1
|
Han CY, Wang DZ, Bai JF, Zhao LL, Song WZ. Peri-implant keratinized gingiva augmentation using xenogeneic collagen matrix and platelet-rich fibrin: A case report. World J Clin Cases 2021; 9:10738-10745. [PMID: 35005010 PMCID: PMC8686158 DOI: 10.12998/wjcc.v9.i34.10738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Keratinized gingival insufficiency is a disease attributed to long-term tooth loss, can severely jeopardizes the long-term health of implants. A simple and effective augmentation surgery method should be urgently developed.
CASE SUMMARY A healthy female patient, 45-year-old, requested implant restoration of the her left mandibular first molar and second molar. Before considering a stage II, as suggested from the probing depth measurements, the widths of the mesial, medial, and distal buccal keratinized gingiva of second molar (tooth #37) were measured and found to be 0.5 mm, 0.5 mm, and 0 mm, respectively. This suggested that the gingiva was insufficient to resist damage from bacterial and mechanical stimulation. Accordingly, modified apically repositioned flap (ARF) surgery combined with xenogeneic collagen matrix (XCM) and platelet-rich fibrin (PRF) was employed to increase the width of gingival tissue. After 1 mo of healing, the widths of mesial, medial, and distal buccal keratinized gingiva reached 4 mm, 4 mm, and 3 mm, respectively, and the thickness of the augmented mucosa was 4.5 mm. Subsequently, through the second-stage operation, the patient obtained an ideal soft tissue shape around the implant.
CONCLUSION For cases with keratinized gingiva widths around implants less than 2mm,the soft tissue width and thickness could be increased by modified ARF surgery combined with XCM and PRF. Moreover, this surgery significantly alleviated patients’ pain and ameliorated oral functional comfort.
Collapse
Affiliation(s)
- Chun-Yu Han
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin Province, China
| | - De-Zhou Wang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin Province, China
| | - Jian-Fei Bai
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin Province, China
| | - Lan-Lan Zhao
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin Province, China
| | - Wen-Zhi Song
- Department of Stomatology, China-Japan Union Hospital, Jilin University, Changchun 130031, Jilin Province, China
| |
Collapse
|
2
|
Ding R, Sun X, Yi B, Liu W, Kazama K, Xu X, Deshpande D, Liang C, Sun J. Nur77 Attenuates Inflammasome Activation by Inhibiting Caspase-1 Expression in Pulmonary Vascular Endothelial Cells. Am J Respir Cell Mol Biol 2021; 65:288-299. [PMID: 33971110 DOI: 10.1165/rcmb.2020-0524oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Inflammasomes are intracellular multiprotein complexes that help trigger and maintain the inflammatory response as part of the innate immune system. Recently, it has been increasingly recognized that aberrant inflammasome activation is critically involved endothelial dysfunction in a variety of human diseases, such as atherosclerosis, acute lung injury (ALI), and type 2 diabetes. The molecular mechanisms underlying endothelial inflammasome activation, however, are not completely elucidated. In the present study, we identified orphan nuclear receptor Nur77 as a novel regulator in controlling inflammasome activation in vascular endothelial cells (ECs). We demonstrated that LPS-induced inflammasome activation was significantly inhibited by ectopic overexpression of Nur77, predominantly through transcriptionally suppression of caspase-1 expression in vascular ECs. Consistent with this observation, we found that LPS-induced inflammasome activation was significantly augmented in lung ECs isolated from Nur77 knockout (KO) mice. Mechanistically, we showed that Nur77-induced inhibition of caspase-1 expression was due to an inhibition of Interferon Regulatory Factor 1 (IRF1) expression and its subsequent binding to the caspase-1 promoter. Importantly, in a mouse model of LPS-induced acute lung injury (ALI), Nur77 KO led to a marked activation of caspase-1 in the lung, increased alveolar and circulating IL-1β levels, and exacerbated ALI, all of which were substantially inhibited by administration of caspase-1 inhibitor. Together, our results support an important role for Nur77 in controlling inflammasome activation in vascular ECs and suggest that Nur77 could be a novel therapeutic target for the treatment of human diseases associated with aberrant inflammasome activation, such as ALI and atherosclerosis.
