1
|
Wang G, Wang J, Li C, Mu X, Mu Q, Zhang X, Su X. ZNF703 promotes Triple-Negative breast cancer cell progression and in combination with STK11 predicts disease recurrence (ZS -TNBC Model). Gene 2025; 942:149258. [PMID: 39828065 DOI: 10.1016/j.gene.2025.149258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND It is largely unidentified concerning the underlying genetic causes responsible for triple-negative breast cancers (TNBC), with unpredictable disease recurrence. This study aimed to examine the role of ZNF703 (Zinc finger 703) in the malignant behaviors of TNBC and its role in predicting disease-free survival (DFS). METHODS After downregulation of ZNF703 with short interfering RNA (siRNA), we examined the proliferation of TNBC cell line MDA-MB-231 by sulforhodamine B (SRB) assay, the invasion of cells by a transwell invasion model, and the migration of cells by the monolayer wound-healing experiment. mRNA-sequencing data of ZNF703, BRCA1, BRCA2, PALB2, CHEK2, CDH1, PTEN, STK11, ATM, and TP53, and corresponding clinical information were obtained from The Cancer Genome Atlas (TCGA) dataset for a total of 157 stage I-III TNBC samples. The selection of modeling features was executed using the Least Absolute Shrinkage and Selection Operator (LASSO) regression algorithm to avoid model overfitting. The TIMER 2.0 algorithm determined the associations between immune score and gene expressions. Kaplan-Meier analysis was conducted to plot survival analyses. RESULTS The aggressive tumor morphology, cell proliferation, cell migration, and cell invasion were partly reversed by the siRNA knockdown of ZNF703 in MDA-MB-231 cells. ZNF703 knockdown markedly enhanced the killing ability of cisplatin These phenomena were verified by another TNBC cell line BT-549. Patients with high expression of ZNF703 had an inferior DFS for TNBC patients at 8 years [Hazard ratio (HR) for high expression vs. low expression was 2.71; 95 %CI, 1.03 to 7.14, P = 0.044]. Receiver Operating Characteristic (ROC) curve was also developed, indicating the area under the curve (AUC) was 0.744 (95 %CI, 0.628 to 0.861) at 5 years and 0.738 (95 %CI, 0.552 to 0.924) at 8 years, respectively. In addition, LASSO regression results showed that the optimal penalization parameter corresponds to two prognostic genes - ZNF703 and STK11. The risk score was computed as Risk Score (RS) = 0.1033*ZNF703 + 0.2131*STK11 (named "ZS -TNBC model"). The high expression of both ZNF703 and STK11 had as high as 7.035 HR in comparison to the low-expression category (95 %CI, 2.044 to 24.206, P = 0.00197). CONCLUSION ZNF703 is required for the growth, invasion, and migratory behavior of TNBC cells. Downregulation of ZNF703 increases cisplatin efficacy. This study suggests that either ZNF703 alone or in conjunction with STK11 can be utilized to predict DFS in TNBC.
Collapse
Affiliation(s)
- Gen Wang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China
| | - Jialiang Wang
- Department of Urology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Chaoying Li
- Department of the Operating Room, The First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Xin Mu
- ProphetsMed Research Lab, 's-Gravenhage 2565GN, the Netherlands; Laidengda (Shanghai) Medical Technology Development Co., Ltd., Shanghai 200025, China
| | - Qiongyu Mu
- Laidengda (Shanghai) Medical Technology Development Co., Ltd., Shanghai 200025, China
| | - Xi Zhang
- ProphetsMed Research Lab, 's-Gravenhage 2565GN, the Netherlands; Laidengda (Shanghai) Medical Technology Development Co., Ltd., Shanghai 200025, China.
| | - Xiaoping Su
- Department of Nursing, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.
| |
Collapse
|
2
|
Viart NM, Renault AL, Eon-Marchais S, Jiao Y, Fuhrmann L, El Houdigui SM, Le Gal D, Cavaciuti E, Dondon MG, Beauvallet J, Raynal V, Stoppa-Lyonnet D, Vincent-Salomon A, Andrieu N, Southey MC, Lesueur F. Breast tumors from ATM pathogenic variant carriers display a specific genome-wide DNA methylation profile. Breast Cancer Res 2025; 27:36. [PMID: 40069712 PMCID: PMC11899765 DOI: 10.1186/s13058-025-01988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The ataxia-telangiectasia mutated (ATM) kinase phosphorylates and activates several downstream targets that are essential for DNA damage repair, cell cycle inhibition and apoptosis. Germline biallelic inactivation of the ATM gene causes ataxia-telangiectasia (A-T), and heterozygous pathogenic variant (PV) carriers are at increased risk of cancer, notably breast cancer. This study aimed to investigate whether DNA methylation profiling can be useful as a biomarker to identify tumors arising in ATM PV carriers, which may help for the management and optimal tailoring of therapies of these patients. METHODS Breast tumor enriched DNA was prepared from 2 A-T patients, 27 patients carrying an ATM PV, 6 patients carrying a variant of uncertain clinical significance and 484 noncarriers enrolled in epidemiological studies conducted in France and Australia to investigate genetic and nongenetic factors involved in breast cancer susceptibility. Genome-wide DNA methylation analysis was performed using the Illumina Infinium HumanMethylation EPIC and 450K BeadChips. Correlation between promoter methylation and gene expression was assessed for 10 tumors for which transcriptomic data were available. RESULTS We found that the ATM promoter was hypermethylated in 62% of tumors of heterozygous PV carriers compared to the mean methylation level of ATM promoter in tumors of noncarriers. Gene set enrichment analyses identified 47 biological pathways enriched in hypermethylated genes involved in neoplastic, neurodegenerative and metabolic-related pathways in tumor of PV carriers. Among the 327 differentially methylated promoters, promoters of ARHGAP40, SCGB3A1 (HIN-1), and CYBRD1 (DCYTB) were hypermethylated and associated with a lower gene expression in these tumors. Moreover, using three different deep learning algorithms (logistic regression, random forest and XGBoost), we identified a set of 27 additional biomarkers predictive of ATM status, which could be used in the future to provide evidence for or against pathogenicity in ATM variant classification strategies. CONCLUSIONS We showed that breast tumors that arise in women who carry an ATM PV display a specific genome-wide DNA methylation profile. Specifically, the methylation pattern of 27 key gene promoters was predictive of ATM PV status of the women. These genes may also represent new medical prevention and therapeutic targets for these women.
Collapse
Affiliation(s)
- Nicolas M Viart
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Anne-Laure Renault
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
- Monash University, Clayton, VIC; University of Melbourne, Parkville, VIC, Australia
| | | | - Yue Jiao
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | | | | | - Dorothée Le Gal
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Eve Cavaciuti
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | | | - Juana Beauvallet
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Virginie Raynal
- ICGex Next-Generation Sequencing Platform, Institut Curie, PSL University, Paris, France
| | | | | | - Nadine Andrieu
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France
| | - Melissa C Southey
- Monash University, Clayton, VIC; University of Melbourne, Parkville, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
| | - Fabienne Lesueur
- Inserm, U1331, Institut Curie, PSL University, Mines ParisTech, Paris, France.
| |
Collapse
|
3
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. Am J Hum Genet 2024; 111:2411-2426. [PMID: 39317201 PMCID: PMC11568761 DOI: 10.1016/j.ajhg.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
The ClinGen Hereditary Breast, Ovarian, and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology, and variant interpretation. This VCEP made specifications for the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines for the ataxia telangiectasia mutated (ATM) gene according to the ClinGen protocol. These gene-specific rules for ATM were modified from the ACMG/AMP guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar, and re-evaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic, and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 of the 33 pilot variants were not VUS, leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine Schon
- Department of Medical Genetics, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, QC, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
4
|
Richardson ME, Holdren M, Brannan T, de la Hoya M, Spurdle AB, Tavtigian SV, Young CC, Zec L, Hiraki S, Anderson MJ, Walker LC, McNulty S, Turnbull C, Tischkowitz M, Schon K, Slavin T, Foulkes WD, Cline M, Monteiro AN, Pesaran T, Couch FJ. Specifications of the ACMG/AMP variant curation guidelines for the analysis of germline ATM sequence variants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.28.24307502. [PMID: 38854136 PMCID: PMC11160822 DOI: 10.1101/2024.05.28.24307502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The ClinGen Hereditary Breast, Ovarian and Pancreatic Cancer (HBOP) Variant Curation Expert Panel (VCEP) is composed of internationally recognized experts in clinical genetics, molecular biology and variant interpretation. This VCEP made specifications for ACMG/AMP guidelines for the ataxia telangiectasia mutated (ATM) gene according to the Food and Drug Administration (FDA)-approved ClinGen protocol. These gene-specific rules for ATM were modified from the American College of Medical Genetics and Association for Molecular Pathology (ACMG/AMP) guidelines and were tested against 33 ATM variants of various types and classifications in a pilot curation phase. The pilot revealed a majority agreement between the HBOP VCEP classifications and the ClinVar-deposited classifications. Six pilot variants had conflicting interpretations in ClinVar and reevaluation with the VCEP's ATM-specific rules resulted in four that were classified as benign, one as likely pathogenic and one as a variant of uncertain significance (VUS) by the VCEP, improving the certainty of interpretations in the public domain. Overall, 28 the 33 pilot variants were not VUS leading to an 85% classification rate. The ClinGen-approved, modified rules demonstrated value for improved interpretation of variants in ATM.
Collapse
Affiliation(s)
| | - Megan Holdren
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clínico San Carlos, IdISSC, 28040 Madrid, Spain
| | - Amanda B Spurdle
- Population Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Sean V Tavtigian
- Department of Oncological Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Logan C Walker
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Shannon McNulty
- Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Clare Turnbull
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Marc Tischkowitz
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Katherine Schon
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Thomas Slavin
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - William D Foulkes
- Departments of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Melissa Cline
- UC Santa Cruz Genomics Institute, Mail Stop: Genomics, University of California, Santa Cruz, CA, USA
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | | | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Hall JC, Chang SD, Gephart MH, Pollom E, Butler S. Stereotactic Radiosurgery for Brain Metastases in Patients With a Heterozygous Germline Ataxia Telangiectasia Mutated Gene. Cureus 2023; 15:e37712. [PMID: 37206490 PMCID: PMC10191388 DOI: 10.7759/cureus.37712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/21/2023] Open
Abstract
Germline mutations in the ataxia telangiectasia mutated (ATM) gene are associated with increased radiation sensitivity. Present literature lacks consensus on whether patients with heterozygous germline ATM mutations may be at greater risk of radiation-associated toxicities when treated with radiation therapy (RT), and there is little data considering more modern and conformal RT techniques such as stereotactic radiosurgery (SRS). Our report presents two cases of patients with heterozygous germline ATM mutations treated with SRS for brain metastases. One patient developed grade 3 radiation necrosis (RN) of an irradiated 16.3 cm3 resection cavity, but did not develop RN at other sites of punctate brain metastases treated with SRS. Similarly, the second report describes a patient who did not develop RN at any of the 31 irradiated sites of sub-centimeter (all ≤5 mm) brain metastases. The described cases demonstrate that some patients with germline ATM variants can safely undergo SRS for smaller brain metastases; however, clinical caution should be considered for patients with larger targets or a history of prior radiation toxicity. Given these findings and the lingering uncertainty surrounding the degree of radiosensitivity across ATM variants, future research is needed to determine whether more conservative dose-volume limits would potentially mitigate the risk of RN when treating larger brain metastases in this radiosensitive population.
