1
|
Csergeová L, Krbušek D, Janoštiak R. CIP/KIP and INK4 families as hostages of oncogenic signaling. Cell Div 2024; 19:11. [PMID: 38561743 PMCID: PMC10985988 DOI: 10.1186/s13008-024-00115-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
CIP/KIP and INK4 families of Cyclin-dependent kinase inhibitors (CKIs) are well-established cell cycle regulatory proteins whose canonical function is binding to Cyclin-CDK complexes and altering their function. Initial experiments showed that these proteins negatively regulate cell cycle progression and thus are tumor suppressors in the context of molecular oncology. However, expanded research into the functions of these proteins showed that most of them have non-canonical functions, both cell cycle-dependent and independent, and can even act as tumor enhancers depending on their posttranslational modifications, subcellular localization, and cell state context. This review aims to provide an overview of canonical as well as non-canonical functions of CIP/KIP and INK4 families of CKIs, discuss the potential avenues to promote their tumor suppressor functions instead of tumor enhancing ones, and how they could be utilized to design improved treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Lucia Csergeová
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | - David Krbušek
- BIOCEV-First Faculty of Medicine, Charles University, Prague, Czechia
| | | |
Collapse
|
2
|
Peng W, Wang S, Yu M, Wang T, He R, Liu D, Chen D, Liang X, Liu K, Xiang B. Electroconvulsive Therapy Reduces Protein Expression Level of EP300 and Improves Psychiatric Symptoms and Disturbance of Thought in Patients with Schizophrenia. Neuropsychiatr Dis Treat 2023; 19:1763-1770. [PMID: 37551320 PMCID: PMC10404429 DOI: 10.2147/ndt.s411575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
Objective Although electroconvulsive therapy (ECT) has been employed as an effective treatment strategy and to improve mental symptoms in schizophrenia (SCZ), its action mechanisms remain unclear. Our previous study found that some genes and biological pathways were closely related to ECT through genetic technology analysis, such as LTP pathway and EP300. This study combined with healthy controls and symptomatology analysis to further explore the changes of expression of EP300 protein in treatment and related symptoms of SCZ. Methods One hundred and one patients with SCZ and 45 healthy controls (HCs) were enrolled in this study. Patients with SCZ received acute courses of 6 times bilateral ECT. The peripheral blood of patients with SCZ (BECT: before ECT; AECT: after ECT) and the HCs was collected to calculate the changes of expression level of EP300 protein by enzyme-linked immunosorbent assay. The Positive and Negative Symptoms Scale (PANSS) was used to evaluate the severity of symptoms of SCZ patients and the efficiency of the ECT. Results There was a statistical difference of EP300 protein expression in patients with SCZ (BECT and AECT) (F = 114.5, p < 0.05). ECT reduced plasma expression level of EP300 protein in patients with SCZ, which was not statistically different from that in HCs (t = 4.47, p = 0.20). The change of the expression level of EP300 protein in patients with SCZ (BECT and AECT) has a positive correlation with reduction rate of positive symptoms (r = 0.228, p < 0.05) and disturbance of thought (r = 0.219, p < 0.05). Conclusion Our study suggests that the expression level of EP300 protein has a significant change in patients with SCZ treating with ECT, and EP300 may have some connections with positive symptoms and disturbance thought of patients with SCZ.
Collapse
Affiliation(s)
- Wanhong Peng
- Department of Psychiatry, Laboratory of Neurological Diseases and Brain Function, Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
- The Fourth People’s Hospital of Chengdu, Chengdu, Sichuan Province, People’s Republic of China
| | - Si Wang
- Department of Psychiatry, Laboratory of Neurological Diseases and Brain Function, Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Minglan Yu
- Department of Psychiatry, Laboratory of Neurological Diseases and Brain Function, Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Tingting Wang
- Department of Psychiatry, Laboratory of Neurological Diseases and Brain Function, Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Rongfang He
- Department of Psychiatry, Laboratory of Neurological Diseases and Brain Function, Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Dongmei Liu
- Department of Psychiatry, Yibin Fourth People’s Hospital, Yibin, Sichuan Province, People’s Republic of China
| | - Dechao Chen
- Department of Psychiatry, Yibin Fourth People’s Hospital, Yibin, Sichuan Province, People’s Republic of China
| | - Xuemei Liang
- Department of Psychiatry, Laboratory of Neurological Diseases and Brain Function, Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Kezhi Liu
- Department of Psychiatry, Laboratory of Neurological Diseases and Brain Function, Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| | - Bo Xiang
- Department of Psychiatry, Laboratory of Neurological Diseases and Brain Function, Medical Laboratory Center, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, People’s Republic of China
| |
Collapse
|
3
|
Genetic Analysis of HIBM Myopathy-Specific GNE V727M Hotspot Mutation Identifies a Novel COL6A3 Allied Gene Signature That Is Also Deregulated in Multiple Neuromuscular Diseases and Myopathies. Genes (Basel) 2023; 14:genes14030567. [PMID: 36980840 PMCID: PMC10048522 DOI: 10.3390/genes14030567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/10/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The GNE-associated V727M mutation is one of the most prevalent ethnic founder mutations in the Asian HIBM cohort; however, its role in inducing disease phenotype remains largely elusive. In this study, the function of this hotspot mutation was profoundly investigated. For this, V727M mutation-specific altered expression profile and potential networks were explored. The relevant muscular disorder-specific in vivo studies and patient data were further analyzed, and the key altered molecular pathways were identified. Our study found that the GNEV727M mutation resulted in a deregulated lincRNA profile, the majority of which (91%) were associated with a down-regulation trend. Further, in silico analysis of associated targets showed their active role in regulating Wnt, TGF-β, and apoptotic signaling. Interestingly, COL6a3 was found as a key target of these lincRNAs. Further, GSEA analysis showed HIBM patients with variable COL6A3 transcript levels have significant alteration in many critical pathways, including epithelial-mesenchymal-transition, myogenesis, and apoptotic signaling. Interestingly, 12 of the COL6A3 coexpressed genes also showed a similar altered expression profile in HIBM. A similar altered trend in COL6A3 and coexpressed genes were found in in vivo HIBM disease models as well as in multiple other skeletal disorders. Thus, the COL6A3-specific 13 gene signature seems to be altered in multiple muscular disorders. Such deregulation could play a pivotal role in regulating many critical processes such as extracellular matrix organization, cell adhesion, and skeletal muscle development. Thus, investigating this novel COL6A3-specific 13 gene signature provides valuable information for understanding the molecular cause of HIBM and may also pave the way for better diagnosis and effective therapeutic strategies for many muscular disorders.
Collapse
|
4
|
Luo M, Zhang Y, Xu Z, Lv S, Wei Q, Dang Q. Experimental analysis of bladder cancer-associated mutations in EP300 identifies EP300-R1627W as a driver mutation. Mol Med 2023; 29:7. [PMID: 36647005 PMCID: PMC9843983 DOI: 10.1186/s10020-023-00608-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Bladder cancer (BCa) is the most common malignant tumor of the urinary system, with transitional cell carcinoma (TCC) being the predominant type. EP300 encodes a lysine acetyltransferase that regulates a large subset of genes by acetylating histones and non-histone proteins. We previously identified several bladder cancer-associated mutations in EP300 using high-throughput sequencing; however, the functional consequences of these mutations remain unclear. METHODS Bladder cancer cells T24 and TCC-SUP were infected with shEP300 lentiviruses to generate stable EP300 knockdown cell lines. The expression levels of EP300, p16 and p21 were detected by real-time PCR and western blots. The transcriptional activity of p16 and p21 were detected by dual luciferase assay. Cell proliferation assay, flow cytometric analyses of cell cycle, invasion assay and xenograft tumor model were used to measure the effect of EP300-R1627W mutation in bladder cancer. Immunoprecipitation was used to explore the relationship between EP300-R1627W mutation and p53. Structural analysis was used to detect the structure of EP300-R1627W protein compared to EP300-wt protein. RESULTS we screened the mutations of EP300 and found that the EP300-R1627W mutation significantly impairs EP300 transactivation activity. Notably, we demonstrated that the R1627W mutation impairs EP300 acetyltransferase activity, potentially by interfering with substrate binding. Finally, we show that EP300-R1627W is more aggressive in growth and invasion in vitro and in vivo compared to cells expressing EP300-wt. We also found that the EP300-R1627W mutation occurs frequently in seven different types of cancers. CONCLUSION In summary, our work defines a driver role of EP300-R1627W in bladder cancer development and progression.
