1
|
Weng W, Zhang B, Deng D. P16 INK4A drives RB1 degradation by UTP14A-catalyzed K810 ubiquitination. iScience 2024; 27:110882. [PMID: 39351198 PMCID: PMC11440251 DOI: 10.1016/j.isci.2024.110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 10/04/2024] Open
Abstract
P16INK4A expression is inversely associated with RB1 expression in cancer cells, and P16INK4A inhibits CDK4-catalyzed RB1 phosphorylation. How P16INK4A and RB1 coordinately express and regulate the cell cycle remains to be studied. In the present study, we found that P16INK4A upregulated the E3 ligase UTP14A, which led to the ubiquitination of RB1 at K810 and RB1 degradation. P16INK4A loss consistently disrupted the UTP14A-mediated degradation of RB1 and caused RB1 accumulation. Functionally, P16INK4A loss inhibited RB1 ubiquitination in a cell cycle progression-independent fashion and inhibited proteome-scale ubiquitination in a cell cycle progression-dependent manner. Our findings indicate that there is a negative feedback loop between P16INK4A and RB1 expression and that disruption of this loop may partially rescue the biological outcomes of P16INK4A loss. We also revealed a hitherto unknown function for P16 INK4A in regulating proteome-scale ubiquitination by inhibiting cell proliferation, which may be useful for the development of anticancer drugs.
Collapse
Affiliation(s)
- Wenjie Weng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Baozhen Zhang
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dajun Deng
- Key Laboratory of Carcinogenesis and Translational Research (MOE/Beijing) Division of Etiology, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
2
|
Yu M, Wu W, Sun Y, Yan H, Zhang L, Wang Z, Gong Y, Wang T, Li Q, Song J, Wang M, Zhang J, Tang Y, Zhan J, Zhang H. FRMD8 targets both CDK4 activation and RB degradation to suppress colon cancer growth. Cell Rep 2023; 42:112886. [PMID: 37527040 DOI: 10.1016/j.celrep.2023.112886] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 07/13/2023] [Indexed: 08/03/2023] Open
Abstract
Cyclin-dependent kinase 4 (CDK4) and retinoblastoma protein (RB) are both important cell-cycle regulators that function in different scenarios. Here, we report that FERM domain-containing 8 (FRMD8) inhibits CDK4 activation and stabilizes RB, thereby causing cell-cycle arrest and inhibiting colorectal cancer (CRC) cell growth. FRMD8 interacts separately with CDK7 and CDK4, and it disrupts the interaction of CDK7 with CDK4, subsequently inhibiting CDK4 activation. FRMD8 competes with MDM2 to bind RB and attenuates MDM2-mediated RB degradation. Frmd8 deficiency in mice accelerates azoxymethane/dextran-sodium-sulfate-induced colorectal adenoma formation. The FRMD8 promoter is hypermethylated, and low expression of FRMD8 predicts poor prognosis in CRC patients. Further, we identify an LKCHE-containing FRMD8 peptide that blocks MDM2 binding to RB and stabilizes RB. Combined application of the CDK4 inhibitor and FRMD8 peptide leads to marked suppression of CRC cell growth. Therefore, using an LKCHE-containing peptide to interfere with the MDM2-RB interaction may have therapeutic value in CDK4/6 inhibitor-resistant patients.