Collapse
Affiliation(s)
- Jennifer C Hall
- Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Steven D Chang
- Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | | | - Erqi Pollom
- Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Santino Butler
- Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
6
|
McCarthy-Leo C, Darwiche F, Tainsky MA. DNA Repair Mechanisms, Protein Interactions and Therapeutic Targeting of the MRN Complex. Cancers (Basel) 2022; 14:5278. [PMID: 36358700 PMCID: PMC9656488 DOI: 10.3390/cancers14215278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Repair of a DNA double-strand break relies upon a pathway of proteins to identify damage, regulate cell cycle checkpoints, and repair the damage. This process is initiated by a sensor protein complex, the MRN complex, comprised of three proteins-MRE11, RAD50, and NBS1. After a double-stranded break, the MRN complex recruits and activates ATM, in-turn activating other proteins such as BRCA1/2, ATR, CHEK1/2, PALB2 and RAD51. These proteins have been the focus of many studies for their individual roles in hereditary cancer syndromes and are included on several genetic testing panels. These panels have enabled us to acquire large amounts of genetic data, much of which remains a challenge to interpret due to the presence of variants of uncertain significance (VUS). While the primary aim of clinical testing is to accurately and confidently classify variants in order to inform medical management, the presence of VUSs has led to ambiguity in genetic counseling. Pathogenic variants within MRN complex genes have been implicated in breast, ovarian, prostate, colon cancers and gliomas; however, the hundreds of VUSs within MRE11, RAD50, and NBS1 precludes the application of these data in genetic guidance of carriers. In this review, we discuss the MRN complex's role in DNA double-strand break repair, its interactions with other cancer predisposing genes, the variants that can be found within the three MRN complex genes, and the MRN complex's potential as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Claire McCarthy-Leo
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Fatima Darwiche
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Michael A. Tainsky
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Molecular Therapeutics Program, Karmanos Cancer Institute at Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
7
|
Sarhangi N, Hajjari S, Heydari SF, Ganjizadeh M, Rouhollah F, Hasanzad M. Breast cancer in the era of precision medicine. Mol Biol Rep 2022; 49:10023-10037. [PMID: 35733061 DOI: 10.1007/s11033-022-07571-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 01/02/2023]
Abstract
Breast cancer is a heterogeneous disorder with different molecular subtypes and biological characteristics for which there are diverse therapeutic approaches and clinical outcomes specific to any molecular subtype. It is a global health concern due to a lack of efficient therapy regimens that might be used for all disease subtypes. Therefore, treatment customization for each patient depending on molecular characteristics should be considered. Precision medicine for breast cancer is an approach to diagnosis, treatment, and prevention of the disease that takes into consideration the patient's genetic makeup. Precision medicine provides the promise of highly individualized treatment, in which each individual breast cancer patient receives the most appropriate diagnostics and targeted therapies based on the genetic profile of cancer. The knowledge about the molecular features and development of breast cancer treatment approaches has increased, which led to the development of new targeted therapeutics. Tumor genomic profiling is the standard of care for breast cancer that could contribute to taking steps to better management of malignancies. It holds great promise for accurate prognostication, prediction of response to common systemic therapies, and individualized monitoring of the disease. The emergence of targeted treatment has significantly enhanced the survival of patients with breast cancer and contributed to reducing the economic costs of the health system. In this review, we summarized the therapeutic approaches associated with the molecular classification of breast cancer to help the best treatment selection specific to the target patient.
Collapse
Affiliation(s)
- Negar Sarhangi
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Hajjari
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyede Fatemeh Heydari
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ganjizadeh
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mandana Hasanzad
- Personalized Medicine Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
A Novel Attention-Mechanism Based Cox Survival Model by Exploiting Pan-Cancer Empirical Genomic Information. Cells 2022; 11:cells11091421. [PMID: 35563727 PMCID: PMC9100007 DOI: 10.3390/cells11091421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer prognosis is an essential goal for early diagnosis, biomarker selection, and medical therapy. In the past decade, deep learning has successfully solved a variety of biomedical problems. However, due to the high dimensional limitation of human cancer transcriptome data and the small number of training samples, there is still no mature deep learning-based survival analysis model that can completely solve problems in the training process like overfitting and accurate prognosis. Given these problems, we introduced a novel framework called SAVAE-Cox for survival analysis of high-dimensional transcriptome data. This model adopts a novel attention mechanism and takes full advantage of the adversarial transfer learning strategy. We trained the model on 16 types of TCGA cancer RNA-seq data sets. Experiments show that our module outperformed state-of-the-art survival analysis models such as the Cox proportional hazard model (Cox-ph), Cox-lasso, Cox-ridge, Cox-nnet, and VAECox on the concordance index. In addition, we carry out some feature analysis experiments. Based on the experimental results, we concluded that our model is helpful for revealing cancer-related genes and biological functions.
Collapse
|
9
|
Sahin I, Saat H. New Perspectives on the Recurrent Monoallelic Germline Mutations of DNA Repair and Checkpoint Genes and Clinical Variability. Genet Test Mol Biomarkers 2022; 26:17-25. [PMID: 35089076 DOI: 10.1089/gtmb.2021.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Inherited cancers account for ∼10% of cancer cases. Many hereditary cancers are associated with mutations in DNA repair and checkpoint genes making their clinical surveillance important. Methods: We screened 900 patients using a comprehensive cancer gene panel with the following diagnoses: familial (n = 537, 59.6%), colorectal (n = 117, 13%), breast-ovarian (n = 215, 23.8%), endometrium (n = 12, 1.3%), gastric (n = 11, 1.2%), and thyroid (n = 8, 0.8%). Results: The most commonly mutated genes identified were ATM, MSH6, MUTYH, CHEK2, APC, MLH1, RAD50, PALB2, MSH2, CDH1, and PMS2. The most prevalent heterozygous was MUTYH: c.884C>T(P295L), which was predominant in the breast-ovarian group. Notably, the MUTYH, MSH6, and MSH2 variants showed a higher incidence of extracolonic malignancy. Among the DNA mismatch repair (MMR) genes, MSH6 mutations were the most common, followed by mutations in MLH1, MSH2, PMS2, and EPCAM. Conclusion: These findings offer a new perspective and suggest that, beyond ATM, CHEK2, and PALB2, patients with germline monoallelic mutations in MUTYH, MSH6, APC, CDH1, MHS2, and PMS2 may present with a hereditary breast-ovarian cancer phenotype. Continued developments in assessing and researching new variants of known cancer candidate genes will play an important role in improving individual risk prediction, therapy, and prognosis for familial cancers.
Collapse
Affiliation(s)
- Ibrahim Sahin
- Department of Medical Genetics, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Hanife Saat
- Department of Medical Genetics, University of Health Sciences, Dışkapı Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
10
|
El Jabbour T, Misyura M, Cowzer D, Zimmermann M, Rimkunas V, Marra A, Derakhshan F, Selenica P, Parilla M, Setton JS, Ceyhan-Birsoy O, Kemel Y, Catchings A, Ranganathan M, Ku GY, Janjigian YY, Zinda M, Koehler M, Stadler Z, Shia J, Reis-Filho JS, Mandelker D. ATM Germline Mutated Gastroesophageal Junction Adenocarcinomas: Clinical Descriptors, Molecular Characteristics and Potential Therapeutic Implications. J Natl Cancer Inst 2022; 114:761-770. [PMID: 35078243 PMCID: PMC9086803 DOI: 10.1093/jnci/djac024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/22/2021] [Accepted: 01/19/2022] [Indexed: 11/14/2022] Open
Abstract
Background Gastroesophageal junction (GEJ) adenocarcinoma is a rare cancer associated with poor prognosis. The genetic factors conferring predisposition to GEJ adenocarcinoma have yet to be identified. Methods We analyzed germline testing results from 23 381 cancer patients undergoing tumor-normal sequencing, of which 312 individuals had GEJ adenocarcinoma. Genomic profiles and clinico-pathologic features were analyzed for the GEJ adenocarcinomas. Silencing of ATM and ATR was performed using validated short-interfering RNA species in GEJ, esophageal, and gastric adenocarcinoma cell lines. All statistical tests were 2-sided. Results Pathogenic or likely pathogenic ATM variants were identified in 18 of 312 patients (5.8%), and bi-allelic inactivation of ATM through loss of heterozygosity of the wild-type allele was detected in all (16 of 16) samples with sufficient tumor content. Germline ATM-mutated GEJ adenocarcinomas largely lacked somatic mutations in TP53, were more likely to harbor MDM2 amplification, and harbored statistically significantly fewer somatic single nucleotide variants (2.0 mutations/Mb vs 7.9 mutations/Mb; P < .001). A statistically significantly higher proportion of germline ATM-mutated than ATM–wild-type GEJ adenocarcinoma patients underwent a curative resection (10 [100%] vs 92 [86.8%], P = .04; Fisher’s exact test.), A synthetic lethal interaction between short-interfering RNA silencing of ATM and ATR was observed in the models analyzed. Conclusions Our results indicate that germline pathogenic variants in ATM drive oncogenesis in GEJ adenocarcinoma and might result in a distinct clinical phenotype. Given the high prevalence of germline ATM-mutated GEJ adenocarcinomas, genetic testing for individuals with GEJ adenocarcinomas may be considered to better inform prognostication, treatment decisions, and future cancer risk.
Collapse
Affiliation(s)
- Tony El Jabbour
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maksym Misyura
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Antonio Marra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fatemeh Derakhshan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megan Parilla
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy S Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ozge Ceyhan-Birsoy
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Kemel
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amanda Catchings
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Megha Ranganathan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Geoffrey Y Ku
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yelena Y Janjigian
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | - Zsofia Stadler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jinru Shia
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diana Mandelker
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
11
|
Andrikopoulou A, Chatzinikolaou S, Kyriopoulos I, Bletsa G, Kaparelou M, Liontos M, Dimopoulos MA, Zagouri F. The Mutational Landscape of Early-Onset Breast Cancer: A Next-Generation Sequencing Analysis. Front Oncol 2022; 11:797505. [PMID: 35127508 PMCID: PMC8813959 DOI: 10.3389/fonc.2021.797505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Around 5%-7% of breast cancer cases are diagnosed in women younger than 40, making it the leading cause of female cancer in the 25- to 39-year-old age group. Unfortunately, young age at diagnosis is linked to a more aggressive tumor biology and a worse clinical outcome. The identification of the mutational landscape of breast cancer in this age group could optimize the management. METHODS We performed NGS analysis in paraffin blocks and blood samples of 32 young patients with breast cancer [<40 years] and 90 older patients during the period 2019 through 2021. All patients were treated in a single institution at the Oncology Department of "Alexandra" Hospital, Medical School, University of Athens, Greece. RESULTS Breast tumors were characterized more frequently by HER2 overexpression [25% vs 18.9%], higher ki67 levels [75% vs 61%] and lower differentiation [71.9% vs 60%] in the younger group. PIK3CA [6/20; 30%] and TP53 [6/20; 30%] were the most frequent pathogenic somatic mutations identified in young patients, while one case of BRCA2 somatic mutation [1/20; 5%] and one case of PTEN somatic mutation [1/20; 5%] were also identified. PIK3CA mutations [16/50; 32%] and TP53 mutations [20/50; 40%] were the most common somatic mutations identified in older patients, however other somatic mutations were also reported (ATM, AKT, CHEK2, NRAS, CDKN2A, PTEN, NF1, RB1, FGFR1, ERBB2). As for germline mutations, CHEK2 [3/25; 12%] was the most common pathogenic germline mutation in younger patients followed by BRCA1 [2/25; 8%]. Of note, CHEK2 germline mutations were identified less frequently in older patients [2/61; 3%] among others [BRCA1 (2/61; 3%), ATM (2/61; 3%), APC (1/61; 1,6%) and BRCA2 (1/61; 1,6%)]. CONCLUSION We here report the mutational profile identified via NGS in patients with early-onset breast cancer compared to their older counterparts. Although the sample size is small and no statistically significant differences were detected, we highlight the need of genetic testing to most patients in this subgroup.