Collapse
Affiliation(s)
- Mayao Luo
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Yifan Zhang
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Zhuofan Xu
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Shidong Lv
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Qiang Wei
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Qiang Dang
- grid.416466.70000 0004 1757 959XDepartment of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 Guangdong China
| |
Collapse
|
5
|
Farooq U, Notani D. Transcriptional regulation of INK4/ARF locus by cis and trans mechanisms. Front Cell Dev Biol 2022; 10:948351. [PMID: 36158211 PMCID: PMC9500187 DOI: 10.3389/fcell.2022.948351] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 12/12/2022] Open
Abstract
9p21 locus is one of the most reproducible regions in genome-wide association studies (GWAS). The region harbors CDKN2A/B genes that code for p16INK4a, p15INK4b, and p14ARF proteins, and it also harbors a long gene desert adjacent to these genes. The polymorphisms that are associated with several diseases and cancers are present in these genes and the gene desert region. These proteins are critical cell cycle regulators whose transcriptional dysregulation is strongly linked with cellular regeneration, stemness, aging, and cancers. Given the importance of this locus, intense scientific efforts on understanding the regulation of these genes via promoter-driven mechanisms and recently, via the distal regulatory mechanism have provided major insights. In this review, we describe these mechanisms and propose the ways by which this locus can be targeted in pathologies and aging.
Collapse
Affiliation(s)
- Umer Farooq
- Genetics and Development, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- The University of Trans-Disciplinary Health Sciences and Technology, Bangalore, India
- *Correspondence: Umer Farooq, ; Dimple Notani,
| | - Dimple Notani
- Genetics and Development, National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
- *Correspondence: Umer Farooq, ; Dimple Notani,
| |
Collapse
|
6
|
Wagner KD, Wagner N. The Senescence Markers p16INK4A, p14ARF/p19ARF, and p21 in Organ Development and Homeostasis. Cells 2022; 11:cells11121966. [PMID: 35741095 PMCID: PMC9221567 DOI: 10.3390/cells11121966] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
It is widely accepted that senescent cells accumulate with aging. They are characterized by replicative arrest and the release of a myriad of factors commonly called the senescence-associated secretory phenotype. Despite the replicative cell cycle arrest, these cells are metabolically active and functional. The release of SASP factors is mostly thought to cause tissue dysfunction and to induce senescence in surrounding cells. As major markers for aging and senescence, p16INK4, p14ARF/p19ARF, and p21 are established. Importantly, senescence is also implicated in development, cancer, and tissue homeostasis. While many markers of senescence have been identified, none are able to unambiguously identify all senescent cells. However, increased levels of the cyclin-dependent kinase inhibitors p16INK4A and p21 are often used to identify cells with senescence-associated phenotypes. We review here the knowledge of senescence, p16INK4A, p14ARF/p19ARF, and p21 in embryonic and postnatal development and potential functions in pathophysiology and homeostasis. The establishment of senolytic therapies with the ultimate goal to improve healthy aging requires care and detailed knowledge about the involvement of senescence and senescence-associated proteins in developmental processes and homeostatic mechanism. The review contributes to these topics, summarizes open questions, and provides some directions for future research.
Collapse
|
7
|
Swift ML, Beishline K, Azizkhan-Clifford J. Sp1-dependent recruitment of the histone acetylase p300 to DSBs facilitates chromatin remodeling and recruitment of the NHEJ repair factor Ku70. DNA Repair (Amst) 2021; 105:103171. [PMID: 34252870 DOI: 10.1016/j.dnarep.2021.103171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/18/2021] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
In response to DNA damage, most factors involved in damage recognition and repair are tightly regulated to ensure proper repair pathway choice. Histone acetylation at DNA double strand breaks (DSBs) by p300 histone acetyltransferase (HAT) is critical for the recruitment of DSB repair proteins to chromatin. Here, we show that phosphorylation of Sp1 by ATM increases its interaction with p300 and that Sp1-dependent recruitment of p300 to DSBs is necessary to modify the histones associated with p300 activity and NHEJ repair factor recruitment and repair. p300 is known to acetylate multiple residues on histones H3 and H4 necessary for NHEJ. Acetylation of H3K18 by p300 is associated with the recruitment of the SWI/SNF chromatin remodeling complex and Ku70 to DSBs for NHEJ repair. Depletion of Sp1 results in decreased acetylation of lysines on histones H3 and H4. Specifically, cells depleted of Sp1 display defects in the acetylation of H3K18, resulting in defective SWI/SNF and Ku70 recruitment to DSBs. These results shed light on mechanisms by which chromatin remodelers are regulated to ensure activation of the appropriate DSB repair pathway.
Collapse
Affiliation(s)
- Michelle L Swift
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
8
|
He Z, Peng H, Gao M, Liang G, Zeng M, Zhang X. p300/Sp1-Mediated High Expression of p16 Promotes Endothelial Progenitor Cell Senescence Leading to the Occurrence of Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2021; 2021:5599364. [PMID: 34456628 PMCID: PMC8397552 DOI: 10.1155/2021/5599364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a common chronic disease and develops rapidly into a grave public health problem worldwide. However, what exactly causes the occurrence of COPD remains largely unclear. Here, we are trying to explore whether the high expression of p16 mediated by p300/Sp1 can cause chronic obstructive pulmonary disease through promoting the senescence of endothelial progenitor cells (EPCs). METHODS Peripheral blood EPCs were isolated from nonsmoking non-COPD, smoking non-COPD, and smoking COPD patients. The expressions of p16, p300, and senescence-related genes were detected by RT-PCR and Western Blot. Then, we knocked down or overexpressed Sp1 and p300 and used the ChIP assay to detect the histone H4 acetylation level in the promoter region of p16, CCK8 to detect cell proliferation, flow cytometry to detect the cell cycle, and β-galactosidase staining to count the proportion of senescent cells. RESULTS The high expression of p16 was found in peripheral blood EPCs of COPD patients; the cigarette smoke extract (CSE) led to the increase of p16. The high expression of p16 in EPCs promoted cell cycle arrest and apoptosis. The CSE-mediated high expression of p16 promoted cell senescence. The expression of p300 was increased in peripheral blood EPCs of COPD patients. Moreover, p300/Sp1 enhanced the histone H4 acetylation level in the promoter region of p16, thereby mediating the senescence of EPCs. And knockdown of p300/Sp1 could rescue CSE-mediated cell senescence. CONCLUSION p300/Sp1 enhanced the histone H4 acetylation level in the p16 promoter region to mediate the senescence of EPCs.
