years as potentially anti-carcinogenic compounds. One of the driving forces of colorectal carcinogenesis, in both sporadic and hereditary CRC, is the aberrant activation/regulation of the Wnt/β-catenin pathway. This review discusses reports of modulation of the Wnt/β-Catenin signaling pathway by dietary polyphenols (resveratrol, avenanthramides, epigallocatechinin, curcumin, quercetin, silibinin, genistein and mangiferin) specifically focusing on CRC, and proposes a model as to how this modulation occurs. There is potential for implementing these dietary polyphenols into preventative and therapeutic therapies for CRC as evidenced by some clinical trials that have been carried out with promising results.
Collapse
Affiliation(s)
- Hernan Villota
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnologico Metropolitano, Medellin, Colombia
| | - Sarah Röthlisberger
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnologico Metropolitano, Medellin, Colombia
| | - Johanna Pedroza-Díaz
- Biomedical Innovation and Research Group, Faculty of Applied and Exact Sciences, Instituto Tecnologico Metropolitano, Medellin, Colombia
| |
Collapse
|
27
|
Zhu G, Song J, Chen W, Yuan D, Wang W, Chen X, Liu H, Su H, Zhu J. Expression and Role of Dickkopf-1 (Dkk1) in Tumors: From the Cells to the Patients. Cancer Manag Res 2021; 13:659-675. [PMID: 33536782 PMCID: PMC7847771 DOI: 10.2147/cmar.s275172] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Dickkopf-1 (Dkk1) is a secretory antagonist of the classical Wnt signaling pathway. Many studies have reported that Dkk1 is abnormally expressed in tumor cells, and abnormal expression of Dkk1 can inhibit cell proliferation or induce apoptosis through pro-apoptotic factors, However, due to the differences in tumor environment and the complex regulatory mechanisms in different tumors, Dkk1 has different effects on the progression of different tumors. In many tumors, high expression of Dkk1 may promote tumor metastasis. However, Dkk1, which is highly expressed in other tumors, can inhibit tumor invasion and metastasis. More and more evidence shows that Dkk1 plays a complex and different role in tumor occurrence, development and metastasis in different tumor environments and through a variety of complex regulatory mechanisms. Therefore, Dkk1 may not only be a useful biomarker of metastasis, but also a target for studying the metabolic mechanism of tumor cells and treating tumors in many tumor types. Therefore, this article reviews the research progress on the expression, mechanism and function of Dkk1 in different tumors, and at the same time, based on the public database data, we made a further analysis of the expression of Dkk1 in different tumors.
Collapse
Affiliation(s)
- Guohua Zhu
- Guizhou Medical University, Guiyang, Guizhou Province 550002, People's Republic of China.,Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China
| | - Jukun Song
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Weimin Chen
- Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Dongbo Yuan
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Wei Wang
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China
| | - Xiaoyue Chen
- Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China
| | - Hen Liu
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| | - Hao Su
- Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| | - Jianguo Zhu
- Guizhou Medical University, Guiyang, Guizhou Province 550002, People's Republic of China.,Department of Urology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province 550002, People's Republic of China.,Guizhou University School of Medicine, Guiyang, Guizhou Province 550025, People's Republic of China.,Zunyi Medical University, Zunyi, Guizhou Province 563000, People's Republic of China
| |
Collapse
|
28
|
Xu Y, Guo J, Liu J, Xie Y, Li X, Jiang H, Wang J, Peng Z, Wang J, Wang S, Wan C, Chen L, Zhong Y, Liu B, Liu Z. Hypoxia-induced CREB cooperates MMSET to modify chromatin and promote DKK1 expression in multiple myeloma. Oncogene 2021; 40:1231-1241. [PMID: 33420361 PMCID: PMC7892339 DOI: 10.1038/s41388-020-01590-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/17/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022]
Abstract
Myeloma cells produce excessive levels of dickkopf-1 (DKK1), which mediates the inhibition of Wnt signaling in osteoblasts, leading to multiple myeloma (MM) bone disease. Nevertheless, the precise mechanisms underlying DKK1 overexpression in myeloma remain incompletely understood. Herein, we provide evidence that hypoxia promotes DKK1 expression in myeloma cells. Under hypoxic conditions, p38 kinase phosphorylated cAMP-responsive element-binding protein (CREB) and drove its nuclear import to activate DKK1 transcription. In addition, high levels of DKK1 were associated with the presence of focal bone lesions in patients with t(4;14) MM, overexpressing the histone methyltransferase MMSET, which was identified as a downstream target gene of hypoxia-inducible factor (HIF)-1α. Furthermore, we found that CREB could recruit MMSET, leading to the stabilization of HIF-1α protein and the increased dimethylation of histone H3 at lysine 36 on the DKK1 promoter. Knockdown of CREB in myeloma cells alleviated the suppression of osteoblastogenesis by myeloma-secreted DKK1 in vitro. Combined treatment with a CREB inhibitor and the hypoxia-activated prodrug TH-302 (evofosfamide) significantly reduced MM-induced bone destruction in vivo. Taken together, our findings reveal that hypoxia and a cytogenetic abnormality regulate DKK1 expression in myeloma cells, and provide an additional rationale for the development of therapeutic strategies that interrupt DKK1 to cure MM.
Collapse
Affiliation(s)
- Yinyin Xu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China.,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jing Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ying Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Xin Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Hongmei Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jingjing Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ziyi Peng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jingya Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Sheng Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Chao Wan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Lanting Chen
- Department of Hematology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yuping Zhong
- Department of Hematology, Qingdao Municipal Hospital, Qingdao, Shandong, China
| | - Beizhong Liu
- Clinical Laboratory of Yongchuan Hospital, Chongqing Medical University, Chongqing, China. .,Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| | - Zhiqiang Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China. .,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
29
|
Singla A, Wang J, Yang R, Geller DS, Loeb DM, Hoang BH. Wnt Signaling in Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:125-139. [PMID: 32767238 DOI: 10.1007/978-3-030-43085-6_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Wnt molecules are a class of cysteine-rich secreted glycoproteins that participate in various developmental events during embryogenesis and adult tissue homeostasis. Since its discovery in 1982, the roles of Wnt signaling have been established in various key regulatory systems in biology. Wnt signals exert pleiotropic effects, including mitogenic stimulation, cell fate specification, and differentiation. The Wnt signaling pathway in humans has been shown to be involved in a wide variety of disorders including colon cancer, sarcoma, coronary artery disease, tetra-amelia, Mullerian duct regression, eye vascular defects, and abnormal bone mass. The canonical Wnt pathway functions by regulating the function of the transcriptional coactivator β-catenin, whereas noncanonical pathways function independent of β-catenin. Although the role of Wnt signaling is well established in epithelial malignancies, its role in mesenchymal tumors is more controversial. Some studies have suggested that Wnt signaling plays a pro-oncogenic role in various sarcomas by driving cell proliferation and motility; however, others have reported that Wnt signaling acts as a tumor suppressor by committing tumor cells to differentiate into a mature lineage. Wnt signaling pathway also plays an important role in regulating cancer stem cell function. In this review, we will discuss Wnt signaling pathway and its role in osteosarcoma.