Collapse
Affiliation(s)
| | | | - Ilias Kyriopoulos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, Greece
| | | | - Maria Kaparelou
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, Greece
| | - Michalis Liontos
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, Greece
| | | | - Flora Zagouri
- Department of Clinical Therapeutics, Alexandra Hospital, Medical School, Athens, Greece
| |
Collapse
|
12
|
Ejaz S, Abbas Z, Nouroz F. Exceptional behavior of breast cancer-associated type 1 gene in breast invasive carcinoma. J Cancer Res Ther 2022; 18:1743-1753. [DOI: 10.4103/jcrt.jcrt_1310_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Pathogenic genetic variants from highly connected cancer susceptibility genes confer the loss of structural stability. Sci Rep 2021; 11:19264. [PMID: 34584144 PMCID: PMC8479081 DOI: 10.1038/s41598-021-98547-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic polymorphisms in DNA damage repair and tumor suppressor genes have been associated with increasing the risk of several types of cancer. Analyses of putative functional single nucleotide polymorphisms (SNP) in such genes can greatly improve human health by guiding choice of therapeutics. In this study, we selected nine genes responsible for various cancer types for gene enrichment analysis and found that BRCA1, ATM, and TP53 were more enriched in connectivity. Therefore, we used different computational algorithms to classify the nonsynonymous SNPs which are deleterious to the structure and/or function of these three proteins. The present study showed that the major pathogenic variants (V1687G and V1736G of BRCA1, I2865T and V2906A of ATM, V216G and L194H of TP53) might have a greater impact on the destabilization of the proteins. To stabilize the high-risk SNPs, we performed mutation site-specific molecular docking analysis and validated using molecular dynamics (MD) simulation and molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) studies. Additionally, SNPs of untranslated regions of these genes affecting miRNA binding were characterized. Hence, this study will assist in developing precision medicines for cancer types related to these polymorphisms.
Collapse
|
14
|
Hayat M, Chen WC, Brandenburg JT, Babb de Villiers C, Ramsay M, Mathew CG. Genetic Susceptibility to Breast Cancer in Sub-Saharan African Populations. JCO Glob Oncol 2021; 7:1462-1471. [PMID: 34623906 PMCID: PMC8509920 DOI: 10.1200/go.21.00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/28/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Mahtaab Hayat
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Wenlong Carl Chen
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
- Non-communicable Diseases Research Division, Wits Health Consortium (PTY) Ltd, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chantal Babb de Villiers
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher G. Mathew
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
15
|
Jaru-Ampornpan P, Tansirisithikul C, Prukajorn M, Sampattavanich S, Pithukpakorn M. Germline ATM mutation and somatic PIK3CA and BCOR mutations found in an infant with aggressive orbital embryonal rhabdomyosarcoma. Am J Ophthalmol Case Rep 2021; 23:101189. [PMID: 34401606 PMCID: PMC8353380 DOI: 10.1016/j.ajoc.2021.101189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/21/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Abstract
Purpose To report a case of aggressive infantile orbital embryonal rhabdomyosarcoma harboring germline ATM mutation and 2 somatic mutations as revealed by next-generation sequencing and the potential application for personalized therapy. Observations A 7-month-old male developed a rapidly progressive left proptosis over 6 weeks due to a large medial orbital mass. Biopsy revealed embryonal rhabdomyosarcoma. After the first cycle of chemotherapy, re-imaging showed interval tumor enlargement with intracranial extension. Craniotomy, combined with orbital exenteration, was performed. Tumor specimens and blood samples were sent for 596 gene DNA sequencing panels with RNA-sequencing focused on actionable mutations as well as gene fusion detection. Sequencing revealed 3 clinically relevant mutations: a germline ATM loss-of-function (LOF) mutation, a somatic PIK3CA gain-of-function mutation, and a somatic BCOR LOF mutation. No chromosomal translocation was detected. Workup for metastasis was positive for bone marrow involvement. Despite standard high-dose adjuvant chemotherapy in combination with radiation therapy, the patient died 10 months later with metastatic diseases. Conclusions and importance This case highlights an aggressive form of embryonal rhabdomyosarcoma in an infantile orbit. The presence of germline mutation may explain the increased chemo-resistance and adverse prognosis, and may be used as the target for genomic-directed therapy.
Collapse
Affiliation(s)
- Pimkwan Jaru-Ampornpan
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Manachaya Prukajorn
- Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Somponnat Sampattavanich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Manop Pithukpakorn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
16
|
Shah OS, Soran A, Sahin M, Knapick BA, Ugras S, Celik E, Lucas PC, Lee AV. Identifying Genomic Alterations in Patients With Stage IV Breast Cancer Using MammaSeq: An International Collaborative Study. Clin Breast Cancer 2021; 21:210-217. [PMID: 33191115 PMCID: PMC11572555 DOI: 10.1016/j.clbc.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/01/2020] [Accepted: 08/13/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Identification of genomic alterations present in cancer patients may aid in cancer diagnosis, prognosis and therapeutic target discovery. In this study, we aimed to identify clinically actionable variants present in stage IV breast cancer (BC) samples. MATERIALS AND METHODS DNA was extracted from formalin-fixed paraffin-embedded samples of BC (n = 41). DNA was sequenced using MammaSeq, a BC-specific next-generation sequencing panel targeting 79 genes and 1369 mutations. Ion Torrent Suite 4.0 was used to make variant calls on the raw data, and the resulting single nucleotide variants were annotated using the CRAVAT toolkit. Single nucleotide variations (SNVs) were filtered to remove common polymorphisms and germline variants. CNVkit was employed to identify copy number variations (CNVs). The Precision Medicine Knowledgebase (PMKB) and OncoKB Precision Oncology Database were used to associate clinical significance with the identified variants. RESULTS A total of 41 samples from Turkish patients with BC were sequenced (read depth of 94-13,340; median of 1529). These patients were diagnosed with various BC subtypes including invasive ductal carcinoma, invasive lobular carcinoma, apocrine BC, and micropapillary BC. In total, 59 different alterations (49 SNVs and 10 CNVs) were identified. From these, 8 alterations (3 CNVs - ERBB2, FGFR1, and AR copy number gains and 5 SNVs - IDH1.R132H, TP53.E204∗, PI3KCA.E545K, PI3KCA.H1047R, and PI3KCA.R88Q) were identified to have some clinical significance by PMKB and OncoKB. Moreover, the top 5 genes with the most SNVs included PIK3CA, TP53, MAP3K1, ATM, and NCOR1. Additionally, copy number gains and losses were found in ERBB2, GRB7, IGFR1, AR, FGFR1, MYC, and IKBKB, and BRCA2, RUNX1, and RB1, respectively. CONCLUSION We identified 59 unique alterations in 38 genes in 41 stage IV BC tissue samples using MammaSeqTM. Eight of these alterations were found to have some clinical significance by OncoKB and PKMB. This study highlights the potential use of cancer specific next-generation sequencing panels in clinic to get better insight into the patient-specific genomic alterations.
Collapse
Affiliation(s)
- Osama Shiraz Shah
- Magee-Womens Research Institute, Pittsburgh, PA; Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, PA
| | | | - Mustafa Sahin
- Department of General Surgery, Selçuk University, Konya, Turkey
| | | | - Serdar Ugras
- Department of Pathology, Selçuk University, Konya, Turkey
| | - Esin Celik
- Department of Pathology, Selçuk University, Konya, Turkey
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA; UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Adrian V Lee
- Magee-Womens Research Institute, Pittsburgh, PA; Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, PA; UPMC Hillman Cancer Center, Pittsburgh, PA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA; Institute for Precision Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, PA.
| |
Collapse
|
17
|
Karamat U, Ejaz S, Hameed Y. In Silico-Analysis of the Multi-Omics Data Identified the Ataxia Telangiectasia Mutated Gene as a Potential Biomarker of Breast Invasive Carcinoma. Genet Test Mol Biomarkers 2021; 25:263-275. [PMID: 33877897 DOI: 10.1089/gtmb.2020.0249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: The elevated global burden of the breast invasive carcinoma (BRIC) and lack of appropriate biomarkers for its early detection and treatment requires extensive investigation to enhance understanding regarding BRIC associated molecular alterations. Ataxia telangiectasia mutated (ATM) is a multifunctional tumor suppressor gene, which participates in the DNA damage response pathway and cellular checkpoint activation. Several studies have reported the reduction of ATM expression as a reliable biomarker of BRIC. However, its role as a clinicopathological feature-specific biomarker still needs to be explored. Aim: The present study was designed to investigate the mutational spectrum and expression variations of ATM in BRIC patients exhibiting various clinicopathological features. Furthermore, we also performed a correlational analysis of clinicopathological feature-specific ATM expression with its promoter methylation, status genetic alterations, copy number variation (CNVs), overall survival (OS), and effectiveness of various anticancerous drugs in BRIC patients. Methods: We utilized multiple online platforms, including UALCN, cBioportal, and CCLE GDSC tool kit. Results: The ATM exhibited decreased expression in the majority of the BRIC patients, and its promoter was hypermethylated compared to healthy controls. Hence, the degree of promoter methylation and ATM expression level were inversely correlated in BRIC. In addition, we also investigated if BRIC patients that had higher ATM expression had lower OS. We found that elevated expression of ATM was found to promoted or decreased the effectiveness of various anticancer drugs. Conclusion: This study revealed the overall and clinicopathological feature-specific role of the ATM, gene, however, these findings need to be validated via larger scale studies.
Collapse
Affiliation(s)
- Uzma Karamat
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Samina Ejaz
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Yasir Hameed
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
18
|
Nadhan R, Patra D, Krishnan N, Rajan A, Gopala S, Ravi D, Srinivas P. Perspectives on mechanistic implications of ROS inducers for targeting viral infections. Eur J Pharmacol 2021; 890:173621. [PMID: 33068588 PMCID: PMC7554476 DOI: 10.1016/j.ejphar.2020.173621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
In this perspective, we propose to leverage reactive oxygen species (ROS) induction as a potential therapeutic measure against viral infections. Our rationale for targeting RNA viral infections by pro-oxidants is routed on the mechanistic hypothesis that ROS based treatment paradigm could impair RNA integrity faster than the other macromolecules. Though antiviral drugs with antioxidant properties confer potential abilities for preventing viral entry, those with pro-oxidant properties could induce the degradation of nascent viral RNA within the host cells, as RNAs are highly prone to ROS mediated degradation than DNA/proteins. We have previously established that Plumbagin is a highly potent ROS inducer, which acts through shifting of the host redox potential. Besides, it has been reported that Plumbagin treatment has the potential for interrupting viral RNA replication within the host cells. Since the on-going Corona Virus Disease - 2019 (COVID-19) global pandemic mediated by Severe Acute Respiratory Syndrome Corona Virus-2 (SARS-CoV-2) exhibits high infectivity, the development of appropriate antiviral therapeutic strategies remains to be an urgent unmet race against time. Therefore, additional experimental validation is warranted to determine the appropriateness of repurposable drug candidates, possibly ROS inducers, for fighting the pandemic which could lead to saving many lives from being lost to COVID-19.