Collapse
Affiliation(s)
- Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Huaihuai Peng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China
| | - Min Gao
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Guibin Liang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011 Hunan, China
| | - Menghao Zeng
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| | - Xuefeng Zhang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, 410013 Hunan, China
| |
Collapse
|
9
|
Capone A, Volpe E. Transcriptional Regulators of T Helper 17 Cell Differentiation in Health and Autoimmune Diseases. Front Immunol 2020; 11:348. [PMID: 32226427 PMCID: PMC7080699 DOI: 10.3389/fimmu.2020.00348] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/13/2020] [Indexed: 12/24/2022] Open
Abstract
T helper (Th) 17 cells are a subtype of CD4 T lymphocytes characterized by the expression of retinoic acid-receptor (RAR)-related orphan receptor (ROR)γt transcription factor, encoded by gene Rorc. These cells are implicated in the pathology of autoimmune inflammatory disorders as well as in the clearance of extracellular infections. The main function of Th17 cells is the production of cytokine called interleukin (IL)-17A. This review highlights recent advances in mechanisms regulating transcription of IL-17A. In particular, we described the lineage defining transcription factor RORγt and other factors that regulate transcription of Il17a or Rorc by interacting with RORγt or by binding their specific DNA regions, which may positively or negatively influence their expression. Moreover, we reported the eventual involvement of those factors in Th17-related diseases, such as multiple sclerosis, rheumatoid arthritis, psoriasis, and Crohn's disease, characterized by an exaggerated Th17 response. Finally, we discussed the potential new therapeutic approaches for Th17-related diseases targeting these transcription factors. The wide knowledge of transcriptional regulators of Th17 cells is crucial for the better understanding of the pathogenic role of these cells and for development of therapeutic strategies aimed at fighting Th17-related diseases.
Collapse
Affiliation(s)
- Alessia Capone
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy.,Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | | |
Collapse
|
10
|
Li X, Nie C, Tian B, Tan X, Han W, Wang J, Jin Y, Li Y, Guan X, Hong A, Chen X. miR-671-5p Blocks The Progression Of Human Esophageal Squamous Cell Carcinoma By Suppressing FGFR2. Int J Biol Sci 2019; 15:1892-1904. [PMID: 31523191 PMCID: PMC6743296 DOI: 10.7150/ijbs.32429] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/02/2019] [Indexed: 12/31/2022] Open
Abstract
Esophageal cancer is the eighth most common malignant tumor worldwide, of which esophageal squamous cell carcinoma (ESCC) is the dominant histological subtype. A drug shortage for ESCC therapy triggered us to explore the roles of fibroblast growth factor receptor 2 (FGFR2) and its upstream regulator miR-671-5p in ESCC progression. We compared the levels of FGFR2 and miR-671-5p between human ESCC tissues and their matched normal esophageal tissues and found an association between higher levels of FGFR2 and lower levels of miR-671-5p in ESCC tissues. High levels of FGFR2 resulted in the activation of the ERK and AKT pathways and a promotion of ESCC progression. High levels of miR-671-5p specifically reduced the expression of FGFR2 and suppressed ESCC progression in both in vitro and in vivo models. Therefore, suppressing FGFR2 and enhancing miR-671-5p expression may be the right approaches for ESCC therapy.
Collapse
Affiliation(s)
- Xiaoyan Li
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Changjun Nie
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Baoqing Tian
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Xuan Tan
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Wei Han
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Jiakang Wang
- Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong, 510090, P. R. China
| | - Yuan Jin
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Yadan Li
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Xinyuan Guan
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, China
| | - An Hong
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| | - Xiaojia Chen
- Institute of Biomedicine & Department of cell Biology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,National Engineering Research Center of Genetic Medicine, Guangzhou, Guangdong, 510632, P. R. China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
11
|
Ming J, Wu S, You T, Wang X, Yu C, Luo P, Zhang A, Pan X. Histone Deacetylation in the Promoter of p16 Is Involved in Fluoride-Induced Human Osteoblast Activation via the Inhibition of Sp1 Binding. Biol Trace Elem Res 2019; 188:373-383. [PMID: 29931577 DOI: 10.1007/s12011-018-1413-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/07/2018] [Indexed: 01/22/2023]
Abstract
Chronic fluorosis is a systemic condition which principally manifests as defects in the skeleton and teeth. Skeletal fluorosis is characterized by aberrant proliferation and activation of osteoblasts, however, the underlying mechanisms of osteoblast activation induced by fluoride are not fully understood. Therefore, we investigated the pathogenic mechanism of human primary osteoblast proliferation and activation in relation to histone acetylation of the promoter p16, a well-known cell cycle regulation-related gene. The results showed that sodium fluoride (NaF) induced deacetylation and decreased expression of the p16 gene via inhibition of specificity protein 1 (Sp1) binding to its response element, which accounts for NaF increasing cell viability and promoting proliferation in human primary osteoblasts. These results reveal the regulatory mechanism of histone acetylation of the p16 gene on osteoblast activation in skeletal fluorosis.
Collapse
Affiliation(s)
- Juan Ming
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Shouli Wu
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Tongzhao You
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Xilan Wang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chun Yu
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Peng Luo
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Xueli Pan
- Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Jiang Z, Yuan Y, Zheng H, Cui H, Sun X, Zhao W, Liu X. COMMD1 regulates cell proliferation and cell cycle progression by modulating p21 Cip1 levels. Biosci Biotechnol Biochem 2019; 83:845-850. [PMID: 30667321 DOI: 10.1080/09168451.2019.1569497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper metabolism MURR1 domain-containing 1 (COMMD1) is a protein that participates in multiple cellular processes, including copper homeostasis and nuclear factor kappa B (NF-κB) and hypoxia-inducible factor 1α (HIF-1α) signaling. The COMMD1 upstream regulators X-linked inhibitor of apoptosis protein (XIAP) and p300 and downstream targets such as NF-κB and HIF-1α are involved in the regulation of cell proliferation and cell cycle progression. However, whether COMMD1 regulates cell proliferation and the cell cycle remains unclear. In the present study, we demonstrated that both overexpression and knockdown of COMMD1 affected the proliferation of HEK293 cells, and the cell cycle assay revealed that ectopic expression of COMMD1 arrested the cell cycle at the G1 phase. Furthermore, western blot analysis showed that COMMD1 affected p21 Cip1 levels. Taken together, these results suggest that COMMD1 regulates cell proliferation and cell cycle progression by modulating p21 Cip1 levels. Abbreviations COMMD1: Copper metabolism MURR1 domain containing 1; XIAP: X chromosome-linked inhibitor of apoptosis protein; FCS: Fetal calf serum; WCE: Whole cell extracts; RT-PCR: Reverse transcription-polymerase chain reaction; HEK293: Human embryonic kidney 293; ShRNA: Short hairpin RNA; NF-κB: Nuclear factor kappa-light-chain-enhancer of activated B cells; ARF: Alternate reading frame protein product of the CDKN2A locus.