Collapse
Affiliation(s)
- Amit Singla
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Musculoskeletal Tumor Center, Beijing Key Laboratory for Musculoskeletal Tumors, Peking University People's Hospital, Beijing, China
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David S Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David M Loeb
- Departments of Pediatrics and Developmental and Molecular Biology, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang H Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
30
|
Wnt and Vitamin D at the Crossroads in Solid Cancer. Cancers (Basel) 2020; 12:cancers12113434. [PMID: 33227961 PMCID: PMC7699248 DOI: 10.3390/cancers12113434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The Wnt/β-catenin signaling pathway is aberrantly activated in most colorectal cancers and less frequently in a variety of other solid neoplasias. Many epidemiological and experimental studies and some clinical trials suggest an anticancer action of vitamin D, mainly against colorectal cancer. The aim of this review was to analyze the literature supporting the interference of Wnt/β-catenin signaling by the active vitamin D metabolite 1α,25-dihydroxyvitamin D3. We discuss the molecular mechanisms of this antagonism in colorectal cancer and other cancer types. Additionally, we summarize the available data indicating a reciprocal inhibition of vitamin D action by the activated Wnt/β-catenin pathway. Thus, a complex mutual antagonism between Wnt/β-catenin signaling and the vitamin D system seems to be at the root of many solid cancers. Abstract Abnormal activation of the Wnt/β-catenin pathway is common in many types of solid cancers. Likewise, a large proportion of cancer patients have vitamin D deficiency. In line with these observations, Wnt/β-catenin signaling and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active vitamin D metabolite, usually have opposite effects on cancer cell proliferation and phenotype. In recent years, an increasing number of studies performed in a variety of cancer types have revealed a complex crosstalk between Wnt/β-catenin signaling and 1,25(OH)2D3. Here we review the mechanisms by which 1,25(OH)2D3 inhibits Wnt/β-catenin signaling and, conversely, how the activated Wnt/β-catenin pathway may abrogate vitamin D action. The available data suggest that interaction between Wnt/β-catenin signaling and the vitamin D system is at the crossroads in solid cancers and may have therapeutic applications.
Collapse
|
31
|
Wise DR, Schneider JA, Armenia J, Febles VA, McLaughlin B, Brennan R, Thoren KL, Abida W, Sfanos KS, De Marzo AM, Yegnasubramanian S, Fox JJ, Haas M, Heath H, Kagey MH, Newman W, Sirard CA, Fleisher M, Morris MJ, Chen Y, Larson SM, Haffner MC, Nelson PS, Schultz N, Garabedian MJ, Scher HI, Logan SK, Sawyers CL. Dickkopf-1 Can Lead to Immune Evasion in Metastatic Castration-Resistant Prostate Cancer. JCO Precis Oncol 2020; 4:2000097. [PMID: 33015525 DOI: 10.1200/po.20.00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Metastatic castration-resistant prostate cancer (mCRPC) with low androgen receptor (AR) and without neuroendocrine signaling, termed double-negative prostate cancer (DNPC), is increasingly prevalent in patients treated with AR signaling inhibitors and is in need of new biomarkers and therapeutic targets. METHODS Candidate genes enriched in DNPC were determined using differential gene expression analysis of discovery and validation cohorts of mCRPC biopsies. Laboratory studies were carried out in human mCRPC organoid cultures, prostate cancer (PCa) cell lines, and mouse xenograft models. Epigenetic studies were carried out in a rapid autopsy cohort. RESULTS Dickkopf-1 (DKK1) expression is increased in DNPC relative to prostate-specific antigen (PSA)-expressing mCRPC in the Stand Up to Cancer/Prostate Cancer Foundation discovery cohort (11.2 v 0.28 reads per kilobase per million mapped reads; q < 0.05; n = 117) and in the University of Washington/Fred Hutchinson Cancer Research Center cohort (9.2 v 0.99 fragments per kilobase of transcript per million mapped reads; P < .0001). DKK1 expression can be regulated by activated Wnt signaling in vitro and correlates with activating canonical Wnt signaling mutations and low PSA mRNA in mCRPC biopsies (P < .05). DKK1 hypomethylation was associated with increased DKK1 mRNA expression (Pearson r = -0.66; P < .0001) in a rapid autopsy cohort (n = 7). DKK1-high mCRPC biopsies are infiltrated with significantly higher numbers of quiescent natural killer (NK) cells (P < .005) and lower numbers of activated NK cells (P < .0005). Growth inhibition of the human PCa model PC3 by the anti-DKK1 monoclonal antibody DKN-01 depends on the presence of NK cells in a severe combined immunodeficient xenograft mouse model. CONCLUSION These results support DKK1 as a contributor to the immunosuppressive tumor microenvironment of DNPC. These data have provided the rationale for a clinical trial targeting DKK1 in mCRPC (ClinicalTrials.gov identifier: NCT03837353).