Collapse
Affiliation(s)
- Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Weijie Wu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yi Sun
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Haoyi Yan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yuqing Gong
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Qianchen Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Mengyuan Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University International Cancer Institute, and State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
3
|
Voutsadakis IA. Low-grade serous ovarian carcinoma: an evolution toward targeted therapy. Int J Gynecol Cancer 2019; 30:1619-1626. [PMID: 31780569 DOI: 10.1136/ijgc-2019-000832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 11/04/2022] Open
Abstract
Low-grade serous ovarian carcinoma and its high-grade serous ovarian carcinoma counterpart differ in their precursor lesions, molecular profile, natural history, and response to therapies. As such, low-grade serous ovarian carcinoma needs to be studied separately from high-grade serous ovarian carcinoma, despite challenges stemming from its rarity. A deeper understanding of the pathogenesis of low-grade serous ovarian carcinoma and the most common molecular defects and pathways involved in the carcinogenesis of the ovarian epithelium from normal to serous borderline ovarian tumors to low-grade serous ovarian carcinoma will help develop better therapies. By adopting targeted approaches there may be an opportunity to integrate novel therapies without the need for robust numbers in clinical trials. This manuscript will discuss low-grade serous ovarian carcinoma and focus on the arising treatments being developed with an improved understanding of the pathogenesis of this disease.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Section of Internal Medicine Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
4
|
Molecular landscape of pancreatic cancer: implications for current clinical trials. Oncotarget 2016; 6:4553-61. [PMID: 25714017 PMCID: PMC4467098 DOI: 10.18632/oncotarget.2972] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022] Open
Abstract
Despite recent improvements, overall survival for advanced adenocarcinoma of the pancreas continues to be poor. In comparison to other tumor types that have enjoyed marked survival benefit by targeting aberrant cell signaling pathways, standard of care treatment for pancreatic cancer is limited to conventional cytotoxic chemotherapy. Multiple pathway aberrations have been documented in pancreatic cancer. A review of the COSMIC database reveals that most pancreatic cancers contain somatic mutations, with the five most frequent being KRAS, TP53, CDKN2A, SMAD4, and ARID1A, and multiple other abnormalities seen including, but not limited to, mutations in STK11/LKB1, FBXW7, PIK3CA, and BRAF. In the era of tumor profiling, these aberrations may provide an opportunity for new therapeutic approaches. Yet, searching clinicaltrials.gov for recent drug intervention trials for pancreatic adenocarcinoma, remarkably few (10 of 116 (8.6%)) new study protocols registered in the last three years included a molecular/biomarker stratification strategy. Enhanced efforts to target subsets of patients with pancreatic cancer in order to optimize therapy benefit are warranted.
Collapse
|
5
|
Raj N, Zhang L, Wei Y, Arnosti DN, Henry RW. Rbf1 degron dysfunction enhances cellular DNA replication. Cell Cycle 2012; 11:3731-8. [PMID: 22895052 DOI: 10.4161/cc.21665] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The E2F family of transcription factors contributes to oncogenesis through activation of multiple genes involved in cellular proliferation, a process that is opposed by the Retinoblastoma tumor suppressor protein (RB). RB also increases E2F1 stability by inhibiting its proteasome-mediated degradation, but the consequences of this post-translational regulation of E2F1 remain unknown. To better understand the mechanism of E2F stabilization and its physiological relevance, we examined the streamlined Rbf1-dE2F1 network in Drosophila. During embryonic development, Rbf1 is insulated from ubiquitin-mediated turnover by the COP9 signalosome, a multi-protein complex that modulates E3 ubiquitin ligase activity. Here, we report that the COP9 signalosome also protects the Cullin4-E3 ligase that is responsible for dE2F1 proteasome-mediated destruction. This dual role of the COP9 signalosome may serve to buffer E2F levels, enhancing its turnover via Cul4 protection and its stabilization through protection of Rbf1. We further show that Rbf1-mediated stabilization of dE2F1 and repression of dE2F1 cell cycle-target genes are distinct properties. Removal of an evolutionarily conserved Rbf1 C terminal degron disabled Rbf1 repression without affecting dE2F1 stabilization. This mutant form of Rbf1 also enhanced G(1)-to-S phase progression when expressed in Rbf1-containing S2 embryonic cells, suggesting that such mutations may generate gain-of-function properties relevant to cellular transformation. Consistent with this idea, several studies have identified mutations in the homologous C terminal domains of RB and p130 in human cancer.