Collapse
Affiliation(s)
- Ru Ding
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Xiaobo Sun
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Bing Yi
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Wennan Liu
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Kyosuke Kazama
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Xinyun Xu
- Changzheng Hospital, 56652, Shanghai, China
| | - Deepak Deshpande
- Thomas Jefferson University, 6559, Center for Translational Medicine, Philadelphia, Pennsylvania, United States
| | - Chun Liang
- Changzheng Hospital, 56652, Shanghai, China
| | - Jianxin Sun
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States;
| |
Collapse
|
3
|
Interferon regulatory factor 1 (IRF-1) downregulates Checkpoint kinase 1 (CHK1) through miR-195 to upregulate apoptosis and PD-L1 expression in Hepatocellular carcinoma (HCC) cells. Br J Cancer 2021; 125:101-111. [PMID: 33772151 DOI: 10.1038/s41416-021-01337-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND CHK1 is considered an oncogene with overexpression in numerous cancers. However, CHK1 signalling regulation in hepatocellular carcinoma (HCC) remains unclear. METHODS CHEK1 mRNA, protein, pri-miR-195 and miR-195 expression in HCC tissue was determined by qPCR, WB and IF staining assay. Survival analyses in HCC with high- and low-CHEK1 mRNA expression was performed using TCGA database. Relative luciferase activity was investigated in HCC cells transfected with p-CHEK1 3'UTR. Apoptosis was detected by TUNEL assay. NK and CD8+ T cells were analysed by flow cytometry. RESULTS CHK1 is increased in human HCC tumours compared with non-cancerous liver. High CHK1 predicts worse prognosis. IFN-γ suppresses CHK1 via IRF-1 in HCC cells. The molecular mechanism of IRF-1 suppressing CHK1 is post-transcriptional by promoting miR-195 binding to CHEK1 mRNA 3'UTR, which exerts a translational blockade. Upregulated IRF-1 inhibits CHK1, which induces apoptosis of HCC cells. Likewise, CHK1 inhibition augments cellular apoptosis in HCC tumours. This effect may be a result of increased tumour NK cell infiltration. However, IRF-1 expression or CHK1 inhibition also upregulates PD-L1 expression via increased STAT3 phosphorylation. CONCLUSIONS IRF-1 induces miR-195 to suppress CHK1 protein expression. Both increased IRF-1 and decreased CHK1 upregulate cellular apoptosis and PD-L1 expression in HCC.
Collapse
|
4
|
Abstract
Systems-wide profiling of breast cancer has almost always entailed RNA and DNA analysis by microarray and sequencing techniques. Marked developments in proteomic technologies now enable very deep profiling of clinical samples, with high identification and quantification accuracy. We analysed 40 oestrogen receptor positive (luminal), Her2 positive and triple negative breast tumours and reached a quantitative depth of >10,000 proteins. These proteomic profiles identified functional differences between breast cancer subtypes, related to energy metabolism, cell growth, mRNA translation and cell–cell communication. Furthermore, we derived a signature of 19 proteins, which differ between the breast cancer subtypes, through support vector machine (SVM)-based classification and feature selection. Remarkably, only three proteins of the signature were associated with gene copy number variations and eleven were also reflected on the mRNA level. These breast cancer features revealed by our work provide novel insights that may ultimately translate to development of subtype-specific therapeutics. Breast cancers have been extensively studied at the genomic and transcriptomic levels in the hope of tailoring therapeutic regimens. Here the authors generate deep coverage proteomes from several clinical breast cancer samples, and use machine learning techniques to uncover biological processes altered in specific cancer subtypes.
Collapse
|
5
|
Whitfield TW, Wang J, Collins PJ, Partridge EC, Aldred SF, Trinklein ND, Myers RM, Weng Z. Functional analysis of transcription factor binding sites in human promoters. Genome Biol 2012; 13:R50. [PMID: 22951020 PMCID: PMC3491394 DOI: 10.1186/gb-2012-13-9-r50] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 04/19/2012] [Accepted: 06/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background The binding of transcription factors to specific locations in the genome is integral to the orchestration of transcriptional regulation in cells. To characterize transcription factor binding site function on a large scale, we predicted and mutagenized 455 binding sites in human promoters. We carried out functional tests on these sites in four different immortalized human cell lines using transient transfections with a luciferase reporter assay, primarily for the transcription factors CTCF, GABP, GATA2, E2F, STAT, and YY1. Results In each cell line, between 36% and 49% of binding sites made a functional contribution to the promoter activity; the overall rate for observing function in any of the cell lines was 70%. Transcription factor binding resulted in transcriptional repression in more than a third of functional sites. When compared with predicted binding sites whose function was not experimentally verified, the functional binding sites had higher conservation and were located closer to transcriptional start sites (TSSs). Among functional sites, repressive sites tended to be located further from TSSs than were activating sites. Our data provide significant insight into the functional characteristics of YY1 binding sites, most notably the detection of distinct activating and repressing classes of YY1 binding sites. Repressing sites were located closer to, and often overlapped with, translational start sites and presented a distinctive variation on the canonical YY1 binding motif. Conclusions The genomic properties that we found to associate with functional TF binding sites on promoters -- conservation, TSS proximity, motifs and their variations -- point the way to improved accuracy in future TFBS predictions.