Collapse
Affiliation(s)
- David R Wise
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | | | - Joshua Armenia
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Victor Adorno Febles
- Department of Medicine, Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Bridget McLaughlin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ryan Brennan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Katie L Thoren
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Karen S Sfanos
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Angelo M De Marzo
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Srinivasan Yegnasubramanian
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Josef J Fox
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | - Martin Fleisher
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Steven M Larson
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael C Haffner
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD.,Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Peter S Nelson
- Departments of Medicine and Pathology, University of Washington, and Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Nikolaus Schultz
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael J Garabedian
- Department of Urology, NYU Langone Medical Center, New York, NY.,Department of Microbiology, NYU Langone Medical Center, New York, NY
| | - Howard I Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Susan K Logan
- Department of Urology, NYU Langone Medical Center, New York, NY
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
32
|
Dunbar K, Valanciute A, Lima ACS, Vinuela PF, Jamieson T, Rajasekaran V, Blackmur J, Ochocka-Fox AM, Guazzelli A, Cammareri P, Arends MJ, Sansom OJ, Myant KB, Farrington SM, Dunlop MG, Din FVN. Aspirin Rescues Wnt-Driven Stem-like Phenotype in Human Intestinal Organoids and Increases the Wnt Antagonist Dickkopf-1. Cell Mol Gastroenterol Hepatol 2020; 11:465-489. [PMID: 32971322 PMCID: PMC7797380 DOI: 10.1016/j.jcmgh.2020.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Aspirin reduces colorectal cancer (CRC) incidence and mortality. Understanding the biology responsible for this protective effect is key to developing biomarker-led approaches for rational clinical use. Wnt signaling drives CRC development from initiation to progression through regulation of epithelial-mesenchymal transition (EMT) and cancer stem cell populations. Here, we investigated whether aspirin can rescue these proinvasive phenotypes associated with CRC progression in Wnt-driven human and mouse intestinal organoids. METHODS We evaluated aspirin-mediated effects on phenotype and stem cell markers in intestinal organoids derived from mouse (ApcMin/+ and Apcflox/flox) and human familial adenomatous polyposis patients. CRC cell lines (HCT116 and Colo205) were used to study effects on motility, invasion, Wnt signaling, and EMT. RESULTS Aspirin rescues the Wnt-driven cystic organoid phenotype by promoting budding in mouse and human Apc deficient organoids, which is paralleled by decreased stem cell marker expression. Aspirin-mediated Wnt inhibition in ApcMin/+ mice is associated with EMT inhibition and decreased cell migration, invasion, and motility in CRC cell lines. Chemical Wnt activation induces EMT and stem-like alterations in CRC cells, which are rescued by aspirin. Aspirin increases expression of the Wnt antagonist Dickkopf-1 in CRC cells and organoids derived from familial adenomatous polyposis patients, which contributes to EMT and cancer stem cell inhibition. CONCLUSIONS We provide evidence of phenotypic biomarkers of response to aspirin with an increased epithelial and reduced stem-like state mediated by an increase in Dickkopf-1. This highlights a novel mechanism of aspirin-mediated Wnt inhibition and potential phenotypic and molecular biomarkers for trials.
Collapse
Affiliation(s)
- Karen Dunbar
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Asta Valanciute
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Ana Cristina Silva Lima
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Paz Freile Vinuela
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Thomas Jamieson
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Vidya Rajasekaran
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - James Blackmur
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Anna-Maria Ochocka-Fox
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Alice Guazzelli
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Patrizia Cammareri
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Mark J Arends
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom; Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kevin B Myant
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Susan M Farrington
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Malcolm G Dunlop
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Farhat V N Din
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom; Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom.
| |
Collapse
|
33
|
Fennell LJ, Kane A, Liu C, McKeone D, Fernando W, Su C, Bond C, Jamieson S, Dumenil T, Patch AM, Kazakoff SH, Pearson JV, Waddell N, Leggett B, Whitehall VLJ. APC Mutation Marks an Aggressive Subtype of BRAF Mutant Colorectal Cancers. Cancers (Basel) 2020; 12:E1171. [PMID: 32384699 PMCID: PMC7281581 DOI: 10.3390/cancers12051171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND WNT activation is a hallmark of colorectal cancer. BRAF mutation is present in 15% of colorectal cancers, and the role of mutations in WNT signaling regulators in this context is unclear. Here, we evaluate the mutational landscape of WNT signaling regulators in BRAF mutant cancers. METHODS we performed exome-sequencing on 24 BRAF mutant colorectal cancers and analyzed these data in combination with 175 publicly available BRAF mutant colorectal cancer exomes. We assessed the somatic mutational landscape of WNT signaling regulators, and performed hotspot and driver mutation analyses to identify potential drivers of WNT signaling. The effects of Apc and Braf mutation were modelled, in vivo, using the Apcmin/+ and BrafV637/Villin-CreERT2/+ mouse, respectively. RESULTS RNF43 was the most frequently mutated WNT signaling regulator (41%). Mutations in the beta-catenin destruction complex occurred in 48% of cancers. Hotspot analyses identified potential cancer driver genes in the WNT signaling cascade, including MEN1, GNG12 and WNT16. Truncating APC mutation was identified in 20.8% of cancers. Truncating APC mutation was associated with early age at diagnosis (p < 2 × 10-5), advanced stage (p < 0.01), and poor survival (p = 0.026). Apcmin/+/BrafV637 animals had more numerous and larger SI and colonic lesions (p < 0.0001 and p < 0.05, respectively), and a markedly reduced survival (median survival: 3.2 months, p = 8.8 × 10-21), compared to animals with Apc or Braf mutation alone. CONCLUSIONS the WNT signaling axis is frequently mutated in BRAF mutant colorectal cancers. WNT16 and MEN1 may be novel drivers of aberrant WNT signaling in colorectal cancer. Co-mutation of BRAF and APC generates an extremely aggressive neoplastic phenotype that is associated with poor patient outcome.
Collapse
Affiliation(s)
- Lochlan J. Fennell
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
| | - Alexandra Kane
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston 4006, Australia
| | - Cheng Liu
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Envoi Specialist Pathologists, Queensland 4059, Australia
| | - Diane McKeone
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Winnie Fernando
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Chang Su
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
| | - Catherine Bond
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Saara Jamieson
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Troy Dumenil
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Stephen H. Kazakoff
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - John V. Pearson
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
| | - Barbara Leggett
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Department of Gastroenterology and Hepatology, The Royal Brisbane and Women’s Hospital, Queensland 4006, Australia
| | - Vicki L. J. Whitehall
- QIMR Berghofer Medical Research Institute, Queensland 4006, Australia; (A.K.); (C.L.); (D.M.); (W.F.); (C.S.); (C.B.); (S.J.); (T.D.); (A.-M.P.); (S.H.K.); (J.V.P.); (N.W.); (B.L.); (V.L.J.W.)