Collapse
Affiliation(s)
- Nitin Raj
- Program in Genetics, Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
6
|
Dongiovanni P, Fracanzani AL, Cairo G, Megazzini CP, Gatti S, Rametta R, Fargion S, Valenti L. Iron-dependent regulation of MDM2 influences p53 activity and hepatic carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009. [PMID: 20019189 DOI: 10.2353/amjpath.2010.090249.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Iron overload is a risk factor for hepatocarcinoma, but the pathways involved are poorly characterized. Gene expression analysis in immortalized mouse hepatocytes exposed to iron or the iron chelator deferoxamine revealed that iron downregulated, whereas deferoxamine upregulated, mRNA levels of mouse double minute gene 2 (MDM2), the ubiquitin ligase involved in the degradation of the oncosuppressor p53. Regulation of MDM2 by iron status was observed at protein levels in mouse hepatocytes and rat liver, and was associated with specular changes in p53 expression. Iron dependent regulation of MDM2/p53 was confirmed ex-vivo in human monocytes, by manipulation of iron pool and in a genetic model of iron deficiency, leading to modulation of p53 target genes involved in the antioxidant response and apoptosis. Iron status influenced p53 ubiquitination and degradation rate, and the MDM2 inhibitor nutlin increased p53 levels in iron-depleted cells. Furthermore, nutlin enhanced the antiproliferative activity of deferoxamine in HepG2 hepatoblastoma cells. The MDM2 -309T > G promoter polymorphism, determining increased MDM2 and lower p53 activity, was associated with higher risk of hepatocarcinoma in cirrhotic patients with hemochromatosis, and with HFE mutations in patients with hepatocarcinoma without hemochromatosis, suggesting an interaction between MDM2 and iron in the pathogenesis of hepatocarcinoma. In conclusion, iron status influences p53 activity and antioxidant response by modulating MDM2 expression. MDM2 inhibitors may enhance the antiproliferative activity of iron chelators.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Center of Metabolic and Liver Diseases, Department of Internal Medicine, University of Milano, Ospedale Policlinico Mangiagalli e Regina Elena Fondazione IRCCS, 20122 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dongiovanni P, Fracanzani AL, Cairo G, Megazzini CP, Gatti S, Rametta R, Fargion S, Valenti L. Iron-dependent regulation of MDM2 influences p53 activity and hepatic carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009. [PMID: 20019189 DOI: 10.2353/amjpath.2010.090249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Iron overload is a risk factor for hepatocarcinoma, but the pathways involved are poorly characterized. Gene expression analysis in immortalized mouse hepatocytes exposed to iron or the iron chelator deferoxamine revealed that iron downregulated, whereas deferoxamine upregulated, mRNA levels of mouse double minute gene 2 (MDM2), the ubiquitin ligase involved in the degradation of the oncosuppressor p53. Regulation of MDM2 by iron status was observed at protein levels in mouse hepatocytes and rat liver, and was associated with specular changes in p53 expression. Iron dependent regulation of MDM2/p53 was confirmed ex-vivo in human monocytes, by manipulation of iron pool and in a genetic model of iron deficiency, leading to modulation of p53 target genes involved in the antioxidant response and apoptosis. Iron status influenced p53 ubiquitination and degradation rate, and the MDM2 inhibitor nutlin increased p53 levels in iron-depleted cells. Furthermore, nutlin enhanced the antiproliferative activity of deferoxamine in HepG2 hepatoblastoma cells. The MDM2 -309T > G promoter polymorphism, determining increased MDM2 and lower p53 activity, was associated with higher risk of hepatocarcinoma in cirrhotic patients with hemochromatosis, and with HFE mutations in patients with hepatocarcinoma without hemochromatosis, suggesting an interaction between MDM2 and iron in the pathogenesis of hepatocarcinoma. In conclusion, iron status influences p53 activity and antioxidant response by modulating MDM2 expression. MDM2 inhibitors may enhance the antiproliferative activity of iron chelators.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Center of Metabolic and Liver Diseases, Department of Internal Medicine, University of Milano, Ospedale Policlinico Mangiagalli e Regina Elena Fondazione IRCCS, 20122 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dongiovanni P, Fracanzani AL, Cairo G, Megazzini CP, Gatti S, Rametta R, Fargion S, Valenti L. Iron-dependent regulation of MDM2 influences p53 activity and hepatic carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 176:1006-17. [PMID: 20019189 DOI: 10.2353/ajpath.2010.090249] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Iron overload is a risk factor for hepatocarcinoma, but the pathways involved are poorly characterized. Gene expression analysis in immortalized mouse hepatocytes exposed to iron or the iron chelator deferoxamine revealed that iron downregulated, whereas deferoxamine upregulated, mRNA levels of mouse double minute gene 2 (MDM2), the ubiquitin ligase involved in the degradation of the oncosuppressor p53. Regulation of MDM2 by iron status was observed at protein levels in mouse hepatocytes and rat liver, and was associated with specular changes in p53 expression. Iron dependent regulation of MDM2/p53 was confirmed ex-vivo in human monocytes, by manipulation of iron pool and in a genetic model of iron deficiency, leading to modulation of p53 target genes involved in the antioxidant response and apoptosis. Iron status influenced p53 ubiquitination and degradation rate, and the MDM2 inhibitor nutlin increased p53 levels in iron-depleted cells. Furthermore, nutlin enhanced the antiproliferative activity of deferoxamine in HepG2 hepatoblastoma cells. The MDM2 -309T > G promoter polymorphism, determining increased MDM2 and lower p53 activity, was associated with higher risk of hepatocarcinoma in cirrhotic patients with hemochromatosis, and with HFE mutations in patients with hepatocarcinoma without hemochromatosis, suggesting an interaction between MDM2 and iron in the pathogenesis of hepatocarcinoma. In conclusion, iron status influences p53 activity and antioxidant response by modulating MDM2 expression. MDM2 inhibitors may enhance the antiproliferative activity of iron chelators.