Collapse
Affiliation(s)
- Zhiwen Jiang
- a Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research , Guangdong Medical University , Dongguan , China.,b Dongguan Scientific Research Center , Guangdong Medical University , Guangdong , China
| | - Yuan Yuan
- a Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research , Guangdong Medical University , Dongguan , China.,b Dongguan Scientific Research Center , Guangdong Medical University , Guangdong , China
| | - Huiling Zheng
- a Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research , Guangdong Medical University , Dongguan , China.,b Dongguan Scientific Research Center , Guangdong Medical University , Guangdong , China
| | - Hongjing Cui
- a Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research , Guangdong Medical University , Dongguan , China.,b Dongguan Scientific Research Center , Guangdong Medical University , Guangdong , China
| | - Xuerong Sun
- a Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research , Guangdong Medical University , Dongguan , China.,b Dongguan Scientific Research Center , Guangdong Medical University , Guangdong , China
| | - Wei Zhao
- a Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research , Guangdong Medical University , Dongguan , China.,b Dongguan Scientific Research Center , Guangdong Medical University , Guangdong , China
| | - Xinguang Liu
- a Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research , Guangdong Medical University , Dongguan , China.,b Dongguan Scientific Research Center , Guangdong Medical University , Guangdong , China.,c Institute of Biochemistry and Molecular Biology , Guangdong Medical University , Dongguan , China
| |
Collapse
|
13
|
Jiao Y, Feng Y, Wang X. Regulation of Tumor Suppressor Gene CDKN2A and Encoded p16-INK4a Protein by Covalent Modifications. BIOCHEMISTRY (MOSCOW) 2018; 83:1289-1298. [PMID: 30482142 DOI: 10.1134/s0006297918110019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CDKN2A is one of the most studied tumor suppressor genes. It encodes the p16-INK4a protein that plays a critical role in the cell cycle progression, differentiation, senescence, and apoptosis. Mutations in CDKN2A or dysregulation of its functional activity are frequently associated with various types of human cancer. As a cyclin-dependent kinase inhibitor, p16-INK4a forms a complex with cyclin-dependent kinases 4/6 (CDK4/6) thereby competing with cyclin D. It is believed that the helix-turn-helix structures in the content of tandem ankyrin repeats in p16-INK4a are required for the protein interaction with CDK4. Until recently, the mechanisms considered to be involved in the regulation of p16-INK4a functions and cancer development have been mutations in DNA, homozygous or heterozygous gene loss, and methylation of CDKN2A promoter region. In this review, we discuss recent findings on the regulation of p16-INK4a by covalent modifications at both transcriptional and post-translational levels.
Collapse
Affiliation(s)
- Yang Jiao
- School of Physical Education, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xiuli Wang
- Central Laboratory of General Biology, School of Life Sciences, Northeast Normal University, Changchun, Jilin, 130024, P. R. China.
| |
Collapse
|
14
|
Reducing histone acetylation rescues cognitive deficits in a mouse model of Fragile X syndrome. Nat Commun 2018; 9:2494. [PMID: 29950602 PMCID: PMC6021376 DOI: 10.1038/s41467-018-04869-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
Fragile X syndrome (FXS) is the most prevalent inherited intellectual disability, resulting from a loss of fragile X mental retardation protein (FMRP). Patients with FXS suffer lifelong cognitive disabilities, but the function of FMRP in the adult brain and the mechanism underlying age-related cognitive decline in FXS is not fully understood. Here, we report that a loss of FMRP results in increased protein synthesis of histone acetyltransferase EP300 and ubiquitination-mediated degradation of histone deacetylase HDAC1 in adult hippocampal neural stem cells (NSCs). Consequently, FMRP-deficient NSCs exhibit elevated histone acetylation and age-related NSC depletion, leading to cognitive impairment in mature adult mice. Reducing histone acetylation rescues both neurogenesis and cognitive deficits in mature adult FMRP-deficient mice. Our work reveals a role for FMRP and histone acetylation in cognition and presents a potential novel therapeutic strategy for treating adult FXS patients. Loss of fragile X mental retardation protein (FMRP) leads to fragile X syndrome, associated with cognitive dysfunction. Here the authors show that mice lacking FMRP show reduced hippocampal neurogenesis and cognitive deficits, which can be rescued by reducing histone acetylation.
Collapse
|
15
|
Urokinase plasminogen activator secreted by cancer-associated fibroblasts induces tumor progression via PI3K/AKT and ERK signaling in esophageal squamous cell carcinoma. Oncotarget 2018; 8:42300-42313. [PMID: 28404945 PMCID: PMC5522068 DOI: 10.18632/oncotarget.15857] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are believed to influence tumor behavior and clinical outcomes. We previously showed that conditioned medium (CM) from CAFs induces proliferation and motility of esophageal squamous cell carcinoma (ESCC) cells. Here, we investigated the molecular mechanisms by which the CAF-secreted proteins induce ESCC development and progression. Using antibody arrays, we identified urokinase plasminogen activator (uPA) as one of the main proteins whose release was increased in CAFs compared to normal fibroblasts (NFs). Immunohistochemical analysis of pathological sections showed that uPA-positive cells were localized at the boundaries of tumor and stroma tissues, in stroma between tumor nests, and within the tumors. Increased stromal uPA levels (132/146 cases) correlated with tumor invasion (p < 0.05) and overall survival of ESCC patients (p < 0.05). In vitro assays showed that uPA promotes ESCC cell proliferation, migration, and invasion via PI3K/AKT and ERK signaling pathways. In vivo, anti-uPA antibody suppressed tumor growth in ESCC xenografts. These results suggest that uPA released from stroma, and especially from CAFs, might be a predictive marker for ESCC diagnosis and prognosis, as well as an effective therapeutic target.
Collapse
|
16
|
Li N, Qin JF, Han X, Jin FJ, Zhang JH, Lan L, Wang Y. miR-21a negatively modulates tumor suppressor genes PTEN and miR-200c and further promotes the transformation of M2 macrophages. Immunol Cell Biol 2017; 96:68-80. [DOI: 10.1111/imcb.1016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Li
- School of Medicine; Nankai University; Tianjin China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy; Nankai University; Tianjin China
| | - Jun-Fang Qin
- School of Medicine; Nankai University; Tianjin China
| | - Xiao Han
- School of Medicine; Nankai University; Tianjin China
| | - Feng-Jiao Jin
- School of Medicine; Nankai University; Tianjin China
| | - Jia-Hui Zhang
- School of Medicine; Nankai University; Tianjin China
| | - Lan Lan
- Tianjin Cancer Hospital; Tianjin Medical University; Tianjin China
| | - Yue Wang
- School of Medicine; Nankai University; Tianjin China
| |
Collapse
|
17
|
Geng P, Zhang Y, Liu X, Zhang N, Liu Y, Liu X, Lin C, Yan X, Li Z, Wang G, Li Y, Tan J, Liu DX, Huang B, Lu J. Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression. FASEB J 2017; 31:2287-2300. [PMID: 28188177 DOI: 10.1096/fj.201601196r] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022]
Abstract
Protein arginine methyltransferases (PRMTs) catalyze protein arginine methylation and are linked to carcinogenesis and metastasis. Some members of PRMTs have been found to undergo automethylation; however, the biologic significance of this self-modification is not entirely clear. In this report, we demonstrate that R531 of PRMT7 is self-methylated, both in vitro and in vivo Automethylation of PRMT7 plays a key role in inducing the epithelial-mesenchymal transition (EMT) program and in promoting the migratory and invasive behavior of breast cancer cells. We also prove in a nude mouse model that expression of wild-type PRMT7 in MCF7 breast cancer cells promotes metastasis in vivo, in contrast to the PRMT7 R531K mutant (a mimic of the unmethylated status). Moreover, our immunohistochemical data unravel a close link between PRMT7 automethylation and the clinical outcome of breast carcinomas. Mechanistically, we determine that loss of PRMT7 automethylation leads to the reduction of its recruitment to the E-cadherin promoter by YY1, which consequently derepresses the E-cadherin expression through decreasing the H4R3me2s level. The findings in this work define a novel post-translational modification of PRMT7 that has a promoting impact on breast cancer metastasis.-Geng, P., Zhang, Y., Liu, X., Zhang, N., Liu, Y., Liu, X., Lin, C., Yan, X., Li, Z., Wang, G., Li, Y., Tan, J., Liu, D.-X., Huang, B., Lu, J. Automethylation of protein arginine methyltransferase 7 and its impact on breast cancer progression.