- School of Medicine, The University of Queensland, Queensland 4072, Australia
- Conjoint Internal Medicine Laboratory, Chemical Pathology, Pathology Queensland, Herston 4006, Australia
| |
Collapse
|
34
|
Jaschke N, Hofbauer LC, Göbel A, Rachner TD. Evolving functions of Dickkopf-1 in cancer and immunity. Cancer Lett 2020; 482:1-7. [PMID: 32251706 DOI: 10.1016/j.canlet.2020.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/23/2020] [Accepted: 03/31/2020] [Indexed: 12/17/2022]
Abstract
Dickkopf-1 (DKK-1) is a well-established inhibitor of canonical Wnt-signaling that critically participates in the regulation of bone formation and has been implicated in the development and progression of bone metastases. While the skeleton was originally considered the sole site of DKK-1 synthesis, it has now become clear that the molecule is also highly expressed in T-cells, platelets and multiple cancer cells. In the past years, several new functions of DKK-1 in angiogenesis, cancer cell biology, immune homeostasis and inflammation have been revealed. These novel insights have paved the way for clinical trials investigating the efficacy of anti-DKK-1 antibodies in a variety of different malignancies, most of which are currently still ongoing. In this review, we discuss the evolution and recent advances in DKK-1 research and highlight clinical implications of the available knowledge on the molecule, especially in cancer. Finally, we emphasize outstanding questions and provide an outlook on potential future studies that will aid in further improving our understanding of the pleiotropic roles of DKK-1 in health and disease.
Collapse
Affiliation(s)
- Nikolai Jaschke
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Austria
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andy Göbel
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; Center for Healthy Ageing, Department of Medicine III, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
35
|
Wei R, Rodrìguez RA, Mullor MDMR, Tan Z, Gui Y, Hu J, Zhu T, Huang X, Zhu Y, Xu J. Analyzing the prognostic value of DKK1 expression in human cancers based on bioinformatics. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:552. [PMID: 32411775 PMCID: PMC7214893 DOI: 10.21037/atm-20-3263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background The Dickkopf1 (DKK1) gene encodes a protein that belongs to the Dickkopf family. The protein can inhibit the Wnt signaling pathway which plays a key role in the carcinogenesis and progression of various types of cancers. Based on this, we hypothesized that the differential expression of DKK1 may figure significantly in cancers by regulating Wnt signaling pathway transduction. In this study, we conducted bioinformatics analysis to evaluate the prognostic and therapeutic value of DKK1 expression level in human cancers. Methods The expression level was analyzed by using the Oncomine database and Gene Expression Profiling Interactive Analysis tool. The analysis of prognosis was conducted by using the UALCAN, Gene Expression Profiling Interactive Analysis (GEPIA), and DriverDBv3 databases. We also investigated using DKK1 promoter methylation to define cancer types through the UALCAN database. Meanwhile, the related functional networks of DKK1 were analyzed by using the GeneMANIA interactive tool and Cytoscape software. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis was conducted using the Metascape online website, and we used the cBioPotartal database to explored DKK1 expression, aberrant information, and the co-expression genes in the subgroups of lung cancer. Finally, we performed the overall survival (OS) meta-analysis of the DKK1 expression in lung squamous cell carcinoma (LUSC) via the Lung Cancer Explorer (LCE). Results DKK1 was differentially expressed in different types of human cancers. DKK1 was overexpressed in human cancers including head and neck squamous cell carcinoma (HNSC), LUSC, and pancreatic adenocarcinoma (PAAD). Overexpression of DKK1 indicated adverse OS in bladder urothelial carcinoma (BLCA), HNSC, and PADD, but no difference in OS was found between the LUSC and healthy groups. The high expression of DKK1 was also associated with shorter disease-free survival (DFS) in HNSC, LUSC, and PAAD. Gene regulation network analysis indicated that DKK1 was mainly involved in Wnt signaling pathways and several other signaling pathways. Conclusions Our findings showed that DKK1 is significantly expressed in various cancers and could be a biomarker for targeted therapy and a predictor for prognosis of these specific cancers. The bioinformatics analysis revealed a significant overexpression of DKK1 in HNSC, LUSC, and PAAD, with DKK1 overexpression being associated with adverse outcome in these patients, but how DKK1 expression levels relate to hematological malignancies and prognosis is still unclear. These new insights into the function of DKK1 may provide a basis for new targeted drug therapy and an avenue for further investigation into the mechanisms underlying carcinogenesis of DKK1 in different cancer types.