Collapse
Affiliation(s)
- Revathy Nadhan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Dipyaman Patra
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Neethu Krishnan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Arathi Rajan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Srinivas Gopala
- Department of Biochemistry, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Thiruvananthapuram, 695011, Kerala, India
| | - Dashnamoorthy Ravi
- Division of Blood Disorders, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Priya Srinivas
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India.
| |
Collapse
|
19
|
Ainsbury EA, Dalke C, Hamada N, Benadjaoud MA, Chumak V, Ginjaume M, Kok JL, Mancuso M, Sabatier L, Struelens L, Thariat J, Jourdain JR. Radiation-induced lens opacities: Epidemiological, clinical and experimental evidence, methodological issues, research gaps and strategy. ENVIRONMENT INTERNATIONAL 2021; 146:106213. [PMID: 33276315 DOI: 10.1016/j.envint.2020.106213] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
In 2011, the International Commission on Radiological Protection (ICRP) recommended reducing the occupational equivalent dose limit for the lens of the eye from 150 mSv/year to 20 mSv/year, averaged over five years, with no single year exceeding 50 mSv. With this recommendation, several important assumptions were made, such as lack of dose rate effect, classification of cataracts as a tissue reaction with a dose threshold at 0.5 Gy, and progression of minor opacities into vision-impairing cataracts. However, although new dose thresholds and occupational dose limits have been set for radiation-induced cataract, ICRP clearly states that the recommendations are chiefly based on epidemiological evidence because there are a very small number of studies that provide explicit biological and mechanistic evidence at doses under 2 Gy. Since the release of the 2011 ICRP statement, the Multidisciplinary European Low Dose Initiative (MELODI) supported in April 2019 a scientific workshop that aimed to review epidemiological, clinical and biological evidence for radiation-induced cataracts. The purpose of this article is to present and discuss recent related epidemiological and clinical studies, ophthalmic examination techniques, biological and mechanistic knowledge, and to identify research gaps, towards the implementation of a research strategy for future studies on radiation-induced lens opacities. The authors recommend particularly to study the effect of ionizing radiation on the lens in the context of the wider, systemic effects, including in the retina, brain and other organs, and as such cataract is recommended to be studied as part of larger scale programs focused on multiple radiation health effects.
Collapse
Affiliation(s)
- Elizabeth A Ainsbury
- Public Health England (PHE) Centre for Radiation, Chemical and Environmental Hazards, Oxon, United Kingdom.
| | - Claudia Dalke
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Germany.
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan.
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, 31 avenue de la division Leclerc, Fontenay-aux-Roses, France.
| | - Vadim Chumak
- National Research Centre for Radiation Medicine, Ukraine.
| | | | - Judith L Kok
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands.
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, (ENEA), Rome, Italy.
| | - Laure Sabatier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Saclay, France.
| | | | - Juliette Thariat
- Laboratoire de physique corpusculaire IN2P3/ENSICAEN -UMR6534 - Unicaen - Normandie University, France
| | - Jean-René Jourdain
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 17, 31 avenue de la division Leclerc, Fontenay-aux-Roses, France.
| |
Collapse
|
20
|
AL-Eitan LN, ababa’h DM, Aman HA. The Associations of Common Genetic Susceptibility Variants with Breast Cancer in Jordanian Arabs: A Case-Control Study. Asian Pac J Cancer Prev 2020; 21:3045-3054. [PMID: 33112566 PMCID: PMC7798142 DOI: 10.31557/apjcp.2020.21.10.3045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE In Jordan, breast cancer (BC) affects a substantial proportion of Jordanian women, highlighting the need for studies to be carried out regarding the genetic component of the disease. The aim of the present study was to investigate the interaction between BC risk and prognosis and polymorphisms in genes (ATM, CASP8, FGFR2, FN1, IGF1, LSP1, MAP3K, MMP7, and RHOC) that were chosen for this study previously reported as having a role in the disease. MATERIALS AND METHODS Blood samples were collected from 242 BC patients and 231 disease-free volunteers recruited from the Jordanian population. DNA was extracted from blood and each sample was sent to the Australian Genome Research Facility for genotyping. RESULTS The rs1219648 SNP of the FGFR2 gene was the only investigated variant to show any direct association with BC in Jordanian women (p-value = 0.04). However, the CASP8rs6760993 SNP was found to be significantly associated with BC (p-value = 0.04) when using the dominant model. Other gene polymorphisms showed varying levels of association between some investigated SNPs and different BC risk and prognostic factors. CONCLUSION Despite reports to the contrary in other populations, most of the investigated genes and their respective SNPs did not show any significant association with BC in Jordanian women. Our results underline the need for independent BC research to be carried out in the Jordanian population to decipher the genetic basis of the disease. .
Collapse
Affiliation(s)
- Laith N AL-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Doaa M ababa’h
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Hatem A Aman
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
21
|
Wielsøe M, Tarantini L, Bollati V, Long M, Bonefeld‐Jørgensen EC. DNA methylation level in blood and relations to breast cancer, risk factors and environmental exposure in Greenlandic Inuit women. Basic Clin Pharmacol Toxicol 2020; 127:338-350. [PMID: 32352194 PMCID: PMC7540549 DOI: 10.1111/bcpt.13424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 01/22/2023]
Abstract
Several studies have found aberrant DNA methylation levels in breast cancer cases, but factors influencing DNA methylation patterns and the mechanisms are not well understood. This case-control study evaluated blood methylation level of two repetitive elements and selected breast cancer-related genes in relation to breast cancer risk, and the associations with serum level of persistent organic pollutants (POPs) and breast cancer risk factors in Greenlandic Inuit. DNA methylation was determined using bisulphite pyrosequencing in blood from 74 breast cancer cases and 80 controls. Using first tertile as reference, the following was observed. Positive associations for ATM in second tertile (OR: 2.33, 95% CI: 1.04; 5.23) and ESR2 in third tertile (OR: 2.22, 95% CI: 0.97; 5.05) suggest an increased breast cancer risk with high DNA methylation. LINE-1 methylation was lower in cases than controls. In third tertile (OR: 0.42, 95% CI: 0.18; 0.98), associations suggest in accordance with the literature an increased risk of breast cancer with LINE-1 hypomethylation. Among controls, significant associations between methylation levels and serum level of POPs and breast cancer risk factors (age, body mass index, cotinine level) were found. Thus, breast cancer risk factors and POPs may alter the risk through changes in methylation levels; further studies are needed to elucidate the mechanisms.
Collapse
Affiliation(s)
- Maria Wielsøe
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Letizia Tarantini
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Valentina Bollati
- EPIGET – Epidemiology, Epigenetics and Toxicology LaboratoryDepartment of Clinical Sciences and Community HealthUniversità degli Studi di MilanoMilanItaly
| | - Manhai Long
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
| | - Eva Cecilie Bonefeld‐Jørgensen
- Department of Public HealthCentre for Arctic Health & Molecular EpidemiologyAarhus UniversityAarhus CDenmark
- Greenland Center for Health ResearchUniversity of GreenlandNuukGreenland
| |
Collapse
|
22
|
Arslan AA, Tuminello S, Yang L, Zhang Y, Durmus N, Snuderl M, Heguy A, Zeleniuch-Jacquotte A, Shao Y, Reibman J. Genome-Wide DNA Methylation Profiles in Community Members Exposed to the World Trade Center Disaster. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17155493. [PMID: 32751422 PMCID: PMC7432006 DOI: 10.3390/ijerph17155493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
The primary goal of this pilot study was to assess feasibility of studies among local community members to address the hypothesis that complex exposures to the World Trade Center (WTC) dust and fumes resulted in long-term epigenetic changes. We enrolled 18 WTC-exposed cancer-free women from the WTC Environmental Health Center (WTC EHC) who agreed to donate blood samples during their standard clinical visits. As a reference WTC unexposed group, we randomly selected 24 age-matched cancer-free women from an existing prospective cohort who donated blood samples before 11 September 2001. The global DNA methylation analyses were performed using Illumina Infinium MethylationEpic arrays. Statistical analyses were performed using R Bioconductor package. Functional genomic analyses were done by mapping the top 5000 differentially expressed CpG sites to the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway database. Among cancer-free subjects, we observed substantial methylation differences between WTC-exposed and unexposed women. The top 15 differentially methylated gene probes included BCAS2, OSGIN1, BMI1, EEF1A2, SPTBN5, CHD8, CDCA7L, AIDA, DDN, SNORD45C, ZFAND6, ARHGEF7, UBXN8, USF1, and USP12. Several cancer-related pathways were enriched in the WTC-exposed subjects, including endocytosis, mitogen-activated protein kinase (MAPK), viral carcinogenesis, as well as Ras-associated protein-1 (Rap1) and mammalian target of rapamycin (mTOR) signaling. The study provides preliminary data on substantial differences in DNA methylation between WTC-exposed and unexposed populations that require validation in further studies.
Collapse
Affiliation(s)
- Alan A. Arslan
- Department of Obstetrics and Gynecology, New York University Langone Health, New York, NY 10016, USA
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
- Correspondence:
| | - Stephanie Tuminello
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
| | - Lei Yang
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
| | - Yian Zhang
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
| | - Nedim Durmus
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
| | - Adriana Heguy
- Department of Pathology, New York University Langone Health, New York, NY 10016, USA; (M.S.); (A.H.)
- NYU Langone’s Genome Technology Center, New York, NY 10016, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Yongzhao Shao
- Department of Population Health, New York University Langone Health, New York, NY 10016, USA; (S.T.); (L.Y.); (Y.Z.); (A.Z.-J.); (Y.S.)
- NYU Perlmutter Comprehensive Cancer Center, New York, NY 10016, USA
| | - Joan Reibman
- Department of Medicine, New York University Langone Health, New York, NY 10016, USA; (N.D.); (J.R.)
| |
Collapse
|
23
|
Landry KK, Wood ME. Panel Testing for Hereditary Breast Cancer: More or Less? CURRENT BREAST CANCER REPORTS 2020. [DOI: 10.1007/s12609-020-00361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Bharucha PP, Chiu KE, François FM, Scott JL, Khorjekar GR, Tirada NP. Genetic Testing and Screening Recommendations for Patients with Hereditary Breast Cancer. Radiographics 2020; 40:913-936. [PMID: 32469631 DOI: 10.1148/rg.2020190181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Professionals who specialize in breast imaging may be the first to initiate the conversation about genetic counseling with patients who have a diagnosis of premenopausal breast cancer or a strong family history of breast and ovarian cancer. Commercial genetic testing panels have gained popularity and have become more affordable in recent years. Therefore, it is imperative for radiologists to be able to provide counseling and to identify those patients who should be referred for genetic testing. The authors review the process of genetic counseling and the associated screening recommendations for patients at high and moderate risk. Ultimately, genetic test results enable appropriate patient-specific screening, which allows improvement of overall survival by early detection and timely treatment. The authors discuss pretest counseling, which involves the use of various breast cancer risk assessment tools such as the Gail and Tyrer-Cuzick models. The most common high- and moderate-risk gene mutations associated with breast cancer are also reviewed. In addition to BRCA1 and BRCA2, several high-risk genes, including TP53, PTEN, CDH1, and STK11, are discussed. Moderate-risk genes include ATM, CHEK2, and PALB2. The imaging appearances of breast cancer typically associated with each gene mutation, as well as the other associated cancers, are described. ©RSNA, 2020 See discussion on this article by Butler (pp 937-940).