Collapse
Affiliation(s)
- Pengyu Geng
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiaoqing Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Na Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yingqi Liu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Xin Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Cong Lin
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Xu Yan
- Pathological Diagnostic Center, The First Hospital of Jilin University, Changchun, China
| | - Zhongwei Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China; and
| | - Yuxin Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China; and
| | - Jiang Tan
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Dong-Xu Liu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, China;
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China;
| |
Collapse
|
18
|
The interplay between p16 serine phosphorylation and arginine methylation determines its function in modulating cellular apoptosis and senescence. Sci Rep 2017; 7:41390. [PMID: 28120917 PMCID: PMC5264599 DOI: 10.1038/srep41390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/20/2016] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinase inhibitor p16INK4a (p16) primarily functions as a negative regulator of the retinoblastoma protein (Rb) -E2F pathway, thus plays critical role in cell cycle progression, cellular senescence and apoptosis. In this study, we showed that the methylation of Arg 138 and the phosphorylation of Ser 140 on p16 were critical for the control of cell proliferation and apoptosis. Compared to wild type p16, mutant p16R138K possessed improved function in preventing cell proliferation and inducing apoptosis, while the Ser 140 mutation (p16S140A) exhibited the opposite alteration. We also demonstrated that H2O2 was able to induce the phosphorylation of p16, which facilitated the interaction between CDK4 (Cyclin-dependent protein kinase) and p16, in 293T (human emborynic kidney) cells. Furthermore, the elevated arginine methylation in p16S140A mutant and increased serine phosphorylation in p16R138K mutant suggest that a antagonizing mechanism coordinating Arg 138 methylation and Ser 140 phosphorylation to regulates p16 function as well as cellular apoptosis and senescence. These findings will therefore contribute to therapeutic treatment for p16-related gene therapy by providing theoretical and experimental evidence.
Collapse
|
19
|
Stejskal S, Stepka K, Tesarova L, Stejskal K, Matejkova M, Simara P, Zdrahal Z, Koutna I. Cell cycle-dependent changes in H3K56ac in human cells. Cell Cycle 2016; 14:3851-63. [PMID: 26645646 DOI: 10.1080/15384101.2015.1106760] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The incorporation of histone H3 with an acetylated lysine 56 (H3K56ac) into the nucleosome is important for chromatin remodeling and serves as a marker of new nucleosomes during DNA replication and repair in yeast. However, in human cells, the level of H3K56ac is greatly reduced, and its role during the cell cycle is controversial. Our aim was to determine the potential of H3K56ac to regulate cell cycle progression in different human cell lines. A significant increase in the number of H3K56ac foci, but not in H3K56ac protein levels, was observed during the S and G2 phases in cancer cell lines, but was not observed in embryonic stem cell lines. Despite this increase, the H3K56ac signal was not present in late replication chromatin, and H3K56ac protein levels did not decrease after the inhibition of DNA replication. H3K56ac was not tightly associated with the chromatin and was primarily localized to active chromatin regions. Our results support the role of H3K56ac in transcriptionally active chromatin areas but do not confirm H3K56ac as a marker of newly synthetized nucleosomes in DNA replication.
Collapse
Affiliation(s)
- Stanislav Stejskal
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Karel Stepka
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Lenka Tesarova
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Karel Stejskal
- b Research Group - Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic.,c National Centre for Biomolecular Research; Faculty of Science; Masaryk University ; Brno , Czech Republic
| | - Martina Matejkova
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Pavel Simara
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| | - Zbynek Zdrahal
- b Research Group - Proteomics; Central European Institute of Technology; Masaryk University ; Brno , Czech Republic.,c National Centre for Biomolecular Research; Faculty of Science; Masaryk University ; Brno , Czech Republic
| | - Irena Koutna
- a Centre for Biomedical Image Analysis; Faculty of Informatics; Masaryk University ; Brno , Czech Republic
| |
Collapse
|
20
|
What are the mechanisms of regeneration inhibition in alcoholic hepatitis? Exp Mol Pathol 2016; 100:502-5. [PMID: 27189521 DOI: 10.1016/j.yexmp.2016.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022]
|
21
|
Liu X, Li H, Liu L, Lu Y, Gao Y, Geng P, Li X, Huang B, Zhang Y, Lu J. Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2093-103. [PMID: 27183873 DOI: 10.1016/j.bbamcr.2016.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/21/2016] [Accepted: 05/08/2016] [Indexed: 01/02/2023]
Abstract
The cap 'n' collar (CNC) family of transcription factors play important roles in resistance of oxidative and electrophilic stresses. Among the CNC family members, NF-E2-related factor 2 (Nrf2) is critical for regulating the antioxidant and phase II enzymes through antioxidant response element (ARE)-mediated transactivation. The activity of Nrf2 is controlled by a variety of post-translational modifications, including phosphorylation, ubiquitination, acetylation and sumoylation. Here we demonstrate that the arginine methyltransferase-1 (PRMT1) methylates Nrf2 protein at a single residue of arginine 437, both in vitro and in vivo. Using the heme oxygenase-1 (HO-1) as a model of phase II enzyme gene, we found that methylation of Nrf2 by PRMT1 led to a moderate increase of its DNA-binding activity and transactivation, which subsequently protected cells against the tBHP-induced glutathione depletion and cell death. Collectively, our results define a novel modification of Nrf2, which operates as a fine-tuning mechanism for the transcriptional activity of Nrf2 under the oxidative stress.
Collapse
Affiliation(s)
- Xin Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Hongyuan Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Lingxia Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yang Lu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Yanyan Gao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Pengyu Geng
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Xiaoxue Li
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China.
| | - Jun Lu
- The Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130021, China.
| |
Collapse
|
22
|
Shi X, Dong Y, Li Y, Zhao Z, Li H, Qiu S, Li Y, Guo W, Qiao Y. Inflammasome activation in mouse inner ear in response to MCMV induced hearing loss. J Otol 2016; 10:143-149. [PMID: 29937798 PMCID: PMC6002578 DOI: 10.1016/j.joto.2015.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 12/21/2015] [Accepted: 12/24/2015] [Indexed: 01/22/2023] Open
Abstract
Objective To identify presence of inflammasome activated in mouse cochlea with sensorineural hearing loss (SNHL) caused by cytomegalovirus (CMV) infection. Method MCMV was injected into the right cerebral hemisphere in neonatal BALB/c mice at 2000 pfu virus titers. Auditory brainstem responses (ABRs) were tested to evaluate hearing at 21 days. Histopathological studies were conducted to confirm localizations of MCMV infected cells in the inner ear. Expression of inflammasome related factors was assessed by immunofluorescence, Quantitative real-time PCR and Western blotting. Results In the mouse model of CMV induced SNHL, inflammasome related kinase Caspase-1 and downstream inflammatory factor IL-1β and IL-18 were found increased and activated after CMV infection in the cochlea. These factors could further up-regulate expression of IL-6 and TNF-α. These inflammatory factors are neurotoxicity and may contribute to hearing impairment. Furthermore, we also detected significantly increased AIM2 protein that accumulated in the SGN of cochleae with CMV infection. Significance We have shown that inflammasome as a novel inherent immunity mechanism may contribute to hearing impairment. Conclusion Our data indicate that imflammasome assemble in mouse inner ear in response to CMV infection. We have revealed a novel pathology event in CMV induced SNHL involving activation of inflammasome in mouse cochlea. Additionally, we have shown that inflammasome may be a novel target for prevention and treatment of CMV related SNHL.