Collapse
Affiliation(s)
- Ruqiong Wei
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Raquel Alarcòn Rodrìguez
- Faculty of Health Sciences, University of Almerìa, Carretera de Sacramento s/n, 04120 Almeria, Spain
| | | | - Zhibiao Tan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuchang Gui
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jincui Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Tingpei Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoxiao Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yanyan Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jianwen Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
36
|
Downregulation of SFRP1 is a protumorigenic event in hepatoblastoma and correlates with beta-catenin mutations. J Cancer Res Clin Oncol 2020; 146:1153-1167. [PMID: 32189106 PMCID: PMC7142044 DOI: 10.1007/s00432-020-03182-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/11/2020] [Indexed: 12/20/2022]
Abstract
Background Hepatoblastoma (HB) and pediatric hepatocellular carcinoma (HCC) are the most common malignant liver tumors in childhood. Both tumor types exhibit genetic and epigenetic alterations in the WNT/β-catenin signaling pathway, which is a key regulator of liver progenitor cells in embryonic development. The tumors demonstrate a high rate of β-catenin mutations and gene expression changes of several WNT antagonists. However, the role of the WNT inhibitory factor secreted frizzled-related protein 1 (SFRP1) has not been addressed in pediatric liver cancer so far. Results In our study, we investigated the gene expression level, DNA methylation status and functional relevance of SFRP1 in HB cell lines and in pediatric liver tumor patient samples. SFRP1 was downregulated due to DNA promoter methylation in all tested HB cell lines. Overexpression of SFRP1 in HB cell lines diminished tumor cell proliferation, colony formation and migration potential. In addition, the SFRP1-expressing HB cell lines showed reduced WNT/β-catenin signaling pathway activity and decreased expression of WNT target genes. To evaluate the utility of SFRP1 as a biomarker in pediatric liver cancer, we determined the gene expression level and DNA methylation status of SFRP1 in 45 pediatric liver tumor patient samples. The correlation analysis of different clinical parameters and tumor characteristics revealed a significant correlation of reduced SFRP1 expression with the presence of mutant β-catenin. The methylation status of SFRP1 was furthermore associated to a pediatric liver tumor type with HCC-like characteristics, TERT mutations and an older age at diagnosis. Conclusion Altogether, our data demonstrate that the epigenetic suppression of the WNT/β-catenin antagonist SFRP1 has an important impact on the malignant behavior of HB cells. Although SFRP1 methylation is a common event in HCC-like pediatric liver tumors, its potential as a prognostic or diagnostic biomarker needs to be further investigated. Electronic supplementary material The online version of this article (10.1007/s00432-020-03182-1) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Aberrant expression of Wnt/β-catenin signaling pathway genes in aggressive malignant gastric gastrointestinal stromal tumors. Eur J Surg Oncol 2020; 46:1080-1087. [PMID: 32147424 DOI: 10.1016/j.ejso.2020.02.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Recent reports on gene expression profiling (GEP) show several genes associated with malignant progression of GIST. However, genes associated with malignant transformation have not been clarified. Here, we aimed to reveal distinct genes in aggressive malignant GIST, using comprehensive gene expression analysis. MATERIALS AND METHODS We investigated GEP obtained by microarrays for 43 gastric GISTs, which mostly harbored KIT and PDGFRA mutations and integrated clinicopathological risk information. RT-PCR and immunohistochemistry were performed for FZD7, a receptor of Wnt ligands. RESULTS GEP divided 43 gastric GISTs into two clusters. A cluster included seven of eight high-risk GISTs (88%) in modified NIH classification and was defined as high-risk cluster; the other cluster was defined as low-risk cluster. The number of probes with over 3-fold changes between the two clusters was 1,177, in which probes corresponding to 16 oncogenes were included. Genes involved in the Wnt signaling pathway were the most abundant among the 16 oncogenes. Focusing on 73 Wnt signaling pathway genes of the 21,578 probes, 12 upregulated and 5 downregulated genes were found in the high-risk cluster. Major cascade genes promoting the Wnt/β-catenin signaling pathway, including WNT11, FZD family, and DVL2, were upregulated in the high-risk cluster. SNAI1, SNAI2, and BIRC5, which are activated by this pathway and increase cell proliferation, were also upregulated. These gene expression alterations were consistent in the positive direction of this pathway. GISTs in high-risk cluster strongly expressed FZD7. CONCLUSION Wnt/β-catenin signaling pathway may play an important role in malignant transformation of indolent GIST.
Collapse
|
38
|
Li M, Yue GGL, Luo L, Tsui SKW, Fung KP, Ng SSM, Lau CBS. Turmeric Is Therapeutic in Vivo on Patient-Derived Colorectal Cancer Xenografts: Inhibition of Growth, Metastasis, and Tumor Recurrence. Front Oncol 2020; 10:574827. [PMID: 33552955 PMCID: PMC7856407 DOI: 10.3389/fonc.2020.574827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer is the third most frequently diagnosed cancer worldwide. Clinically, chemotherapeutic agents such as FOLFOX are the mainstay of colorectal cancer treatment. However, the side effects including toxicity of FOLFOX stimulated the enthusiasm for developing adjuvants, which exhibit better safety profile. Turmeric extract (TE), which has been previously shown to suppress the growth of human and murine colon xenografts, was further demonstrated here for its inhibitory effects on colon cancer patient-derived xenografts (PDX). PDX models were successfully established from tissues of colon cancer patients and the PDX preserved the heterogeneous architecture through passages. NOD/SCID mice bearing PDX were treated either with TE or FOLFOX and differential responses toward these treatments were observed. The growth of PDX, metastasis and tumor recurrence in PDX-bearing mice were suppressed after TE treatments with 60% anti-tumor response rate and 83.3% anti-metastasis rate. Mechanistic studies showed that TE reduced tumor cell proliferation, induced cell apoptosis, inhibited metastasis via modulating multiple targets, such as molecules involved in Wnt and Src pathways, EMT and EGFR-related pathways. Nevertheless, FOLFOX treatments inhibited the PDX growth with sharp decreases of mice body weight and only mild anti-metastasis activities were observed. Furthermore, in order to have a better understanding of the underlying mechanisms, network pharmacology was utilized to predict potential targets and mechanism. In conclusion, the present study demonstrated for the first time that oral TE treatment was effective to suppress the growth of colon PDX and the recurrence of colon tumors in mice. The findings obtained from this clinically relevant PDX model would certainly provide valuable information for the potential clinical use of TE in colorectal cancer patients. The application of PDX model was well illustrated here as a good platform to verify the efficacy of multi-targeted herbal extracts.