Collapse
Affiliation(s)
- Troy W Whitfield
- Program in Bioinformatics and Integrative Biology and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen W, Royer WE. Structural insights into interferon regulatory factor activation. Cell Signal 2010; 22:883-7. [PMID: 20043992 PMCID: PMC2846214 DOI: 10.1016/j.cellsig.2009.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 12/18/2009] [Indexed: 02/07/2023]
Abstract
The interferon regulatory factors (IRFs) play important roles in development of the immune system and host defense. Recent crystallographic and biochemical studies have provided insights into the mechanism of activation of IRFs by phosphorylation. The activation of a latent closed conformation of IRF in the cytoplasm is triggered by phosphorylation of Ser/Thr residues in a C-terminal region. Phosphorylation stimulates the C-terminal autoinhibitory domain to attain a highly extended conformation triggering dimerization through extensive contacts to a second subunit. Dimers are then transported into the nucleus and assemble with the coactivator CBP/p300 to activate transcription of type I interferons and other target genes. The advances made in understanding the release of inhibition after IRF dimerization have generated a detailed structural model of how IRFs signaling pathways are activated.
Collapse
Affiliation(s)
- Weijun Chen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
7
|
Bailey CM, Margaryan NV, Abbott DE, Schutte BC, Yang B, Khalkhali-Ellis Z, Hendrix MJC. Temporal and spatial expression patterns for the tumor suppressor Maspin and its binding partner interferon regulatory factor 6 during breast development. Dev Growth Differ 2009; 51:473-81. [PMID: 19527266 DOI: 10.1111/j.1440-169x.2009.01110.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interferon regulatory factor 6 (IRF6) is a non-canonical member of the interferon regulatory factor family of transcription factors. We recently identified IRF6 as a novel Maspin-interacting protein in mammary epithelial cells. Maspin is a tumor suppressor in the breast and has also been implicated in mammary gland morphogenesis. To explore a possible role for IRF6 in conjunction with Maspin during mammary gland growth and differentiation, we examined the expression of IRF6 and Maspin during post-utero mammary gland development using a combination of in vitro and in vivo approaches. The data revealed that the expression of IRF6 and Maspin is temporally and spatially regulated throughout mammary gland development, with maximal expression of both proteins occurring in fully differentiated, lactating lobuloalveolar cells. We further show that IRF6 adopts a lumenal localization pattern following complete epithelial cell polarization and present new evidence for the secretion of IRF6 into the milk. These results support the hypothesis that IRF6 and Maspin are important for mammary epithelial cell differentiation, and advance our understanding of the Maspin-IRF6 partnership during normal mammary gland development.
Collapse
Affiliation(s)
- Caleb M Bailey
- Children's Memorial Research Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60614-3394, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Baker JC, Ostrander JH, Lem S, Broadwater G, Bean GR, D'Amato NC, Goldenberg VK, Rowell C, Ibarra-Drendall C, Grant T, Pilie PG, Vasilatos SN, Troch MM, Scott V, Wilke LG, Paisie C, Rabiner SM, Torres-Hernandez A, Zalles CM, Seewaldt VL. ESR1 promoter hypermethylation does not predict atypia in RPFNA nor persistent atypia after 12 months tamoxifen chemoprevention. Cancer Epidemiol Biomarkers Prev 2008; 17:1884-90. [PMID: 18708376 DOI: 10.1158/1055-9965.epi-07-2696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Currently, we lack biomarkers to predict whether high-risk women with mammary atypia will respond to tamoxifen chemoprevention. EXPERIMENTAL DESIGN Thirty-four women with cytologic mammary atypia from the Duke University High-Risk clinic were offered tamoxifen chemoprevention. We tested whether ESR1 promoter hypermethylation and/or estrogen receptor (ER) protein expression by immunohistochemistry predicted persistent atypia in 18 women who were treated with tamoxifen for 12 months and in 16 untreated controls. RESULTS We observed a statistically significant decrease in the Masood score of women on tamoxifen chemoprevention for 12 months compared with control women. This was a significant interaction effect of time (0, 6, and 12 months) and treatment group (tamoxifen versus control) P = 0.0007. However, neither ESR1 promoter hypermethylation nor low ER expression predicted persistent atypia in Random Periareolar Fine Needle Aspiration after 12 months tamoxifen prevention. CONCLUSIONS Results from this single institution pilot study provide evidence that, unlike for invasive breast cancer, ESR1 promoter hypermethylation and/or low ER expression is not a reliable marker of tamoxifen-resistant atypia.