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Center of Metabolic and Liver Diseases, Department of Internal Medicine, University of Milano, Ospedale Policlinico Mangiagalli e Regina Elena Fondazione IRCCS, 20122 Milano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Du W, Wu J, Walsh EM, Zhang Y, Chen CY, Xiao ZXJ. Nutlin-3 affects expression and function of retinoblastoma protein: role of retinoblastoma protein in cellular response to nutlin-3. J Biol Chem 2009; 284:26315-21. [PMID: 19648117 DOI: 10.1074/jbc.m109.046904] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma protein (Rb) plays a pivotal role in regulating cell proliferation and apoptosis. Nutlin-3, a small molecule MDM2 antagonist blocking interaction between MDM2 and p53, activates p53 resulting in cell growth arrest or apoptosis in various cancer cells. However, the molecular basis for the different cellular responses upon nutlin-3 treatment is not fully understood. In this study, we show that nutlin-3 activates p53 resulting in a dramatic increase in MDM2 expression and a marked reduction in total Rb protein levels. Interestingly, nutlin-3 reduces the levels of hypophosphorylated Rb and induces massive apoptosis in SJSA-1 cells, which can be largely rescued by knockdown of MDM2 or by expression of constitutively active Rb. By contrast, nutlin-3 treatment of several human cancer cells, including A549, U2-OS, and HCT116, results in an accumulation of hypophosphorylated Rb and cell cycle arrest but not apoptosis. Furthermore, we show that down-regulation of Rb by nutlin-3 does not lead to E2F1 activation nor does E2F1 play a critical role for nutlin-3-induced apoptosis in SJSA-1 cells. Taken together, these results suggest that Rb plays a critical role in influencing cellular response to activation of p53 pathway by nutlin-3.
Collapse
Affiliation(s)
- Wei Du
- Department of Biochemistry, Graduate Program in Cellular and Molecular Biology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
10
|
Kashevarova AA, Tolmacheva EN, Sukhanova NN, Sazhenova EA, Lebedev IN. Estimation of the mehylation status of the promoter region of the cell cycle control gene P14ARF in placental tissues of spontaneous abortions with chromosomal mosaicism. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409060155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Abstract
BRAF, a cellular oncogene and effector of RAS-mediated signaling, is activated by mutation in approximately 60% of melanomas. Most of these mutations consist of a V600E substitution resulting in constitutive kinase activation. Mutant BRAF thus represents an important therapeutic target in melanoma. In an effort to produce a pre-clinical model of mutant BRAF function in melanoma, we have generated a mouse expressing BRAF V600E targeted to melanocytes. We show that in these transgenic mice, widespread benign melanocytic hyperplasia with histological features of nevi occurs, with biochemical evidence of senescence. Melanocytic hyperplasia progresses to overt melanoma with an incidence dependent on BRAF expression levels. Melanomas show CDKN2A loss, and genetic disruption of the CDKN2A locus greatly enhances melanoma formation, consistent with collaboration between BRAF activation and CDKN2A loss suggested from studies of human melanoma. The development of melanoma also involves activation of the Mapk and Akt signaling pathways and loss of senescence, findings that faithfully recapitulate those seen in human melanomas. This murine model of mutant BRAF-induced melanoma formation thus provides an important tool for identifying further genetic alterations that cooperates with BRAF and that may be useful in enhancing susceptibility to BRAF-targeted therapeutics in melanoma.
Collapse
|
12
|
Leikam C, Hufnagel A, Schartl M, Meierjohann S. Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence. Oncogene 2008; 27:7070-82. [PMID: 18806824 DOI: 10.1038/onc.2008.323] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Contrary to malignant melanoma, nevi are a benign form of melanocytic hyperproliferation. They are frequently observed as precursor lesions of melanoma, but they also feature biochemical markers of senescence. In particular, evidence for oncogene-induced melanocyte senescence as natural means to prevent tumorigenesis has been obtained in nevi with mutated B-Raf(V600E). Here, we demonstrate that strong oncogenic growth factor receptor signalling drives melanocytes into senescence, whereas weaker signals keep them in the proliferative state. Activation of oncogene-induced senescence also produces multinucleated giant cells, a long known histological feature of nevus cells. The protein levels of the senescence mediators, p53 and pRB, and their upstream activators do not correlate with senescence. However, strong oncogene signalling leads to pronounced reactive oxygen stress, and scavenging of reactive oxygen species (ROS) efficiently prevents the formation of multinucleated cells and senescence. Similarly, expression of oncogenic N-RAS results in ROS generation, DNA damage and the same multinuclear senescent phenotype. Hence, we identified oncogenic signalling-dependent ROS production as critical mediator of the melanocytic multinuclear phenotype and senescence, both of them being hallmarks of human nevus cells.