Collapse
Affiliation(s)
- Mingyue Li
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Gar-Lee Yue
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | | | - Kwok-Pui Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
| | - Simon Siu-Man Ng
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Clara Bik-San Lau
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- *Correspondence: Clara Bik-San Lau,
| |
Collapse
|
39
|
Guo M, Peng Y, Gao A, Du C, Herman JG. Epigenetic heterogeneity in cancer. Biomark Res 2019; 7:23. [PMID: 31695915 PMCID: PMC6824025 DOI: 10.1186/s40364-019-0174-y] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Phenotypic and functional heterogeneity is one of the hallmarks of human cancers. Tumor genotype variations among tumors within different patients are known as interpatient heterogeneity, and variability among multiple tumors of the same type arising in the same patient is referred to as intra-patient heterogeneity. Subpopulations of cancer cells with distinct phenotypic and molecular features within a tumor are called intratumor heterogeneity (ITH). Since Nowell proposed the clonal evolution of tumor cell populations in 1976, tumor heterogeneity, especially ITH, was actively studied. Research has focused on the genetic basis of cancer, particularly mutational activation of oncogenes or inactivation of tumor-suppressor genes (TSGs). The phenomenon of ITH is commonly explained by Darwinian-like clonal evolution of a single tumor. Despite the monoclonal origin of most cancers, new clones arise during tumor progression due to the continuous acquisition of mutations. It is clear that disruption of the "epigenetic machinery" plays an important role in cancer development. Aberrant epigenetic changes occur more frequently than gene mutations in human cancers. The epigenome is at the intersection of the environment and genome. Epigenetic dysregulation occurs in the earliest stage of cancer. The current trend of epigenetic therapy is to use epigenetic drugs to reverse and/or delay future resistance to cancer therapies. A majority of cancer therapies fail to achieve durable responses, which is often attributed to ITH. Epigenetic therapy may reverse drug resistance in heterogeneous cancer. Complete understanding of genetic and epigenetic heterogeneity may assist in designing combinations of targeted therapies based on molecular information extracted from individual tumors.
Collapse
Affiliation(s)
- Mingzhou Guo
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, 40 Daxue Road, Zhengzhou, Henan 450052 China
| | - Yaojun Peng
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Aiai Gao
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - Chen Du
- 1Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853 China
| | - James G Herman
- 3The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Ave., Pittsburgh, PA 15213 USA
| |
Collapse
|
40
|
Jahanafrooz Z, Mosafer J, Akbari M, Hashemzaei M, Mokhtarzadeh A, Baradaran B. Colon cancer therapy by focusing on colon cancer stem cells and their tumor microenvironment. J Cell Physiol 2019; 235:4153-4166. [PMID: 31647128 DOI: 10.1002/jcp.29337] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Despite many advances and optimization in colon cancer treatment, tumor recurrence and metastases make the development of new therapies necessary. Colon cancer stem cells (CCSCs) are considered as the main triggering factor of cancer progression, recurrence, and metastasis. CCSCs as a result of accumulated genetic and epigenetic alterations and also complex interconnection with the tumor microenvironment (TME) can evolve and convert to full malignant cells. Mounting evidence suggests that in cancer therapy both CCSCs and non-CCSCs in TME have to be regarded to break through the limitation of current therapies. In this regard, stem cell capabilities of some non-CCSCs may arise inside the TME condition. Therefore, a deep knowledge of regulatory mechanisms, heterogeneity, specific markers, and signaling pathways of CCSCs and their interconnection with TME components is needed to improve the treatment of colorectal cancer and the patient's life quality. In this review, we address current different targeted therapeutic options that target cell surface markers and signaling pathways of CCSCs and other components of TME. Current challenges and future perspectives of colon cancer personalized therapy are also provided here. Taken together, based on the deep understanding of biology of CCSCs and using three-dimensional culture technologies, it can be possible to reach successful colon cancer eradication and improvise combination targeted therapies against CCSCs and TME.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Jaffar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
41
|
Yu T, Liu D, Zhang T, Zhou Y, Shi S, Yang R. Inhibition of Tet1- and Tet2-mediated DNA demethylation promotes immunomodulation of periodontal ligament stem cells. Cell Death Dis 2019; 10:780. [PMID: 31611558 PMCID: PMC6791886 DOI: 10.1038/s41419-019-2025-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022]
Abstract
Periodontal ligament stem cells (PDLSCs) possess great potential for clinical treatment of immune diseases due to their extensive immunomodulatory properties. However, the underlying mechanisms that govern the immunomodulatory properties of mesenchymal stem cells (MSCs) are still not fully elucidated. Here, we show that member of the Ten-eleven translocation (Tet) family, a group of DNA demethylases, are capable of regulating PDLSC immunomodulatory functions. Tet1 and Tet2 deficiency enhance PDLSC-induced T cell apoptosis and ameliorate the disease phenotype in colitis mice. Mechanistically, we found that downregulation of Tet1 and Tet2 leads to hypermethylation of DKK-1 promoter, leading to the activation of WNT signaling pathway and therefore promoting Fas ligand (FasL) expression, which results in elevated immunomodulatory capacity of PDLSCs. These results reveal a previously unrecognized role of Tet1 and Tet2 in regulating immunomodulation of PDLSCs. This Tet/DKK-1/FasL cascade may serve as a promising target for enhancing PDLSC-based immune therapy.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, 100081, Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, 100081, Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, 100081, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, 100081, Beijing, China
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- South China Center of Craniofacial Stem Cell Research, School of Guanghua Dental Medicine, Sun Yat-sen University, #74 Zhongshan 2 Road, Guangzhou, Guangdong, 510080, China
| | - Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, #22 Zhongguancun South Avenue, 100081, Beijing, China.
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Human Colorectal Cancer from the Perspective of Mouse Models. Genes (Basel) 2019; 10:genes10100788. [PMID: 31614493 PMCID: PMC6826908 DOI: 10.3390/genes10100788] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease that includes both hereditary and sporadic types of tumors. Tumor initiation and growth is driven by mutational or epigenetic changes that alter the function or expression of multiple genes. The genes predominantly encode components of various intracellular signaling cascades. In this review, we present mouse intestinal cancer models that include alterations in the Wnt, Hippo, p53, epidermal growth factor (EGF), and transforming growth factor β (TGFβ) pathways; models of impaired DNA mismatch repair and chemically induced tumorigenesis are included. Based on their molecular biology characteristics and mutational and epigenetic status, human colorectal carcinomas were divided into four so-called consensus molecular subtype (CMS) groups. It was shown subsequently that the CMS classification system could be applied to various cell lines derived from intestinal tumors and tumor-derived organoids. Although the CMS system facilitates characterization of human CRC, individual mouse models were not assigned to some of the CMS groups. Thus, we also indicate the possible assignment of described animal models to the CMS group. This might be helpful for selection of a suitable mouse strain to study a particular type of CRC.