Collapse
|
9
|
Bouhet S, Lafont V, Billard E, Gross A, Dornand J. The IFNgamma-induced STAT1-CBP/P300 association, required for a normal response to the cytokine, is disrupted in Brucella-infected macrophages. Microb Pathog 2008; 46:88-97. [PMID: 19041714 DOI: 10.1016/j.micpath.2008.10.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/24/2008] [Accepted: 10/31/2008] [Indexed: 01/18/2023]
Abstract
To develop intracellularly within phagocytes and cause chronic infection, Brucella must overcome different steps of the host immune responses. IFNgamma is a key mediator of the innate and adaptive responses produced during Brucella infection. Therefore, Brucella would control host defenses by impairing macrophage responses to IFNgamma. We first showed that in infected human macrophages (VD3-differentiated THP-1 cells) Brucella escaped the microbicidal environment generated by IFNgamma. We then analyzed the IFNgamma-mediated signaling in Brucella-infected cells. We observed no decrease in STAT1 tyrosine or serine phosphorylation, or in dimerization of phosphorylated STAT1 (P-STAT1) and P-STAT1 translocation to the nucleus or in P-STAT1 binding to GAS, a minimal IFNgamma-response DNA sequence. In contrast, immuno-precipitation experiments indicated that the IFNgamma-mediated association of P-STAT1 with CBP/P300 transactivators was markedly reduced in infected macrophages, demonstrating that P-STAT1 was unable to normally recruit these transactivators. The host cell cAMP pathway triggered by Brucella could be responsible for this defect, CBP/P300 mobilization by phosphorylated CREB (P-CREB) disrupting the IFNgamma-induced STAT1-CBP/P300 association, required for a normal response of macrophages to IFNgamma. In any case, the inhibition of an essential protein-protein interaction probably lead to a deteriorated response to IFNgamma and thus participated in the pathogen's establishment within its host.
Collapse
Affiliation(s)
- Sandrine Bouhet
- Université Montpellier1, Centre d'étude d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), France
| | | | | | | | | |
Collapse
|
10
|
Abstract
The role of extracellular matrix (ECM) in neurological development, function and degeneration has evolved from a simplistic physical adhesion to a system of intricate cellular signaling. While most cells require ECM adhesion to survive, it is now clear that differentiated function is intimately dependent upon cellular interaction with the ECM. Therefore, it is not surprising that the ECM is increasingly found to be involved in the enigmatic process of neurodegeneration. Descriptive studies of human neurodegenerative disorders and experimental studies of animal models of neurodegeneration have begun to define potential mechanisms of ECM disruption that can lead to synaptic and neuronal loss.
Collapse
Affiliation(s)
- Dafna Bonneh-Barkay
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pa., USA
| | | |
Collapse
|
11
|
Stang MT, Armstrong MJ, Watson GA, Sung KY, Liu Y, Ren B, Yim JH. Interferon regulatory factor-1-induced apoptosis mediated by a ligand-independent fas-associated death domain pathway in breast cancer cells. Oncogene 2007; 26:6420-30. [PMID: 17452973 DOI: 10.1038/sj.onc.1210470] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interferon (IFN) regulatory factor-1 (IRF-1) is a transcription factor that has apoptotic anti-tumor activity. In breast cancer cell types, IRF-1 is implicated in mediating apoptosis by both novel and established anti-tumor agents, including the anti-estrogens tamoxifen and faslodex. Here we demonstrate that in MDA468 breast cancer cells, apoptosis by IFN-gamma is mediated by IRF-1 and IFN-gamma, and IRF-1-induced apoptosis is caspase-mediated. IRF-1 induction results in cleavage of caspase-8, -3 and -7, and application of caspase inhibitors attenuate activated cleavage products. IRF-1-induced apoptosis involves caspase-8 since apoptosis is significantly decreased by the caspase-8-specific inhibitor IETD, c-FLIP expression and in caspase-8-deficient cancer cells. Furthermore, we demonstrate that IRF-1-induced apoptosis requires fas-associated death domain (FADD) since dominant-negative FADD expressing cells resist IRF-1-induced apoptosis and activated downstream products. Immunofluorescent studies demonstrate perinuclear colocalization of FADD and caspase-8. Despite the known role of FADD in mediating death-ligand induced apoptosis, neutralizing antibodies against classical death receptors do not inhibit IRF-1 induced apoptosis, and no secreted ligand appears to be involved since MDA468 coincubated with IRF-1 transfected cells do not apoptose. Therefore, we demonstrate that IRF-1 induces a ligand-independent FADD/caspase-8-mediated apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- M T Stang
- Department of Surgery/University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|