Collapse
Affiliation(s)
- Puja P Bharucha
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| | - Kellie E Chiu
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| | - Fabienne M François
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| | - Jessica L Scott
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| | - Gauri R Khorjekar
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| | - Nikki P Tirada
- From the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 22 S Greene St, Baltimore, MD 21201
| |
Collapse
|
25
|
Delmonico L, Silva Magalhães Costa MA, Gomes RJ, De Oliveira Vieira P, Da Silva ABP, Fournier MV, Scherrer LR, De Azevedo CM, Ornellas MHF, Alves G. Methylation profiling in promoter sequences of ATM and CDKN2A ( p14ARF/p16INK4a ) genes in blood and cfDNA from women with impalpable breast lesions. Oncol Lett 2020; 19:3003-3010. [PMID: 32218857 DOI: 10.3892/ol.2020.11382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
The objective of the present study was to evaluate the epigenetic changes occurring in early stages of breast cancer. The present study investigated the methylation profile of the ATM, p14ARF and p16INK4a promoters in total blood and plasma cell-free DNA (cfDNA) from women with impalpable breast lesions compared with in total blood of a control cohort of women without breast lesions. The samples were evaluated using the methylation-specific PCR method. The Fisher's exact test was used to evaluate statistical significance between the methylation and clinical variables. A total of 111 women were evaluated, including 56 women with impalpable breast cancer (39/56 also had paired plasma cfDNA) and 55 women in the control cohort (55 blood DNA). For blood DNA from women with malignant impalpable breast lesions, p16INK4a exhibited the greatest percentage of methylation (48%), followed by ATM (37.5%) and p14ARF (27%) promoters, regardless of age variation. For plasma cfDNA, the methylation rates for ATM, p14ARF and p16INK4a were 26, 26 and 10%, respectively. The methylation rates for the blood DNA of controls were the lowest for ATM (9%), p14ARF (7%) and p16INK4a (7%). The women with impalpable breast lesions (benign and malignant lesions) exhibited the highest methylation rate, regardless of age, compared with the paired plasma cfDNA and controls. This epigenetic change was statistically significant for the promoters of ATM (P=0.009) and p16INK4a (P=0.001) (impalpable breast lesions vs. control). The present study demonstrated that epigenetic changes occurring in the ATM and CDKN2A genes detectable in liquid biopsy were associated with the development of impalpable breast lesions.
Collapse
Affiliation(s)
- Lucas Delmonico
- LaRBio-Radiation Laboratory in Biology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | | | - Romario José Gomes
- Circulating Biomarkers Laboratory, Department of General Pathology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Pâmella De Oliveira Vieira
- Circulating Biomarkers Laboratory, Department of General Pathology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Ana Beatriz Passos Da Silva
- Circulating Biomarkers Laboratory, Department of General Pathology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | | | | | | | - Maria Helena Faria Ornellas
- Circulating Biomarkers Laboratory, Department of General Pathology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil.,Postgraduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Department of General Pathology, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil.,Postgraduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| |
Collapse
|
26
|
Hutchings D, Jiang Z, Skaro M, Weiss MJ, Wolfgang CL, Makary MA, He J, Cameron JL, Zheng L, Klimstra DS, Brand RE, Singhi AD, Goggins M, Klein AP, Roberts NJ, Hruban RH. Histomorphology of pancreatic cancer in patients with inherited ATM serine/threonine kinase pathogenic variants. Mod Pathol 2019; 32:1806-1813. [PMID: 31285527 PMCID: PMC7403604 DOI: 10.1038/s41379-019-0317-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
Abstract
Germline pathogenic variants in the ATM serine/threonine kinase (ATM) gene are associated with an increased risk of pancreatic ductal adenocarcinoma. It is important to identify germline ATM pathogenic variants in pancreatic cancer patients because these alterations are potentially targetable with chemotherapeutic drugs and/or radiation and have implications for other family members. As germline pathogenic variants in other genes have been associated with distinct histologic subtypes of pancreatic cancer, we studied the histomorphology of pancreatic cancer in 23 patients with germline ATM pathogenic variants. The histologic subtype was ductal adenocarcinoma in 19/23 (83%) of the patients, adenosquamous carcinoma in 1/23 (4%), and colloid (mucinous non-cystic) carcinoma in 3/23 (13%). The percentage of colloid (mucinous non-cystic) carcinomas is higher than we have previously observed in patients with familial and sporadic pancreatic cancer (1 and 2% in prior reports, p < 0.01 and p < 0.01, respectively). Three carcinomas (2 colloid carcinomas, 1 ductal adenocarcinoma) arose in association with intraductal papillary mucinous neoplasms. Among the resected pancreata, non-invasive precursor lesions, including pancreatic intraepithelial neoplasia and incipient intraductal papillary mucinous neoplasms, were identified in 83%. We conclude that pancreatic cancers in patients with germline ATM pathogenic variants are more frequently of colloid (mucinous non-cystic) morphology but are overall morphologically diverse supporting the utility of universal germline genetic testing for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Danielle Hutchings
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhengdong Jiang
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Michael Skaro
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew J Weiss
- Department of Surgery, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher L Wolfgang
- Department of Surgery, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin A Makary
- Department of Surgery, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin He
- Department of Surgery, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John L Cameron
- Department of Surgery, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David S Klimstra
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Randall E Brand
- Department of Medicine, University of Pittsburgh Medical Center Health System, Pittsburgh, PA, USA
| | - Aatur D Singhi
- Department of Pathology, University of Pittsburgh Medical Center Health System, Pittsburgh, PA, USA
| | - Michael Goggins
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alison P Klein
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ralph H Hruban
- Department of Pathology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, the Sol Goldman Pancreatic Cancer Research Center, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
27
|
Wood ME, Bedrosian I. Hot Topic: Should all Women with Breast Cancer Undergo Genetic Testing? CURRENT BREAST CANCER REPORTS 2019. [DOI: 10.1007/s12609-019-00343-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Robinson-Garcia L, Ferreira da Silva J, Loizou JI. Synthetic Lethal Interactions for Kinase Deficiencies to DNA Damage Chemotherapeutics. Cancer Res 2019; 79:5693-5698. [PMID: 31387919 PMCID: PMC7611143 DOI: 10.1158/0008-5472.can-19-1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022]
Abstract
Kinases are signaling enzymes that regulate diverse cellular processes. As such, they are frequently mutated in cancer and therefore represent important targets for drug discovery. However, until recently, systematic approaches to identify vulnerabilities and resistances of kinases to DNA-damaging chemotherapeutics have not been possible, partially due to the lack of appropriate technologies. With the advent of CRISPR-Cas9, a comprehensive study has investigated the cellular survival of more than 300 kinase-deficient isogenic cell lines to a diverse panel of DNA-damaging agents, enriched for chemotherapeutics. Here, we discuss how this approach has allowed for the rational development of combination therapies that are aimed at using synthetic lethal interactions between kinase deficiencies and DNA-damaging agents that are used as chemotherapeutics.
Collapse
Affiliation(s)
- Lydia Robinson-Garcia
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Joana Ferreira da Silva
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
29
|
Maciaszek JL, Oak N, Chen W, Hamilton KV, McGee RB, Nuccio R, Mostafavi R, Hines-Dowell S, Harrison L, Taylor L, Gerhardt EL, Ouma A, Edmonson MN, Patel A, Nakitandwe J, Pappo AS, Azzato EM, Shurtleff SA, Ellison DW, Downing JR, Hudson MM, Robison LL, Santana V, Newman S, Zhang J, Wang Z, Wu G, Nichols KE, Kesserwan CA. Enrichment of heterozygous germline RECQL4 loss-of-function variants in pediatric osteosarcoma. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004218. [PMID: 31604778 PMCID: PMC6824257 DOI: 10.1101/mcs.a004218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
Patients harboring germline pathogenic biallelic variants in genes involved in the recognition and repair of DNA damage are known to have a substantially increased cancer risk. Emerging evidence suggests that individuals harboring heterozygous variants in these same genes may also be at heightened, albeit lesser, risk for cancer. Herein, we sought to determine whether heterozygous variants in RECQL4, the gene encoding an essential DNA helicase that is defective in children with the autosomal recessive cancer-predisposing condition Rothmund-Thomson syndrome (RTS), are associated with increased risk for childhood cancer. To address this question, we interrogated germline sequence data from 4435 pediatric cancer patients at St. Jude Children's Research Hospital and 1127 from the National Cancer Institute Therapeutically Applicable Research to Generate Effective Treatment (TARGET) database and identified 24 (0.43%) who harbored loss-of-function (LOF) RECQL4 variants, including five of 249 (2.0%) with osteosarcoma (OS). These RECQL4 variants were significantly overrepresented in children with OS, the cancer most frequently observed in patients with RTS, as compared to 134,187 noncancer controls in the Genome Aggregation Database (gnomAD v2.1; P = 0.00087, odds ratio [OR] = 7.1, 95% CI, 2.9-17). Nine of the 24 (38%) individuals possessed the same c.1573delT (p.Cys525Alafs) variant located in the highly conserved DNA helicase domain, suggesting that disruption of this domain is central to oncogenesis. Altogether these data expand our understanding of the genetic factors predisposing to childhood cancer and reveal a novel association between heterozygous RECQL4 LOF variants and development of pediatric OS.
Collapse
Affiliation(s)
- Jamie L Maciaszek
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Ninad Oak
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Wenan Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Kayla V Hamilton
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Rose B McGee
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Regina Nuccio
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Roya Mostafavi
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Stacy Hines-Dowell
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Lynn Harrison
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Leslie Taylor
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Elsie L Gerhardt
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Annastasia Ouma
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Aman Patel
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Joy Nakitandwe
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Alberto S Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Elizabeth M Azzato
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Sheila A Shurtleff
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - David W Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Leslie L Robison
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Victor Santana
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Zhaoming Wang
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Gang Wu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Chimene A Kesserwan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
30
|
Bertelsen B, Tuxen IV, Yde CW, Gabrielaite M, Torp MH, Kinalis S, Oestrup O, Rohrberg K, Spangaard I, Santoni-Rugiu E, Wadt K, Mau-Sorensen M, Lassen U, Nielsen FC. High frequency of pathogenic germline variants within homologous recombination repair in patients with advanced cancer. NPJ Genom Med 2019; 4:13. [PMID: 31263571 PMCID: PMC6588611 DOI: 10.1038/s41525-019-0087-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
Abstract
Genomic screening of cancer patients for predisposing variants is traditionally based on age at onset, family history and type of cancer. Whereas the clinical guidelines have proven efficient in identifying families exhibiting classical attributes of hereditary cancer, the frequency of patients with alternative presentations is unclear. We identified and characterized germline variants in 636 patients with advanced solid cancer using whole exome sequencing. Pathogenic and likely pathogenic germline variants among 168 genes associated with hereditary cancer were considered. These variants were identified in 17.8% of the patients and within a wide range of cancer types. In particular, patients with mesothelioma, ovarian cancer, cervical cancer, urothelial cancer, and cancer of unknown primary origin displayed high frequencies of pathogenic variants. Variants were predominantly found in DNA-repair pathways and about half were within genes involved in homologous recombination repair. Twenty-two BRCA1 and BRCA2 germline variants were identified in 12 different cancer types, of which 10 (45%) were not previously identified in these patients based on the current clinical guidelines. Loss of heterozygosity and somatic second hits were identified in several of the affected genes, supporting possible causality for cancer development. A potential treatment target based on the pathogenic germline variant could be suggested in 25 patients (4%). The study demonstrates a high frequency of pathogenic germline variants in the homologous recombination pathway in patients with advanced solid cancers. We infer that genetic screening in this group of patients may reveal high-risk families and identify patients with potential PARP inhibitor sensitive tumors.