Collapse
Affiliation(s)
- Xi Shi
- The Institute of Audiology and Speech Science of Xuzhou Medical Collage, Xuzhou 221004, China.,Department of Otolaryngology, Head & Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanfen Dong
- The Institute of Audiology and Speech Science of Xuzhou Medical Collage, Xuzhou 221004, China
| | - Ya Li
- The Institute of Audiology and Speech Science of Xuzhou Medical Collage, Xuzhou 221004, China
| | - ZenLu Zhao
- The Institute of Audiology and Speech Science of Xuzhou Medical Collage, Xuzhou 221004, China
| | - Huan Li
- The Institute of Audiology and Speech Science of Xuzhou Medical Collage, Xuzhou 221004, China
| | - Shiwei Qiu
- The Institute of Audiology and Speech Science of Xuzhou Medical Collage, Xuzhou 221004, China
| | - Yaohan Li
- The Institute of Audiology and Speech Science of Xuzhou Medical Collage, Xuzhou 221004, China
| | - Weiwei Guo
- Department of Otolaryngology, Head & Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuehua Qiao
- The Institute of Audiology and Speech Science of Xuzhou Medical Collage, Xuzhou 221004, China
| |
Collapse
|
23
|
Skowronska-Krawczyk D, Zhao L, Zhu J, Weinreb RN, Cao G, Luo J, Flagg K, Patel S, Wen C, Krupa M, Luo H, Ouyang H, Lin D, Wang W, Li G, Xu Y, Li O, Chung C, Yeh E, Jafari M, Ai M, Zhong Z, Shi W, Zheng L, Krawczyk M, Chen D, Shi C, Zin C, Zhu J, Mellon PL, Gao W, Abagyan R, Zhang L, Sun X, Zhong S, Zhuo Y, Rosenfeld MG, Liu Y, Zhang K. P16INK4a Upregulation Mediated by SIX6 Defines Retinal Ganglion Cell Pathogenesis in Glaucoma. Mol Cell 2015; 59:931-40. [PMID: 26365380 DOI: 10.1016/j.molcel.2015.07.027] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/08/2015] [Accepted: 07/24/2015] [Indexed: 02/06/2023]
Abstract
Glaucoma, a blinding neurodegenerative disease, whose risk factors include elevated intraocular pressure (IOP), age, and genetics, is characterized by accelerated and progressive retinal ganglion cell (RGC) death. Despite decades of research, the mechanism of RGC death in glaucoma is still unknown. Here, we demonstrate that the genetic effect of the SIX6 risk variant (rs33912345, His141Asn) is enhanced by another major POAG risk gene, p16INK4a (cyclin-dependent kinase inhibitor 2A, isoform INK4a). We further show that the upregulation of homozygous SIX6 risk alleles (CC) leads to an increase in p16INK4a expression, with subsequent cellular senescence, as evidenced in a mouse model of elevated IOP and in human POAG eyes. Our data indicate that SIX6 and/or IOP promotes POAG by directly increasing p16INK4a expression, leading to RGC senescence in adult human retinas. Our study provides important insights linking genetic susceptibility to the underlying mechanism of RGC death and provides a unified theory of glaucoma pathogenesis.
Collapse
Affiliation(s)
- Dorota Skowronska-Krawczyk
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ling Zhao
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Jie Zhu
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Robert N Weinreb
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Guiqun Cao
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Jing Luo
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ken Flagg
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sherrina Patel
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cindy Wen
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Martin Krupa
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hongrong Luo
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hong Ouyang
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Danni Lin
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenqiu Wang
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China
| | - Gen Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Yanxin Xu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China
| | - Oulan Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China; Guangzhou KangRui Biological Pharmaceutical Technology Company Ltd., Guangzhou 510005, China
| | - Christopher Chung
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Yeh
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maryam Jafari
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Ai
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zheng Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - William Shi
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lianghong Zheng
- Guangzhou KangRui Biological Pharmaceutical Technology Company Ltd., Guangzhou 510005, China
| | - Michal Krawczyk
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Chen
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Catherine Shi
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Carolyn Zin
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jin Zhu
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pamela L Mellon
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Weiwei Gao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ruben Abagyan
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai First People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai 20080, China
| | - Sheng Zhong
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yehong Zhuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| | - Kang Zhang
- Shiley Eye Institute, Department of Ophthalmology and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan 610041, China; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Veterans Administration Healthcare System, San Diego, CA 92093, USA.
| |
Collapse
|
24
|
Ma WL, Wang L, Liu LX, Wang XL. Effect of phosphorylation and methylation on the function of the p16 INK4a protein in non-small cell lung cancer A549 cells. Oncol Lett 2015; 10:2277-2282. [PMID: 26622834 DOI: 10.3892/ol.2015.3617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/29/2015] [Indexed: 11/06/2022] Open
Abstract
The p16INK4a protein (p16) has been reported to be a tumor suppressor gene that suppresses the proliferation of cells through the direct inhibition of cell cycle progression. Accordingly, p16 is a potential target for cancer gene therapy. In the present study, the arginine 22, 131 and 138 residues of p16 were found to be methylation sites, as the mutation of these arginine residues to lysine resulted in the hypomethylation of p16. Furthermore, the protein arginine methyltransferases (PRMTs), such as PRMT1, PRMT4 and PRMT6, were determined to be involved in the methylation of the p16 arginine residues. PRMT6 effectively reduced the intensity of the association between p16 and CDK4, and also weakened the function of p16 in preventing cell proliferation. In addition, the p16 protein was found to be phosphorylated in various cell lines, and mutations in the serine residues weakened the cell cycle arrest and induction of apoptosis mediated by p16. Preliminarily, the crosstalk between the phosphorylation and arginine methylation modification of p16 was examined. These findings predict a role for serine phosphorylation against arginine methylation of p16.
Collapse
Affiliation(s)
- Wen-Long Ma
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Lin Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Ling-Xia Liu
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| | - Xiu-Li Wang
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, P.R. China
| |
Collapse
|
25
|
Onyema OO, Njemini R, Forti LN, Bautmans I, Aerts JL, De Waele M, Mets T. Aging-associated subpopulations of human CD8+ T-lymphocytes identified by their CD28 and CD57 phenotypes. Arch Gerontol Geriatr 2015; 61:494-502. [PMID: 26277688 DOI: 10.1016/j.archger.2015.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND During organismal aging, human T-cells shift towards less functional phenotypes, often called senescent cells. As these cells have not been well characterized, we aimed to relate surface markers of human T-cell senescence with characteristics of in vitro cellular aging and to further characterize these cells. METHODS We identified, by flow cytometry, subpopulations of CD8+ T-cells based on CD57 and CD28 expression, and tested them for some markers of cellular senescence, apoptosis, differentiation and homing. RESULTS Elderly persons presented significantly higher proportions not only of CD28-CD57+, but also of CD28+CD57+ cells. CD28+CD57+ cells had the highest expression of p16, p21, Bcl-2, CD95, CD45RO, CCR5 and PD-1, thereby arguing in favor of a senescent phenotype. CONCLUSION Among CD8+ T-lymphocytes, CD28+CD57+ cells represent a subset with some senescent features that are distinct from the CD28-CD57+ cells.
