1
|
Delou JMA, Biasoli D, Borges HL. The Complex Link between Apoptosis and Autophagy: a Promising New Role for RB. AN ACAD BRAS CIENC 2018; 88:2257-2275. [PMID: 27991962 DOI: 10.1590/0001-3765201620160127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Physiological processes, as autophagy, proliferation and apoptosis are affected during carcinogenesis. Restoring cellular sensitivity to apoptotic stimuli, such as the antineoplastic cocktails, has been explored as a strategy to eliminate cancer cells. Autophagy, a physiological process of recycling organelles and macromolecules can be deviated from homeostasis to support cancer cells survival, proliferation, escape from apoptosis, and therapy resistance. The relationship between autophagy and apoptosis is complex and many stimuli can induce both processes. Most chemotherapeutic agents induce autophagy and it is not clear whether and how this chemotherapy-induced autophagy might contribute to resistance to apoptosis. Here, we review current strategies to sensitize cancer cells by interfering with autophagy. Moreover, we discuss a new link between autophagy and apoptosis: the tumor suppressor retinoblastoma protein (RB). Inactivation of RB is one of the earliest and more frequent hallmarks of cancer transformation, known to control cell cycle progression and apoptosis. Therefore, understanding RB functions in controlling cell fate is essential for an effective translation of RB status in cancer samples to the clinical outcome.
Collapse
Affiliation(s)
- João M A Delou
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21949-590 Rio de Janeiro, RJ, Brazil
| | - Deborah Biasoli
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21949-590 Rio de Janeiro, RJ, Brazil
| | - Helena L Borges
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21949-590 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Biasoli D, Sobrinho MF, da Fonseca ACC, de Matos DG, Romão L, de Moraes Maciel R, Rehen SK, Moura-Neto V, Borges HL, Lima FRS. Glioblastoma cells inhibit astrocytic p53-expression favoring cancer malignancy. Oncogenesis 2014; 3:e123. [PMID: 25329722 PMCID: PMC4216902 DOI: 10.1038/oncsis.2014.36] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 08/31/2014] [Accepted: 09/14/2014] [Indexed: 12/22/2022] Open
Abstract
The tumor microenvironment has a dynamic and usually cancer-promoting function during all tumorigenic steps. Glioblastoma (GBM) is a fatal tumor of the central nervous system, in which a substantial number of non-tumoral infiltrated cells can be found. Astrocytes neighboring these tumor cells have a particular reactive phenotype and can enhance GBM malignancy by inducing aberrant cell proliferation and invasion. The tumor suppressor p53 has a potential non-cell autonomous function by modulating the expression of secreted proteins that influence neighbor cells. In this work, we investigated the role of p53 on the crosstalk between GBM cells and astrocytes. We show that extracellular matrix (ECM) from p53(+/-) astrocytes is richer in laminin and fibronectin, compared with ECM from p53(+/+) astrocytes. In addition, ECM from p53(+/-) astrocytes increases the survival and the expression of mesenchymal markers in GBM cells, which suggests haploinsufficient phenotype of the p53(+/-) microenvironment. Importantly, conditioned medium from GBM cells blocks the expression of p53 in p53(+/+) astrocytes, even when DNA was damaged. These results suggest that GBM cells create a dysfunctional microenvironment based on the impairment of p53 expression that in turns exacerbates tumor endurance.
Collapse
Affiliation(s)
- D Biasoli
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M F Sobrinho
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A C C da Fonseca
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - D G de Matos
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R de Moraes Maciel
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - S K Rehen
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| | - V Moura-Neto
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H L Borges
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F R S Lima
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Zaharieva MM, Kirilov M, Chai M, Berger SM, Konstantinov S, Berger MR. Reduced expression of the retinoblastoma protein shows that the related signaling pathway is essential for mediating the antineoplastic activity of erufosine. PLoS One 2014; 9:e100950. [PMID: 24987858 PMCID: PMC4079453 DOI: 10.1371/journal.pone.0100950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 06/02/2014] [Indexed: 01/13/2023] Open
Abstract
Erufosine is a new antineoplastic agent of the group of alkylphosphocholines, which interferes with signal transduction and induces apoptosis in various leukemic and tumor cell lines. The present study was designed to examine for the first time the mechanism of resistance to erufosine in malignant cells with permanently reduced expression of the retinoblastoma (Rb) protein. Bearing in mind the high number of malignancies with reduced level of this tumor-suppressor, this investigation was deemed important for using erufosine, alone or in combination, in patients with compromised RB1 gene expression. For this purpose, clones of the leukemic T-cell line SKW-3 were used, which had been engineered to constantly express differently low Rb levels. The alkylphosphocholine induced apoptosis, stimulated the expression of the cyclin dependent kinase inhibitor p27Kip1 and inhibited the synthesis of cyclin D3, thereby causing a G2 phase cell cycle arrest and death of cells with wild type Rb expression. In contrast, Rb-deficiency impeded the changes induced by eru-fosine in the expression of these proteins and abrogated the induction of G2 arrest, which was correlated with reduced antiproliferative and anticlonogenic activities of the compound. In conclusion, analysis of our results showed for the first time that the Rb signaling pathway is essential for mediating the antineoplastic activity of erufosine and its efficacy in patients with malignant diseases may be predicted by determining the Rb status.