Collapse
Affiliation(s)
| | - Ida Viller Tuxen
- 2The Phase I Unit, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | - Savvas Kinalis
- 1Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Olga Oestrup
- 1Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Kristoffer Rohrberg
- 2The Phase I Unit, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Iben Spangaard
- 2The Phase I Unit, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Karin Wadt
- 4Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Morten Mau-Sorensen
- 2The Phase I Unit, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Ulrik Lassen
- 2The Phase I Unit, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
31
|
Savva C, De Souza K, Ali R, Rakha EA, Green AR, Madhusudan S. Clinicopathological significance of ataxia telangiectasia-mutated (ATM) kinase and ataxia telangiectasia-mutated and Rad3-related (ATR) kinase in MYC overexpressed breast cancers. Breast Cancer Res Treat 2019; 175:105-115. [PMID: 30746633 PMCID: PMC6491658 DOI: 10.1007/s10549-018-05113-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE MYC transcription factor has critical roles in cell growth, proliferation, metabolism, differentiation, transformation and angiogenesis. MYC overexpression is seen in about 15% of breast cancers and linked to aggressive phenotypes. MYC overexpression also induces oxidative stress and replication stress in cells. ATM signalling and ATR-mediated signalling are critical for MYC-induced DNA damage response. Whether ATM and ATR expressions influence clinical outcomes in MYC overexpressed breast cancers is unknown. METHODS We investigated ATM, ATR and MYC at the transcriptional level [Molecular Taxonomy of Breast Cancer International Consortium cohort (n = 1950)] and at the protein level in the Nottingham series comprising 1650 breast tumours. We correlated ATM, ATR and MYC expressions to clinicopathological features and survival outcomes. RESULTS In MYC over expressed tumours, high ATR or low ATM levels were associated with aggressive breast cancer features such as higher tumour grade, de-differentiation, pleomorphism, high mitotic index, high-risk Nottingham Prognostic Index, triple negative and basal-like breast cancers (all adjusted p values < 0.05). Tumours with low ATM or high ATR levels in conjunction with MYC overexpression also have worse overall breast cancer-specific survival (BCSS) (p value < 0.05). CONCLUSIONS We conclude that ATR/ATM-directed stratification and personalisation of therapy may be feasible in MYC overexpressed breast cancer.
Collapse
Affiliation(s)
- Constantinos Savva
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Karen De Souza
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK
| | - Reem Ali
- Translational Oncology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, Academic Unit of Oncology, School of Medicine, University of Nottingham, Nottingham, NG51 PB, UK
| | - Emad A Rakha
- Department of Pathology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK
| | - Andrew R Green
- Department of Pathology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG5 1PB, UK.
| | - Srinivasan Madhusudan
- Department of Oncology, Nottingham University Hospitals, Nottingham, NG5 1PB, UK.
- Translational Oncology, Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, Academic Unit of Oncology, School of Medicine, University of Nottingham, Nottingham, NG51 PB, UK.
| |
Collapse
|
32
|
Lima ZS, Ghadamzadeh M, Arashloo FT, Amjad G, Ebadi MR, Younesi L. Recent advances of therapeutic targets based on the molecular signature in breast cancer: genetic mutations and implications for current treatment paradigms. J Hematol Oncol 2019; 12:38. [PMID: 30975222 PMCID: PMC6460547 DOI: 10.1186/s13045-019-0725-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women all over the world. Genetic background of women contributes to her risk of having breast cancer. Certain inherited DNA mutations can dramatically increase the risk of developing certain cancers and are responsible for many of the cancers that run in some families. Regarding the widespread multigene panels, whole exome sequencing is capable of providing the evaluation of genetic function mutations for development novel strategy in clinical trials. Targeting the mutant proteins involved in breast cancer can be an effective therapeutic approach for developing novel drugs. This systematic review discusses gene mutations linked to breast cancer, focusing on signaling pathways that are being targeted with investigational therapeutic strategies, where clinical trials could be potentially initiated in the future are being highlighted.
Collapse
Affiliation(s)
- Zeinab Safarpour Lima
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mostafa Ghadamzadeh
- Departement of Radiology, Hasheminejad Kidney Centre (HKC), Iran University of Medical Sciences, Tehran, Iran
| | | | - Ghazaleh Amjad
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohammad Reza Ebadi
- Shohadaye Haft-e-tir Hospital, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ladan Younesi
- Shahid Akbar Abadi Clinical Research Development Unit (ShCRDU), Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
33
|
|
34
|
Sridharan DM, Enerio S, Wang C, LaBarge MA, Stampfer MR, Pluth JM. Genetic variation and radiation quality impact cancer promoting cellular phenotypes in response to HZE exposure. LIFE SCIENCES IN SPACE RESEARCH 2019; 20:101-112. [PMID: 30797427 DOI: 10.1016/j.lssr.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
There exists a wide degree of genetic variation within the normal human population which includes disease free individuals with heterozygote defects in major DNA repair genes. A lack of understanding of how this genetic variation impacts cellular phenotypes that inform cancer risk post heavy ion exposure poses a major limitation in developing personalized cancer risk assessment astronauts. We initiated a pilot study with Human Mammary Epithelial Cell strains (HMEC) derived from wild type, a p16 silenced derivative of wild type, and various genetic variants that were heterozygote for DNA repair genes; BRCA1, BRCA2 and ATM. Cells strains were exposed to different high and low LET radiation qualities to generate both simple and complex lesions and centrosome aberrations were examined as a surrogate marker of genomic instability and cancer susceptibility post different exposures. Our results indicate that centrosome aberration frequency is higher in the genetic variants under study. The aberration frequency increases with dose, complexity of the lesion generated by different radiation qualities and age of the individual. This increase in genomic instability correlates with elevated check-point activation post radiation exposure. These studies suggest that the influence of individual genetics on cell cycle regulation could modify the degree of early genomic instability in response to complex lesions and potentially define cancer predisposition in response to HZE exposure. These results will have significant implications in estimating cancer susceptibility in genetically variant individuals exposed to HZE particles.
Collapse
Affiliation(s)
- Deepa M Sridharan
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94803, USA
| | - Shiena Enerio
- Division of Biological Systems and Engineering, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94803, USA
| | - Chris Wang
- Division of Biological Systems and Engineering, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94803, USA
| | - Mark A LaBarge
- Department of Population Sciences, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Martha R Stampfer
- Division of Biological Systems and Engineering, Department of BioEngineering & BioMedical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94803, USA
| | - Janice M Pluth
- Department of Health Physics and Diagnostic Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
35
|
Wendt C, Margolin S. Identifying breast cancer susceptibility genes - a review of the genetic background in familial breast cancer. Acta Oncol 2019; 58:135-146. [PMID: 30606073 DOI: 10.1080/0284186x.2018.1529428] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Heritage is the most important risk factor for breast cancer. About 15-20% of breast cancer is familial, referring to affected women who have one or more first- or second-degree relatives with the disease. The heritable component in these families is substantial, especially in families with aggregation of breast cancer with low age at onset. Identifying breast cancer susceptibility genes: Since the discovery of the highly penetrant autosomal dominant susceptibility genes BRCA1 and BRCA2 in the 1990s, several more breast cancer genes that confer a moderate to high risk of breast cancer have been identified. Furthermore, during the last decade, advances in genomic technologies have led to large scale genotyping in genome-wide association studies that have identified a considerable amount of common low penetrance loci. In total, the high risk genes, BRCA1, BRCA2, TP53, STK11, CD1 and PTEN account for approximately 20% of the familial risk. Moderate risk variants account for up to 5% of the inherited familial risk. The more than 180 identified low-risk loci explain 18% of the familial risk. Altogether more than half of the genetic background in familial breast cancer remains unclear. Other genes and low risk loci that explain a part the remaining fraction will probably be identified. Clinical aspects and future perspectives: Definitive clinical recommendations can be drawn only for carriers of germline variants in a limited number of high and moderate risk genes for which an association with breast cancer has been established. Future progress in evaluating previously identified breast cancer candidate variants and low risk loci as well as exploring new ones can play an important role in improving individual risk prediction in familial breast cancer.
Collapse
Affiliation(s)
- Camilla Wendt
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Sara Margolin
- Department of Oncology, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
De Silva S, Tennekoon KH, Karunanayake EH. Overview of the genetic basis toward early detection of breast cancer. BREAST CANCER-TARGETS AND THERAPY 2019; 11:71-80. [PMID: 30718964 PMCID: PMC6345186 DOI: 10.2147/bctt.s185870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cancer is a socioeconomical burden in any nation. Out of that, breast cancer is identified as the most common malignancy worldwide among women irrespective of age. As women are an important segment in a community, the weakening of their strength toward the development of a nation is a critical problem in each nation. In this review, it was aimed to discuss the characteristics of cancer genome, cancer genetics, and cancer epigenetics in general and then focus on discussing both genetic and nongenetic factors responsible for the predisposition of breast cancer in humans. More emphasis was placed on genes responsible for the early onset of the disease and which can be used as genetic tools in the identification of the disease at an early stage. Then the context of genetic involvement toward the breast cancer occurrence before age of 40 years was highlighted accordingly. In addition to genetic testing, the review paid adequate attention to mention novel liquid biopsy techniques and other clinical, laboratory, and radiologic assessments. These techniques can be used in early detection and recurrence as well as the surveillance of the patients after primary therapies.
Collapse
Affiliation(s)
- Sumadee De Silva
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka,
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka,
| | - Eric Hamilton Karunanayake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka,
| |
Collapse
|
37
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
38
|
Toh MR, Chiang JB, Chong ST, Chan SH, Ishak NDB, Courtney E, Lee WH, Syed Abdillah Al SMFB, Carson Allen J, Lim KH, Davila S, Tan P, Lim WK, Tan IBH, Ngeow J. Germline Pathogenic Variants in Homologous Recombination and DNA Repair Genes in an Asian Cohort of Young-Onset Colorectal Cancer. JNCI Cancer Spectr 2018; 2:pky054. [PMID: 31360874 PMCID: PMC6649855 DOI: 10.1093/jncics/pky054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/09/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Growing evidence suggests a role for cancer susceptibility genes such as BRCA2 and PALB2 in young-onset colorectal cancers. Using a cohort of young colorectal cancer patients, we sought to identify and provide functional evidence for germline pathogenic variants of DNA repair genes not typically associated with colorectal cancer. METHODS We recruited 88 patients with young-onset colorectal cancers seen at a general oncology center. Whole-exome sequencing was performed to identify variants in DNA repair and colorectal cancer predisposition genes. Pathogenic BRCA2 and PALB2 variants were analyzed using immunoblot and immunofluorescence on patient-derived lymphoblastoid cells. RESULTS In general, our cohort displayed characteristic features of young-onset colorectal cancers. Most patients had left-sided tumors and were diagnosed at late stages. Four patients had familial adenomatous polyposis, as well as pathogenic APC variants. We identified 12 pathogenic variants evenly distributed between DNA repair and colorectal cancer predisposition genes. Six patients had pathogenic variants in colorectal cancer genes: APC (n = 4) and MUTYH monoallelic (n = 2). Another six had pathogenic variants in DNA repair genes: ATM (n = 1), BRCA2 (n = 1), PALB2 (n = 1), NTHL1 (n = 1), and WRN (n = 2). Pathogenic variants BRCA2 c.9154C>T and PALB2 c.1059delA showed deficient homologous recombination repair, evident from the impaired RAD51 nuclear localization and foci formation. CONCLUSION A substantial portion of pathogenic variants in young-onset colorectal cancer was found in DNA repair genes not previously associated with colorectal cancer. This may have implications for the management of patients. Further studies are needed to ascertain the enrichment of pathogenic DNA repair gene variants in colorectal cancers.