Collapse
Affiliation(s)
- Oscar Okwudiri Onyema
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussel, Belgium
| | - Rose Njemini
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussel, Belgium
| | - Louis Nuvagah Forti
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussel, Belgium
| | - Ivan Bautmans
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussel, Belgium
| | - Joeri L Aerts
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussel, Belgium
| | - Marc De Waele
- Laboratory of Hematology, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussel, Belgium
| | - Tony Mets
- Gerontology Department and Frailty in Aging Research (FRIA) Group, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussel, Belgium; Department of Geriatrics, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, B-1090 Brussel, Belgium.
| |
Collapse
|
26
|
Mishra DR, Chaudhary S, Krishna BM, Mishra SK. Identification of Critical Elements for Regulation of Inorganic Pyrophosphatase (PPA1) in MCF7 Breast Cancer Cells. PLoS One 2015; 10:e0124864. [PMID: 25923237 PMCID: PMC4414593 DOI: 10.1371/journal.pone.0124864] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/11/2015] [Indexed: 12/21/2022] Open
Abstract
Cytosolic inorganic pyrophosphatase plays an important role in the cellular metabolism by hydrolyzing inorganic pyrophosphate (PPi) formed as a by-product of various metabolic reactions. Inorganic pyrophosphatases are known to be associated with important functions related to the growth and development of various organisms. In humans, the expression of inorganic pyrophosphatase (PPA1) is deregulated in different types of cancer and is involved in the migration and invasion of gastric cancer cells and proliferation of ovarian cancer cells. However, the transcriptional regulation of the gene encoding PPA1 is poorly understood. To gain insights into PPA1 gene regulation, a 1217 bp of its 5'-flanking region was cloned and analyzed. The 5'-deletion analysis of the promoter revealed a 266 bp proximal promoter region exhibit most of the transcriptional activity and upon sequence analysis, three putative Sp1 binding sites were found to be present in this region. Binding of Sp1 to the PPA1 promoter was confirmed by Electrophoretic mobility shift assay (EMSA) and Chromatin immunoprecipitation (ChIP) assay. Importance of these binding sites was verified by site-directed mutagenesis and overexpression of Sp1 transactivates PPA1 promoter activity, upregulates protein expression and increases chromatin accessibility. p300 binds to the PPA1 promoter and stimulates Sp1 induced promoter activity. Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor induces PPA1 promoter activity and protein expression and HAT activity of p300 was important in regulation of PPA1 expression. These results demonstrated that PPA1 is positively regulated by Sp1 and p300 coactivates Sp1 induced PPA1 promoter activity and histone acetylation/deacetylation may contribute to a local chromatin remodeling across the PPA1 promoter. Further, knockdown of PPA1 decreased colony formation and viability of MCF7 cells.
Collapse
Affiliation(s)
- Dipti Ranjan Mishra
- Cancer Biology Laboratory, Gene function and regulation Group, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sanjib Chaudhary
- Cancer Biology Laboratory, Gene function and regulation Group, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - B. Madhu Krishna
- Cancer Biology Laboratory, Gene function and regulation Group, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sandip K. Mishra
- Cancer Biology Laboratory, Gene function and regulation Group, Institute of Life Sciences, Bhubaneswar, Odisha, India
- * E-mail:
| |
Collapse
|
27
|
A novel anti-proliferative role of HMGA2 in induction of apoptosis through caspase 2 in primary human fibroblast cells. Biosci Rep 2015; 35:BSR20140112. [PMID: 25300915 PMCID: PMC4293904 DOI: 10.1042/bsr20140112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The HMGA2 (high-mobility group AT-hook) protein has previously been shown as an oncoprotein, whereas ectopic expression of HMGA2 is found to induce growth arrest in primary cells. The precise mechanisms underlying this phenomenon remain to be unravelled. In the present study, we determined that HMGA2 was able to induce apoptosis in WI38 primary human cells. We show that WI38 cells expressing high level of HMGA2 were arrested at G2/M phase and exhibited apoptotic nuclear phenotypes. Meanwhile, the cleaved caspase 3 (cysteine aspartic acid-specific protease 3) was detected 8 days after HMGA2 overexpression. Flow cytometric analysis confirmed that the ratio of cells undergoing apoptosis increased dramatically. Concurrently, other major apoptotic markers were also detected, including the up-regulation of p53, Bax and cleaved caspase 9, down-regulation of Bcl-2; as well as release of cytochrome c from the mitochondria. We further demonstrate that the shRNA (small-hairpin RNA)-mediated Apaf1 (apoptotic protease activating factor 1) silencing partially rescued the HMGA2-induced apoptosis, which was accompanied by the decrease of cleaved caspase-3 level and a decline of cell death ratio. Our results also reveal that γH2A was accumulated in nuclei during the HMGA2-induced apoptosis along with the up-regulation of cleaved caspase 2, suggesting that the HMGA2-induced apoptosis was dependent on the pathway of DNA damage. Overall, the present study unravelled a novel function of HMGA2 in induction of apoptosis in human primary cell lines, and provided clues for clarification of the mechanistic action of HMGA2 in addition to its function as an oncoprotein.
Collapse
|
28
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 377] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
29
|
Lee SH, Piran R, Keinan E, Pinkerton A, Levine F. Induction of β-cell replication by a synthetic HNF4α antagonist. Stem Cells 2014; 31:2396-407. [PMID: 23922283 DOI: 10.1002/stem.1496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/19/2013] [Accepted: 07/07/2013] [Indexed: 01/09/2023]
Abstract
Increasing the number of β cells is critical to a definitive therapy for diabetes. Previously, we discovered potent synthetic small molecule antagonists of the nuclear receptor transcription factor HNF4α. The natural ligands of HNF4α are thought to be fatty acids. Because obesity, in which there are high circulating levels of free fatty acids, is one of the few conditions leading to β-cell hyperplasia, we tested the hypothesis that a potent HNF4α antagonist might stimulate β-cell replication. A bioavailable HNF4α antagonist was injected into normal mice and rabbits and β-cell ablated mice and the effect on β-cell replication was measured. In normal mice and rabbits, the compound induced β-cell replication and repressed the expression of multiple cyclin-dependent kinase inhibitors, including p16 that plays a critical role in suppressing β-cell replication. Interestingly, in β-cell ablated mice, the compound induced α- and δ-cell, in addition to β-cell replication, and β-cell number was substantially increased. Overall, the data presented here are consistent with a model in which the well-known effects of obesity and high fat diet on β-cell replication occur by inhibition of HNF4α. The availability of a potent synthetic HNF4α antagonist raises the possibility that this effect might be a viable route to promote significant increases in β-cell replication in diseases with reduced β-cell mass, including type I and type II diabetes.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
30
|
Agarwal P, Sandey M, DeInnocentes P, Bird RC. Tumor suppressor gene p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a spontaneous canine model of breast cancer. J Cell Biochem 2014; 114:1355-63. [PMID: 23238983 DOI: 10.1002/jcb.24476] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/05/2012] [Indexed: 02/03/2023]
Abstract
p16/INK4A/CDKN2A is an important tumor suppressor gene that arrests cell cycle in G1 phase inhibiting binding of CDK4/6 with cyclin D1, leaving the Rb tumor suppressor protein unphosphorylated and E2F bound and inactive. We hypothesized that p16 has a role in exit from cell cycle that becomes defective in cancer cells. Well characterized p16-defective canine mammary cancer cell lines (CMT28, CMT27, and CMT12), derived stably p16-transfected CMT cell clones (CMT27A, CMT27H, CMT28A, and CMT28F), and normal canine fibroblasts (NCF), were used to investigate expression of p16 after serum starvation into quiescence followed by re-feeding to induce cell cycle re-entry. The parental CMT cell lines used lack p16 expression either at the mRNA or protein expression levels, while p27 and other p16-associated proteins, including CDK4, CDK6, cyclin D1, and Rb, were expressed. We have successfully demonstrated cell cycle arrest and relatively synchronous cell cycle re-entry in parental CMT12, CMT28 and NCF cells as well as p16 transfected CMT27A, CMT27H, CMT28A, and CMT28F cells and confirmed this by (3)H-thymidine incorporation and flow cytometric analysis of cell cycle phase distribution. p16-transfected CMT27A and CMT27H cells exited cell cycle post-serum-starvation in contrast to parental CMT27 cells. NCF, CMT27A, and CMT28F cells expressed upregulated levels of p27 and p16 mRNA, post-serum starvation, as cells exited cell cycle and entered quiescence. Because quiescence and differentiation are associated with increased levels of p27, our data demonstrating that p16 was upregulated along with p27 during quiescence, suggests a potential role for p16 in maintaining these non-proliferative states.