Collapse
Affiliation(s)
- Maya M. Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Milen Kirilov
- Department of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Minquang Chai
- Department of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Stefan M. Berger
- Department of Molecular Biology, Central Institute of Mental Health, Mannheim, Germany
| | - Spiro Konstantinov
- Laboratory for Molecular Pharmacology and Experimental Chemotherapy, Department for Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Martin R. Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
4
|
DNA-damage-induced apoptosis. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
5
|
Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity. Cell Death Differ 2013; 20:953-62. [PMID: 23660976 PMCID: PMC3679464 DOI: 10.1038/cdd.2013.42] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
DNA damage activates nuclear Abl tyrosine kinase to stimulate intrinsic apoptosis in cancer cell lines and mouse embryonic stem cells. To examine the in vivo function of nuclear Abl in apoptosis, we generated Abl-μNLS (μ, mutated in nuclear localization signals) mice. We show here that cisplatin-induced apoptosis is defective in the renal proximal tubule cells (RPTC) from the Ablμ/μ mice. When injected with cisplatin, we found similar levels of platinum in the Abl+/+ and the Ablμ/μ kidneys, as well as similar initial inductions of p53 and PUMAα expression. However, the accumulation of p53 and PUMAα could not be sustained in the Ablμ/μ kidneys, leading to reductions in renal apoptosis and tubule damage. Co-treatment of cisplatin with the Abl kinase inhibitor, imatinib, reduced the accumulation of p53 and PUMAα in the Abl+/+ but not in the Ablμ/μ kidneys. The residual apoptosis in the Ablμ/μ mice was not further reduced in the Ablμ/μ; p53−/− double-mutant mice, suggesting that nuclear Abl and p53 are epistatic to each other in this apoptosis response. Although apoptosis and tubule damage were reduced, cisplatin-induced increases in phospho-Stat-1 and blood urea nitrogen were similar between the Abl+/+ and the Ablμ/μ kidneys, indicating that RPTC apoptosis is not the only factor in cisplatin-induced nephrotoxicity. These results provide in vivo evidence for the pro-apoptotic function of Abl, and show that its nuclear localization and tyrosine kinase activity are both required for the sustained expression of p53 and PUMAα in cisplatin-induced renal apoptosis.
Collapse
|
6
|
|
7
|
Abstract
The retinoblastoma (RB) tumour suppressor gene is functionally inactivated in a broad range of paediatric and adult cancers, and a plethora of cellular functions and partners have been identified for the RB protein. Data from human tumours and studies from mouse models indicate that loss of RB function contributes to both cancer initiation and progression. However, we still do not know the identity of the cell types in which RB normally prevents cancer initiation in vivo, and the specific functions of RB that suppress distinct aspects of the tumorigenic process are poorly understood.
Collapse
Affiliation(s)
- Deborah L Burkhart
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
8
|
Abstract
DNA damage can, but does not always, induce cell death. While several pathways linking DNA damage signals to mitochondria-dependent and -independent death machineries have been elucidated, the connectivity of these pathways is subject to regulation by multiple other factors that are not well understood. We have proposed two conceptual models to explain the delayed and variable cell death response to DNA damage: integrative surveillance versus autonomous pathways. In this review, we discuss how these two models may explain the in vivo regulation of cell death induced by ionizing radiation (IR) in the developing central nervous system, where the death response is regulated by radiation dose, cell cycle status and neuronal development.
Collapse
|