Collapse
Affiliation(s)
- Ming Ren Toh
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Jian Bang Chiang
- Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
| | - Siao Ting Chong
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
| | - Sock Hoai Chan
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
| | | | - Eliza Courtney
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
| | - Wei Hao Lee
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
| | | | | | - Kiat Hon Lim
- Department of Pathology, Singapore General Hospital, Singapore 169608, Singapore
| | - Sonia Davila
- Singhealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 169856, Singapore
| | - Patrick Tan
- Singhealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 169856, Singapore
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Cancer Science Institute of Singapore, National University Singapore, Singapore 117599, Singapore
| | - Weng Khong Lim
- Singhealth Duke-NUS Institute of Precision Medicine (PRISM), Singapore 169856, Singapore
- Cancer & Stem Cell Biology Program, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Iain Bee Huat Tan
- Division of Molecular and Cellular Research, National Cancer Center, Singapore 169610, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore 138672, Singapore
| | - Joanne Ngeow
- Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Center, Singapore 169610, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| |
Collapse
|
39
|
Park S, Supek F, Lehner B. Systematic discovery of germline cancer predisposition genes through the identification of somatic second hits. Nat Commun 2018; 9:2601. [PMID: 29973584 PMCID: PMC6031629 DOI: 10.1038/s41467-018-04900-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/04/2018] [Indexed: 01/08/2023] Open
Abstract
The genetic causes of cancer include both somatic mutations and inherited germline variants. Large-scale tumor sequencing has revolutionized the identification of somatic driver alterations but has had limited impact on the identification of cancer predisposition genes (CPGs). Here we present a statistical method, ALFRED, that tests Knudson's two-hit hypothesis to systematically identify CPGs from cancer genome data. Applied to ~10,000 tumor exomes the approach identifies known and putative CPGs - including the chromatin modifier NSD1 - that contribute to cancer through a combination of rare germline variants and somatic loss-of-heterozygosity (LOH). Rare germline variants in these genes contribute substantially to cancer risk, including to ~14% of ovarian carcinomas, ~7% of breast tumors, ~4% of uterine corpus endometrial carcinomas, and to a median of 2% of tumors across 17 cancer types.
Collapse
Affiliation(s)
- Solip Park
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain
| | - Fran Supek
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain.,Institut de Recerca Biomedica (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.,Division of Electronics, Rudjer Boskovic Institute, 10000, Zagreb, Croatia.,Institut de Recerca Biomedica (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003, Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain. .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Luis Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
40
|
Hu C, Hart SN, Polley EC, Gnanaolivu R, Shimelis H, Lee KY, Lilyquist J, Na J, Moore R, Antwi SO, Bamlet WR, Chaffee KG, DiCarlo J, Wu Z, Samara R, Kasi PM, McWilliams RR, Petersen GM, Couch FJ. Association Between Inherited Germline Mutations in Cancer Predisposition Genes and Risk of Pancreatic Cancer. JAMA 2018; 319:2401-2409. [PMID: 29922827 PMCID: PMC6092184 DOI: 10.1001/jama.2018.6228] [Citation(s) in RCA: 395] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE Individuals genetically predisposed to pancreatic cancer may benefit from early detection. Genes that predispose to pancreatic cancer and the risks of pancreatic cancer associated with mutations in these genes are not well defined. OBJECTIVE To determine whether inherited germline mutations in cancer predisposition genes are associated with increased risks of pancreatic cancer. DESIGN, SETTING, AND PARTICIPANTS Case-control analysis to identify pancreatic cancer predisposition genes; longitudinal analysis of patients with pancreatic cancer for prognosis. The study included 3030 adults diagnosed as having pancreatic cancer and enrolled in a Mayo Clinic registry between October 12, 2000, and March 31, 2016, with last follow-up on June 22, 2017. Reference controls were 123 136 individuals with exome sequence data in the public Genome Aggregation Database and 53 105 in the Exome Aggregation Consortium database. EXPOSURES Individuals were classified based on carrying a deleterious mutation in cancer predisposition genes and having a personal or family history of cancer. MAIN OUTCOMES AND MEASURES Germline mutations in coding regions of 21 cancer predisposition genes were identified by sequencing of products from a custom multiplex polymerase chain reaction-based panel; associations of genes with pancreatic cancer were assessed by comparing frequency of mutations in genes of pancreatic cancer patients with those of reference controls. RESULTS Comparing 3030 case patients with pancreatic cancer (43.2% female; 95.6% non-Hispanic white; mean age at diagnosis, 65.3 [SD, 10.7] years) with reference controls, significant associations were observed between pancreatic cancer and mutations in CDKN2A (0.3% of cases and 0.02% of controls; odds ratio [OR], 12.33; 95% CI, 5.43-25.61); TP53 (0.2% of cases and 0.02% of controls; OR, 6.70; 95% CI, 2.52-14.95); MLH1 (0.13% of cases and 0.02% of controls; OR, 6.66; 95% CI, 1.94-17.53); BRCA2 (1.9% of cases and 0.3% of controls; OR, 6.20; 95% CI, 4.62-8.17); ATM (2.3% of cases and 0.37% of controls; OR, 5.71; 95% CI, 4.38-7.33); and BRCA1 (0.6% of cases and 0.2% of controls; OR, 2.58; 95% CI, 1.54-4.05). CONCLUSIONS AND RELEVANCE In this case-control study, mutations in 6 genes associated with pancreatic cancer were found in 5.5% of all pancreatic cancer patients, including 7.9% of patients with a family history of pancreatic cancer and 5.2% of patients without a family history of pancreatic cancer. Further research is needed for replication in other populations.
Collapse
Affiliation(s)
- Chunling Hu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Steven N Hart
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Eric C Polley
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Rohan Gnanaolivu
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Hermela Shimelis
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Kun Y Lee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jenna Lilyquist
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jie Na
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Raymond Moore
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Samuel O Antwi
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida
| | - William R Bamlet
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Kari G Chaffee
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - John DiCarlo
- Qiagen Sciences Research and Development, Qiagen Inc, Hilden, Germany
| | - Zhong Wu
- Qiagen Sciences Research and Development, Qiagen Inc, Hilden, Germany
| | - Raed Samara
- Qiagen Sciences Research and Development, Qiagen Inc, Hilden, Germany
| | | | | | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Fergus J Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
41
|
Jerzak KJ, Mancuso T, Eisen A. Ataxia-telangiectasia gene ( ATM) mutation heterozygosity in breast cancer: a narrative review. ACTA ACUST UNITED AC 2018; 25:e176-e180. [PMID: 29719442 DOI: 10.3747/co.25.3707] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Background Despite the fact that heterozygosity for a pathogenic ATM variant is present in 1%-2% of the adult population, clinical guidelines to inform physicians and genetic counsellors about optimal management in that population are lacking. Methods In this narrative review, we describe the challenges and controversies in the management of women who are heterozygous for a pathogenic ATM variant with respect to screening for breast and other malignancies, to choices for systemic therapy, and to decisions about radiation therapy. Results Given that the lifetime risk for breast cancer in women who are heterozygous for a pathogenic ATM variant is likely greater than 25%, those women should undergo annual mammographic screening starting at least by 40 years of age. For women in this group who have a strong family history of breast cancer, earlier screening with both magnetic resonance imaging and mammography should be considered. High-quality data to inform the management of established breast cancer in carriers of pathogenic ATM variants are lacking. Although deficiency in the ATM gene product might confer sensitivity to dna-damaging pharmaceuticals such as inhibitors of poly (adp-ribose) polymerase or platinum agents, prospective clinical trials have not been conducted in the relevant patient population. Furthermore, the evidence with respect to radiation therapy is mixed; some data suggest increased toxicity, and other data suggest improved clinical benefit from radiation in women who are carriers of a pathogenic ATM variant. Conclusions As in the 2017 U.S. National Comprehensive Cancer Network guidelines, we recommend high-risk imaging for women in Ontario who are heterozygous for a pathogenic ATM variant. Currently, ATM carrier status should not influence decisions about systemic or radiation therapy in the setting of an established breast cancer diagnosis.
Collapse
Affiliation(s)
- K J Jerzak
- Department of Medicine, University of Toronto, Toronto, ON
| | - T Mancuso
- Department of Medicine, University of Toronto, Toronto, ON
| | - A Eisen
- Department of Medicine, University of Toronto, Toronto, ON
| |
Collapse
|
42
|
Cao X, Tang Q, Holland-Letz T, Gündert M, Cuk K, Schott S, Heil J, Golatta M, Sohn C, Schneeweiss A, Burwinkel B. Evaluation of Promoter Methylation of RASSF1A and ATM in Peripheral Blood of Breast Cancer Patients and Healthy Control Individuals. Int J Mol Sci 2018; 19:ijms19030900. [PMID: 29562656 PMCID: PMC5877761 DOI: 10.3390/ijms19030900] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 01/26/2023] Open
Abstract
Breast cancer (BC) is the most common cancer among women and has high mortality rates. Early detection is supposed to be critical for the patient’s prognosis. In recent years, several studies have investigated global DNA methylation profiles and gene-specific DNA methylation in blood-based DNA to develop putative screening markers for cancer. However, most of the studies have not yet been validated. In our study, we analyzed the promoter methylation of RASSF1A and ATM in peripheral blood DNA of 229 sporadic patients and 151 healthy controls by the MassARRAY EpiTYPER assay. There were no significant differences in DNA methylation levels of RASSF1A and ATM between the sporadic BC cases and the healthy controls. Furthermore, we performed the Infinium HumanMethylation450 BeadChip (450K) array analysis using 48 sporadic BC cases and 48 healthy controls (cases and controls are the same from those of the MassARRAY EpiTYPER assay) and made a comparison with the published data. No significant differences were presented in DNA methylation levels of RASSF1A and ATM between the sporadic BC cases and the healthy controls. So far, the evidence for powerful blood-based methylation markers is still limited and the identified markers need to be further validated.
Collapse
Affiliation(s)
- Xue Cao
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- Division of Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Qiuqiong Tang
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- Division of Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Tim Holland-Letz
- Division of Biostatistics (C060), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Melanie Gündert
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- Division of Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Katarina Cuk
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- Division of Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| | - Sarah Schott
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
| | - Jörg Heil
- Department of Gynecology and Obstetrics, University Women's Clinic, Heidelberg 69120, Germany.
| | - Michael Golatta
- Department of Gynecology and Obstetrics, University Women's Clinic, Heidelberg 69120, Germany.
| | - Christof Sohn
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
| | - Andreas Schneeweiss
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- National Centre for Tumor Diseases, Heidelberg 69120, Germany.
| | - Barbara Burwinkel
- Molecular Biology of Breast Cancer, Department of Gynecology and Obstetrics, University of Heidelberg, Heidelberg 69120, Germany.
- Division of Molecular Epidemiology (C080), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| |
Collapse
|
43
|
Refaat A, Owis M, Abdelhamed S, Saiki I, Sakurai H. Retrospective screening of microarray data to identify candidate IFN-inducible genes in a HTLV-1 transformed model. Oncol Lett 2018; 15:4753-4758. [PMID: 29616088 PMCID: PMC5876501 DOI: 10.3892/ol.2018.8014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
HuT-102 cells are considered one of the most representable human T-lymphotropic virus 1 (HTLV-1)-infected cell lines for studying adult T-cell lymphoma (ATL). In our previous studies, genome-wide screening was performed using the GeneChip system with Human Genome Array U133 Plus 2.0 for transforming growth factor-β-activated kinase 1 (TAK1)-, interferon regulatory factor 3 (IRF3)- and IRF4-regulated genes to demonstrate the effects of interferon-inducible genes in HuT-102 cells. Our previous findings demonstrated that TAK1 induced interferon inducible genes via an IRF3-dependent pathway and that IRF4 has a counteracting effect. As our previous data was performed by manual selection of common interferon-related genes mentioned in the literature, there has been some obscure genes that have not been considered. In an attempt to maximize the outcome of those microarrays, the present study reanalyzed the data collected in previous studies through a set of computational rules implemented using ‘R’ software, to identify important candidate genes that have been missed in the previous two studies. The final list obtained consisted of ten genes that are highly recommend as potential candidate for therapies targeting the HTLV-1 infected cancer cells. Those genes are ATM, CFTR, MUC4, PARP14, QK1, UBR2, CLEC7A (Dectin-1), L3MBTL, SEC24D and TMEM140. Notably, PARP14 has gained increased attention as a promising target in cancer cells.