Collapse
Affiliation(s)
- C Leikam
- Department of Physiological Chemistry I, Biocenter, Am Hubland, University of Wurzburg, Wurzburg, Germany
| | | | | | | |
Collapse
|
13
|
Ha L, Merlino G, Sviderskaya EV. Melanomagenesis: overcoming the barrier of melanocyte senescence. Cell Cycle 2008; 7:1944-8. [PMID: 18604170 PMCID: PMC2678050 DOI: 10.4161/cc.7.13.6230] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although melanoma ultimately progresses to a highly aggressive and metastatic disease that is typically resistant to currently available therapy, it often begins as a benign nevus consisting of a clonal population of hyperplastic melanocytes that cannot progress because they are locked in a state of cellular senescence. Once senescence is overcome, the nevus can exhibit dysplastic features and readily progress to more lethal stages. Recent advances have convincingly demonstrated that senescence represents a true barrier to the progression of many types of cancer, including melanoma. Thus, understanding the mechanism(s) by which melanoma evades senescence has become a priority in the melanoma research community. Senescence in most cells is regulated through some combination of activities within the RB and p53 pathways. However, differences discovered among various tumor types, some subtle and others quite profound, have revealed that senescence frequently operates in a context-dependent manner. Here we review what is known about melanocyte senescence, and how such knowledge may provide a much-needed edge in our struggles to contain or perhaps vanquish this often-fatal malignancy.
Collapse
Affiliation(s)
- Linan Ha
- Division of Monoclonal Antibody, Center of Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA
| | | | | |
Collapse
|
14
|
Nitta RT, Smith CL, Kennedy BK. Evidence that proteasome-dependent degradation of the retinoblastoma protein in cells lacking A-type lamins occurs independently of gankyrin and MDM2. PLoS One 2007; 2:e963. [PMID: 17896003 PMCID: PMC1978514 DOI: 10.1371/journal.pone.0000963] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/06/2007] [Indexed: 12/11/2022] Open
Abstract
Background A-type lamins, predominantly lamins A and C, are nuclear intermediate filaments believed to act as scaffolds for assembly of transcription factors. Lamin A/C is necessary for the retinoblastoma protein (pRB) stabilization through unknown mechanism(s). Two oncoproteins, gankyrin and MDM2, are known to promote pRB degradation in other contexts. Consequently, we tested the hypothesis that gankyrin and/or MDM2 are required for enhanced pRB degradation in Lmna−/− fibroblasts. Principal Findings. To determine if gankyrin promotes pRB destabilization in the absence of lamin A/C, we first analyzed its protein levels in Lmna−/− fibroblasts. Both gankyrin mRNA levels and protein levels are increased in these cells, leading us to further investigate its role in pRB degradation. Consistent with prior reports, overexpression of gankyrin in Lmna+/+ cells destabilizes pRB. This decrease is functionally significant, since gankyrin overexpressing cells are resistant to p16ink4a-mediated cell cycle arrest. These findings suggest that lamin A-mediated degradation of pRB would be gankyrin-dependent. However, effective RNAi-enforced reduction of gankyrin expression in Lmna−/− cells was insufficient to restore pRB stability. To test the importance of MDM2, we disrupted the MDM2-pRB interaction by transfecting Lmna−/− cells with p14arf. p14arf expression was also insufficient to stabilize pRB or confer cell cycle arrest, suggesting that MDM2 also does not mediate pRB degradation in Lmna−/− cells. Conclusions/Significance Our findings suggest that pRB degradation in Lmna−/− cells occurs by gankyrin and MDM2-independent mechanisms, leading us to propose the existence of a third proteasome-dependent pathway for pRB degradation. Two findings from this study also increase the likelihood that lamin A/C functions as a tumor suppressor. First, protein levels of the oncoprotein gankyrin are elevated in Lmna−/− fibroblasts. Second, Lmna−/− cells are refractory to p14arf-mediated cell cycle arrest, as was previously shown with p16ink4a. Potential roles of lamin A/C in the suppression of tumorigenesis are discussed.
Collapse
Affiliation(s)
- Ryan T. Nitta
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Catherine L. Smith
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Brian K. Kennedy
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|