Collapse
|
43
|
Chae WJ, Bothwell ALM. Dickkopf1: An immunomodulatory ligand and Wnt antagonist in pathological inflammation. Differentiation 2019; 108:33-39. [PMID: 31221431 DOI: 10.1016/j.diff.2019.05.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/21/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022]
Abstract
The Wnt signaling pathway plays essential roles in tissue or organ homeostasis by regulating cell proliferation and differentiation. Upon tissue or organ injury, inflammation is coupled with tissue repair and regeneration process. The canonical Wnt signaling transduction pathway is crucial for cell proliferation, cell differentiation, and tissue regeneration. Dickkopf1 (DKK1) is a quintessential Wnt antagonist that inhibits the Wnt-mediated tissue repair process. Recent studies reported increased levels of DKK1 in many diseases such as cancer, infection, and musculoskeletal diseases. In many cases, the role of DKK1 has been identified as a pro-inflammatory ligand and the expression levels are associated with poor disease outcomes. A variety of cell types including platelets, endothelial cells, and cancer cells secrete DKK1 upon stimuli. This puts DKK1 in a unique place to view immune responses from multicellular interactions in tissue injury and repair process. In this review, we discuss recent efforts to address the underlying mechanism regarding the pro-inflammatory role of DKK1 in cancer, bone diseases, and other inflammatory diseases.
Collapse
Affiliation(s)
- Wook-Jin Chae
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA; Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 Marshall Street, Richmond, VA, 23298, USA; Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA, 23298, USA.
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
44
|
Niinuma T, Kitajima H, Kai M, Yamamoto E, Yorozu A, Ishiguro K, Sasaki H, Sudo G, Toyota M, Hatahira T, Maruyama R, Tokino T, Nakase H, Sugai T, Suzuki H. UHRF1 depletion and HDAC inhibition reactivate epigenetically silenced genes in colorectal cancer cells. Clin Epigenetics 2019; 11:70. [PMID: 31064417 PMCID: PMC6505222 DOI: 10.1186/s13148-019-0668-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ubiquitin-like protein containing PHD and RING finger domains 1 (UHRF1) is a major regulator of epigenetic mechanisms and is overexpressed in various human malignancies. In this study, we examined the involvement of UHRF1 in aberrant DNA methylation and gene silencing in colorectal cancer (CRC). RESULTS CRC cell lines were transiently transfected with siRNAs targeting UHRF1, after which DNA methylation was analyzed using dot blots, bisulfite pyrosequencing, and Infinium HumanMethylation450 BeadChip assays. Gene expression was analyzed using RT-PCR and gene expression microarrays. Depletion of UHRF1 rapidly induced genome-wide DNA demethylation in CRC cells. Infinium BeadChip assays and bisulfite pyrosequencing revealed significant demethylation across entire genomic regions, including CpG islands, gene bodies, intergenic regions, and repetitive elements. Despite the substantial demethylation, however, UHRF1 depletion only minimally reversed CpG island hypermethylation-associated gene silencing. By contrast, the combination of UHRF1 depletion and histone deacetylase (HDAC) inhibition reactivated the silenced genes and strongly suppressed CRC cell proliferation. The combination of UHRF1 depletion and HDAC inhibition also induced marked changes in the gene expression profiles such that cell cycle-related genes were strikingly downregulated. CONCLUSIONS Our results suggest that (i) maintenance of DNA methylation in CRC cells is highly dependent on UHRF1; (ii) UHRF1 depletion rapidly induces DNA demethylation, though it is insufficient to fully reactivate the silenced genes; and (iii) dual targeting of UHRF1 and HDAC may be an effective new therapeutic strategy.
Collapse
Affiliation(s)
- Takeshi Niinuma
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Hiroshi Kitajima
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Masahiro Kai
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Eiichiro Yamamoto
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Yorozu
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Kazuya Ishiguro
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hajime Sasaki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Gota Sudo
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.,Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mutsumi Toyota
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Tomo Hatahira
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer, Tokyo, Japan
| | - Takashi Tokino
- Department of Medical Genome Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tamotsu Sugai
- Department of Molecular Diagnostic Pathology, Iwate Medical University, Morioka, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, S1, W17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
45
|
Zhang L, Leng M, Li Y, Yuan Y, Yang B, Li Y, Yuan E, Shi W, Yan S, Cui S. Altered DNA methylation and transcription of WNT2 and DKK1 genes in placentas associated with early-onset preeclampsia. Clin Chim Acta 2019; 490:154-160. [DOI: 10.1016/j.cca.2018.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/06/2018] [Accepted: 12/27/2018] [Indexed: 01/21/2023]
|
46
|
Min K, Lee SK. EBV miR-BART10-3p Promotes Cell Proliferation and Migration by Targeting DKK1. Int J Biol Sci 2019; 15:657-667. [PMID: 30745852 PMCID: PMC6367590 DOI: 10.7150/ijbs.30099] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022] Open
Abstract
In Epstein-Barr virus (EBV)-infected epithelial cancers, BamHI A rightward transcript (BART) miRNAs are highly expressed. However, only a few target genes of BART miRNAs have been investigated. Our mRNA microarray data showed that DKK1 was markedly down-regulated in EBV-associated gastric carcinoma (EBVaGC) cells. Using luciferase reporter assay we tested whether miR-BART10-3p regulates DKK1 by directly targeting the 3'-UTR of DKK1 mRNA. We observed that miR-BART10-3p transfection decreased DKK1 expression, while an LNA inhibitor of miR-BART10-3p (LNA-miR-BART10-3p(i)) increased DKK1 expression. Furthermore, miR-BART10-3p and siDKK1 promoted cell proliferation and migration. In contrast, transfecting GC cells with LNA-miR-BART10-3p(i) or DKK1 over expression vector suppressed cell proliferation and migration. Our results suggest that miR-BART10-3p may be involved in the tumor progression of EBVaGC by targeting DKK1.