Collapse
Affiliation(s)
- Alaa Refaat
- Drug Resistance Group, Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast BT9 7AE, Northern Ireland.,Department of Cancer Cell Biology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Mohamed Owis
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
| | - Sherif Abdelhamed
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Ikuo Saiki
- Division of Pathogenic Biochemistry, Institute of Natural Medicine, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
44
|
Lorans M, Dow E, Macrae FA, Winship IM, Buchanan DD. Update on Hereditary Colorectal Cancer: Improving the Clinical Utility of Multigene Panel Testing. Clin Colorectal Cancer 2018; 17:e293-e305. [PMID: 29454559 DOI: 10.1016/j.clcc.2018.01.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 12/30/2022]
Abstract
Colorectal cancer (CRC), one of the most common cancers, is a major public health issue globally, especially in Westernized countries. Up to 35% of CRCs are thought to be due to heritable factors, but currently only 5% to 10% of CRCs are attributable to high-risk mutations in known CRC susceptibility genes, predominantly the mismatch repair genes (Lynch syndrome) and adenomatous polyposis coli gene (APC; familial adenomatous polyposis). In this era of precision medicine, high-risk mutation carriers, when identified, can be offered various risk management options that prevent cancers and improve survival, including risk-reducing medication, screening for early detection, and surgery. The practice of clinical genetics is currently transitioning from phenotype-directed single gene testing to multigene panels, now offered by numerous providers. For CRC, the genes included across these panels vary, ranging from well established, clinically actionable susceptibility genes with quantified magnitude of risk, to genes that lack extensive validation or have less evidence of association with CRC and, therefore, have minimal clinical utility. The current lack of consensus regarding inclusion of genes in CRC panels presents challenges in patient counseling and management, particularly when a variant in a less validated gene is identified. Furthermore, there remain considerable challenges regarding variant interpretation even for the well established CRC susceptibility genes. Ironically though, only through more widespread testing and the accumulation of large international data sets will sufficient information be generated to (i) enable well powered studies to determine if a gene is associated with CRC susceptibility, (ii) to develop better models for variant interpretation and (iii) to facilitate clinical translation.
Collapse
Affiliation(s)
- Marie Lorans
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia
| | - Eryn Dow
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Finlay A Macrae
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia; Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Ingrid M Winship
- Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia; Genetic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia.
| |
Collapse
|
45
|
Polo A, Nittoli C, Crispo A, Langastro T, Cocco S, Severino L, De Laurentiis M, Ciliberto G, Montella M, Budillon A, Costantini S. An interaction network approach to study the correlation between endocrine disrupting chemicals and breast cancer. MOLECULAR BIOSYSTEMS 2017; 13:2687-2696. [PMID: 29072741 DOI: 10.1039/c7mb00489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are natural or synthetic exogenous substances affecting human health. Although present at low concentrations in the environment, they can cause a broad range of negative effects on the endocrine functions by mimicking the action of steroid hormones due to their structural similarity. Hormonal unbalance can play an important role in carcinogenesis at any stage of disease. In the case of the breast cancer, EDCs directly affect the transformation of normal breast cells into cancer cells by interfering with hormonal regulation and by inducing the alteration of factors that regulate gene expression. The principal aims of this work were to study the interaction networks of proteins modulated in breast cancer by either environmental EDCs or mycotoxins, and to identify the proteins with the strongest coordination role defined as hub nodes. Our studies evidenced the presence of seven and six hub proteins in two EDCs and mycotoxins networks, respectively. Then, by merging the two networks, we identified that three hub nodes (BCL2, ESR2 and CTNNB1) in the environmental EDCs network show direct interactions with three hub nodes (CASP8, RELA and MKI67) in the mycotoxins network. These data highlighted that two networks are linked through proteins involved in the apoptosis regulation and in processes related to cell proliferation and survival, and, thus, in breast cancer progression.
Collapse
Affiliation(s)
- Andrea Polo
- Epidemiology Unit, Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Powers B, Pal T, Laronga C. Considerations in Testing for Inherited Breast Cancer Predisposition in the Era of Personalized Medicine. Surg Oncol Clin N Am 2017; 27:1-22. [PMID: 29132555 DOI: 10.1016/j.soc.2017.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Technological advances realized through next-generation sequencing technologies coupled with the loss of the ability to patent genes have led to reduction in costs for genetic testing. As a result, more people are being identified with inherited breast cancer syndromes that may affect recommendations for surveillance and risk reduction. Surgeons, at the forefront for patients newly diagnosed with breast cancer, must keep current with the changing landscape of genetics to continue to provide appropriate counsel and care. This article provides an overview of individuals at risk for inherited cancer predisposition and recommendations for surveillance and management.
Collapse
Affiliation(s)
- Benjamin Powers
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, 10920 N. Mckinley Drive, Tampa, FL 33612, USA
| | - Tuya Pal
- Department of Medicine, Vanderbilt University Medical Center, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Christine Laronga
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, 10920 N. Mckinley Drive, Tampa, FL 33612, USA.
| |
Collapse
|
47
|
Jian W, Shao K, Qin Q, Wang X, Song S, Wang X. Clinical and genetic characterization of hereditary breast cancer in a Chinese population. Hered Cancer Clin Pract 2017; 15:19. [PMID: 29093764 PMCID: PMC5663067 DOI: 10.1186/s13053-017-0079-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/12/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Breast cancer develops as a result of multiple gene mutations in combination with environmental risk factors. Causative variants in genes such as BRCA1 and/or BRCA2 have been shown to account for hereditary nature of certain breast cancers. However,other genes, such as ATM, PALB2, BRIP1, CHEK, BARD1, while lower in frequency, may also increase breast cancer risk. There are few studies examining the role of these causative variants. Our study aimed to examine the clinical and genetic characterization of hereditary breast cancer in a Chinese population. METHODS We tested a panel of 27 genes implicated in breast cancer risk in 240 participants using Next-Generation Sequencing. The prevalence of genetic causative variants was determined and the association between causative variants and clinico-pathological characteristics was analyzed. RESULTS Causative variant rate was 19.2% in the breast cancer (case) group and 12.5% in the high-risk group. In the case group 2.5% of patients carried BRCA1 causative variant, 7.5% BRCA2 variants, 1.7% patients had MUTYH, CHEK or PALB2 variants, and 0.8% patients carried ATM, BARD1, NBN, RAD51C or TP53 variants. In the high-risk group 5.8% women carried MUTYH causative variants, 2.5% had causative variants in ATM, 1.7% patients had variants in BRCA2 and 0.8% in BARD1, BRIP1 or CDH1. There was no significant difference in the presence of causative variants among clinical stages of breast cancer, tumor size and lymph nodes status. However, eight of the 12 BRCA1/2 causative variants were found in the TNBC group. CONCLUSIONS We found increased genetic causative variants in the familial breast cancer group and in high-risk women with a family history of breast cancer. However, the variant MUTYH c.892-2A > G may not be directly associated with hereditary breast carcinoma.
Collapse
Affiliation(s)
- Wenjing Jian
- Department of Breast and Thyroid Surgery, Shenzhen Second people’s Hospital, Shenzhen, 518035 China
- Department of Breast and Thyroid Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630 China
| | - Kang Shao
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Qi Qin
- Department of Breast and Thyroid Surgery, Shenzhen Second people’s Hospital, Shenzhen, 518035 China
| | | | - Shufen Song
- Department of Breast and Thyroid Surgery, Shenzhen Second people’s Hospital, Shenzhen, 518035 China
| | - Xianming Wang
- Department of Breast and Thyroid Surgery, Shenzhen Second people’s Hospital, Shenzhen, 518035 China
| |
Collapse
|
48
|
Ruffalo M, Stojanov P, Pillutla VK, Varma R, Bar-Joseph Z. Reconstructing cancer drug response networks using multitask learning. BMC SYSTEMS BIOLOGY 2017; 11:96. [PMID: 29017547 PMCID: PMC5635550 DOI: 10.1186/s12918-017-0471-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/02/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Translating in vitro results to clinical tests is a major challenge in systems biology. Here we present a new Multi-Task learning framework which integrates thousands of cell line expression experiments to reconstruct drug specific response networks in cancer. RESULTS The reconstructed networks correctly identify several shared key proteins and pathways while simultaneously highlighting many cell type specific proteins. We used top proteins from each drug network to predict survival for patients prescribed the drug. CONCLUSIONS Predictions based on proteins from the in-vitro derived networks significantly outperformed predictions based on known cancer genes indicating that Multi-Task learning can indeed identify accurate drug response networks.
Collapse
Affiliation(s)
- Matthew Ruffalo
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Petar Stojanov
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Venkata Krishna Pillutla
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rohan Varma
- Electrical and Computer Engineering, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA. .,Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Germline variants in the ATM gene and breast cancer susceptibility in Moroccan women: A meta-analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2017. [DOI: 10.1016/j.ejmhg.2017.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
ATM is required for SOD2 expression and homeostasis within the mammary gland. Breast Cancer Res Treat 2017; 166:725-741. [PMID: 28849346 DOI: 10.1007/s10549-017-4424-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/25/2017] [Indexed: 02/01/2023]
Abstract
PURPOSE ATM activates the NF-κB transcriptional complex in response to genotoxic and oxidative stress. The purpose of this study was to examine if the NF-κB target gene and critical antioxidant SOD2 (MnSOD) in cultured mammary epithelium is also ATM-dependent, and what phenotypes arise from deletion of ATM and SOD2 within the mammary gland. METHODS SOD2 expression was studied in human mammary epithelial cells and MCF10A using RNAi to knockdown ATM or the NF-κB subunit RelA. To study ATM and SOD2 function in mammary glands, mouse lines containing Atm or Sod2 genes containing LoxP sites were mated with mice harboring Cre recombinase under the control of the whey acidic protein promoter. Quantitative PCR was used to measure gene expression, and mammary gland structure was studied using histology. RESULTS SOD2 expression is ATM- and RelA-dependent, ATM knockdown renders cells sensitive to pro-oxidant exposure, and SOD mimetics partially rescue this sensitivity. Mice with germline deletion of Atm fail to develop mature mammary glands, but using a conditional knockout approach, we determined that Atm deletion significantly diminished the expression of Sod2. We also observed that these mice (termed AtmΔ/Δ) displayed a progressive lactation defect as judged by reduced pup growth rate, aberrant lobulo-alveolar structure, diminished milk protein gene expression, and increased apoptosis within lactating glands. This phenotype appears to be linked to dysregulated Sod2 expression as mammary gland-specific deletion of Sod2 phenocopies defects observed in AtmΔ/Δ dams. CONCLUSIONS We conclude that ATM is required to promote expression of SOD2 within the mammary epithelium, and that both ATM and SOD2 play a crucial role in mammary gland homeostasis.
Collapse
|