Collapse
Affiliation(s)
| | - Suk Kyeong Lee
- Department of Biomedicine & Health Sciences, Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
47
|
Anti-LRP5/6 VHHs promote differentiation of Wnt-hypersensitive intestinal stem cells. Nat Commun 2019; 10:365. [PMID: 30664649 PMCID: PMC6341108 DOI: 10.1038/s41467-018-08172-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Wnt-induced β-catenin-mediated transcription is a driving force for stem cell self-renewal during adult tissue homeostasis. Enhanced Wnt receptor expression due to mutational inactivation of the ubiquitin ligases RNF43/ZNRF3 recently emerged as a leading cause for cancer development. Consequently, targeting canonical Wnt receptors such as LRP5/6 holds great promise for treatment of such cancer subsets. Here, we employ CIS display technology to identify single-domain antibody fragments (VHH) that bind the LRP6 P3E3P4E4 region with nanomolar affinity and strongly inhibit Wnt3/3a-induced β-catenin-mediated transcription in cells, while leaving Wnt1 responses unaffected. Structural analysis reveal that individual VHHs variably employ divergent antigen-binding regions to bind a similar surface in the third β-propeller of LRP5/6, sterically interfering with Wnt3/3a binding. Importantly, anti-LRP5/6 VHHs block the growth of Wnt-hypersensitive Rnf43/Znrf3-mutant intestinal organoids through stem cell exhaustion and collective terminal differentiation. Thus, VHH-mediated targeting of LRP5/6 provides a promising differentiation-inducing strategy for treatment of Wnt-hypersensitive tumors.
Collapse
|
48
|
Igbinigie E, Guo F, Jiang SW, Kelley C, Li J. Dkk1 involvement and its potential as a biomarker in pancreatic ductal adenocarcinoma. Clin Chim Acta 2019; 488:226-234. [PMID: 30452897 DOI: 10.1016/j.cca.2018.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 02/05/2023]
Abstract
Dickkopf-1 (Dkk1)'s dysregulation has been implicated in the pathogenesis of a variety of cancers. It is part of the Dkk family of proteins that includes Dkk2, Dkk3 and Dkk4. This family of secreted proteins shares similar conserved cysteine domains and inhibits the Wnt/b-catenin pathway by causing proteasomal B-catenin degradation, inducing apoptosis, and preventing cell proliferation. Pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer mortality in the United States due to the late stage of diagnosis and the limited effectiveness of current therapy. Dkk1 is found increased in PADC patients' specimens and serum. Dkk1 can be a promising biomarker specific to PDAC, which has the potential to increase PDAC survival rates through improving early stage detection and monitoring progression compared to current biomarker gold standards. In addition, recent studies suggest that Dkk1 could be an excellent target for cancer immunotherapy. Interestingly, Dkk1-CKAP4-PI3K/AKT signal pathway also plays role in pancreatic cancer cell proliferation. In this review, we present the multiple mechanisms of Dkk1 in PDAC studied thus far and explore its function, regulation, and clinical applications in gynecological cancers including pancreatic ductal adenocarcinoma (PDAC), breast, ovarian, cervical, and endometrial cancer. Further research into Dkk1's mechanism and use as a diagnostic tool, alone or in combination with other biomarkers, could prove clinically useful for better understanding the pathology of PDAC and improving its early detection and treatment.
Collapse
Affiliation(s)
- Eseosaserea Igbinigie
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Fengbiao Guo
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; Department of Histology and Embryology, Shantou University Medical College, Shantou 515000, China.
| | - Shi-Wen Jiang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Cullen Kelley
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | - Jinping Li
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Florida Campus, Jacksonville, FL 32224, USA.
| |
Collapse
|
49
|
Galluzzi L, Spranger S, Fuchs E, López-Soto A. WNT Signaling in Cancer Immunosurveillance. Trends Cell Biol 2019; 29:44-65. [PMID: 30220580 PMCID: PMC7001864 DOI: 10.1016/j.tcb.2018.08.005] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
Deregulated WNT signaling has been shown to favor malignant transformation, tumor progression, and resistance to conventional cancer therapy in a variety of preclinical and clinical settings. Accumulating evidence suggests that aberrant WNT signaling may also subvert cancer immunosurveillance, hence promoting immunoevasion and resistance to multiple immunotherapeutics, including immune checkpoint blockers. Here, we discuss the molecular and cellular mechanisms through which WNT signaling influences cancer immunosurveillance and present potential therapeutic avenues to harness currently available WNT modulators for cancer immunotherapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA; Université Paris Descartes/Paris V, 75006 Paris, France.
| | - Stefani Spranger
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Alejandro López-Soto
- Departamento de Biología Funcional, Área de Inmunología, Universidad de Oviedo. Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (IISPA), 33011 Oviedo, Asturias, Spain.
| |
Collapse
|
50
|
Malaei F, Rasaee MJ, Paknejad M, Latifi AM, Rahbarizadeh F. Production and Characterization of Monoclonal and Polyclonal Antibodies Against Truncated Recombinant Dickkopf-1 as a Candidate Biomarker. Monoclon Antib Immunodiagn Immunother 2018; 37:257-264. [PMID: 30592704 DOI: 10.1089/mab.2018.0029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several studies have reported an increased serum level of Dickkopf (DKK-1) protein in a variety of cancers, including multiple myeloma, lung, colorectal, bone loss, and Alzheimer's disease. This protein has potential to be used as a biomarker for the diagnosis of some cancers, especially bone loss in multiple myeloma. In the present study, to measure the concentration level of DKK-1 protein, rabbit polyclonal antibody (pAb) and mouse monoclonal antibodies (mAbs) were produced against this protein. New Zealand white rabbits and BALB/c mice were immunized with the chimeric recombinant DKK-1 antigen. Immunized mouse spleen cells were fused with SP2/0 cells to generate anti-rDKK-1 antibody-producing hybridoma cells. Antibodies were purified by protein A affinity chromatography and assessed using sodium dodecyl sulfate polyacrylamide gel, western blotting and enzyme-linked immunosorbent assay. These results implied that the pAb and mAb were produced against the DKK-1 protein. The Kd value of 5 × 10-9 M was recorded for the mAb MR6F3 toward native DKK-1, and the Ig isotype was identified as IgG2b. No cross-reactivity was shown with DKK-2 by MR6F3. Collectively, our results revealed that the produced pAb and mAb could be used in the measurement of DKK-1 protein.
Collapse
Affiliation(s)
- Fatemeh Malaei
- 1 Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Mohammad Javad Rasaee
- 1 Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| | - Maliheh Paknejad
- 2 Department of Medical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Ali Mohammad Latifi
- 3 Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran, Iran
| | - Fatemeh Rahbarizadeh
- 1 Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University , Tehran, Iran
| |
Collapse
|