Collapse
Affiliation(s)
- Payal Agarwal
- Department of Pathobiology, College of Veterinary Medicine, AURIC-Auburn University Research Initiative in Cancer, Auburn, Albama 36849-5519, USA
| | | | | | | |
Collapse
|
31
|
Cho YA, Hong JS, Choe EJ, Yoon HJ, Hong SD, Lee JI, Hong SP. The role of p300 in the tumor progression of oral squamous cell carcinoma. J Oral Pathol Med 2014; 44:185-92. [PMID: 25154636 DOI: 10.1111/jop.12227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND EP300 gene encoding p300 is a candidate tumor suppressor gene. This study investigated p300 expression and gene alteration in oral squamous cell carcinoma (OSCC) specimens to assess its role in OSCC development. METHODS Genomic DNA extracted from 13 human OSCC cell lines and 40 OSCC patient specimens was subjected to methylation-specific PCR and exon sequencing. Immunohistochemical staining with primary antibodies against p300 and p53 was performed in 48 patients with OSCC. We analyzed the association between the data and clinicopathological factors of OSCC patients. RESULTS Methylation-specific PCR revealed that the EP300 promoter region was not hypermethylated in OSCC. Only one cell line demonstrated a point mutation at exon 31. On immunohistochemical examination, patients with metastatic lymph nodes (P = 0.009) and advanced clinical stage (P = 0.046) tended to show increased expression of p300. There was no statistically significant relationship between p300 expression and p53 accumulation in OSCC tissue samples. Patient survival was not correlated with p300 expression. CONCLUSIONS EP300 is not a tumor suppressor gene because there was neither epigenetic inactivation of the gene nor a mutation resulting in functional impairment. Based on p300 overexpression and its association with clinical factors in patients with OSCC, it is likely that p300 itself or one of its target genes plays a key role in the aggressive phenotypes of OSCC.
Collapse
Affiliation(s)
- Young-Ah Cho
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
32
|
Yao R, Jiang H, Ma Y, Wang L, Wang L, Du J, Hou P, Gao Y, Zhao L, Wang G, Zhang Y, Liu DX, Huang B, Lu J. PRMT7 induces epithelial-to-mesenchymal transition and promotes metastasis in breast cancer. Cancer Res 2014; 74:5656-67. [PMID: 25136067 DOI: 10.1158/0008-5472.can-14-0800] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) enables metastasis. E-cadherin loss is a hallmark of EMT, but there remains an incomplete understanding of the epigenetics of this process. The protein arginine methyltransferase PRMT7 functions in various physiologic processes, including mRNA splicing, DNA repair, and neural differentiation, but its possible roles in cancer and metastasis have not been explored. In this report, we show that PRMT7 is expressed at higher levels in breast carcinoma cells and that elevated PRMT7 mediates EMT and metastasis. PRMT7 could inhibit the expression of E-cadherin by binding to its proximal promoter in a manner associated with altered histone methylation, specifically with elevated H4R3me2s and reduced H3K4me3, H3Ac, and H4Ac, which occurred at the E-cadherin promoter upon EMT induction. Moreover, PRMT7 interacted with YY1 and HDAC3 and was essential to link these proteins to the E-cadherin promoter. Silencing PRMT7 restored E-cadherin expression by repressing H4R3me2s and by increasing H3K4me3 and H4Ac, attenuating cell migration and invasion in MDA-MB-231 breast cancer cells. Overall, our results define PRMT7 as an inducer of breast cancer metastasis and present the opportunity for applying PRMT7-targeted therapeutics to treat highly invasive breast cancers.
Collapse
Affiliation(s)
- Ruosi Yao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Hao Jiang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Yuhui Ma
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Liping Wang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Wang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Juan Du
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Pingfu Hou
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yanyan Gao
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Li Zhao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Guannan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Dong-Xu Liu
- The Liggins Institute, the University of Auckland, Auckland, New Zealand
| | - Baiqu Huang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China.
| | - Jun Lu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.
| |
Collapse
|
33
|
Kim BK, Im JY, Han G, Lee WJ, Won KJ, Chung KS, Lee K, Ban HS, Song K, Won M. p300 cooperates with c-Jun and PARP-1 at the p300 binding site to activate RhoB transcription in NSC126188-mediated apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:364-73. [DOI: 10.1016/j.bbagrm.2014.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 11/27/2022]
|
34
|
Kooistra SM, Nørgaard LCR, Lees MJ, Steinhauer C, Johansen JV, Helin K. A screen identifies the oncogenic micro-RNA miR-378a-5p as a negative regulator of oncogene-induced senescence. PLoS One 2014; 9:e91034. [PMID: 24651706 PMCID: PMC3961217 DOI: 10.1371/journal.pone.0091034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/06/2014] [Indexed: 12/15/2022] Open
Abstract
Oncogene-induced senescence (OIS) can occur in response to hyperactive oncogenic signals and is believed to be a fail-safe mechanism protecting against tumorigenesis. To identify new factors involved in OIS, we performed a screen for microRNAs that can overcome or inhibit OIS in human diploid fibroblasts. This screen led to the identification of miR-378a-5p and in addition several other miRNAs that have previously been shown to play a role in senescence. We show that ectopic expression of miR-378a-5p reduces the expression of several senescence markers, including p16INK4A and senescence-associated β-galactosidase. Moreover, cells with ectopic expression of miR-378a-5p retain proliferative capacity even in the presence of an activated Braf oncogene. Finally, we identified several miR-378a-5p targets in diploid fibroblasts that might explain the mechanism by which the microRNA can delay OIS. We speculate that miR-378a-5p might positively influence tumor formation by delaying OIS, which is consistent with a known pro-oncogenic function of this microRNA.
Collapse
Affiliation(s)
- Susanne Marije Kooistra
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Lise Christine Rudkjær Nørgaard
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Michael James Lees
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Cornelia Steinhauer
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Jens Vilstrup Johansen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark; The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark; Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark; The Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Su D, Li Q, Guan L, Gao X, Zhang H, Dandan E, Zhang L, Ma X. Down-regulation of EBAF in the heart with ventricular septal defects and its regulation by histone acetyltransferase p300 and transcription factors smad2 and cited2. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:2145-52. [PMID: 23899608 DOI: 10.1016/j.bbadis.2013.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
As a NODAL pathway inhibitor, EBAF plays a critical role during mammalian cardiac development. As recent tests that have been conducted on gene-targeted mice indicate, its expression is frequently altered where cardiac defects are present. We aimed to explore the EBAF expression pattern and molecular mechanism of EBAF gene for VSD genesis. In this report, we show that the average expression of EBAF in the disease tissues of VSD patients was lower than the expression in normal fetuses without VSD. Further study showed that the expression pattern of EBAF was potentially involved in cardiomyocyte apoptosis by Annexin-V and RT-PCR assays. We also found that abnormal activation of NODAL-PITX2C pathway was associated with down-regulation of EBAF. By luciferase reporter assays, we find that EBAF expression is mediated by transcriptional factors smad2 and cited2. In addition, ChIP assays showed that histone acetyltransferase p300 is involved in the activation of EBAF through inducing hyperacetylation of histone H4 at the EBAF promoter. Co-immunoprecipitation also indicates that the expression of EBAF is regulated by a transcriptional complex including p300, smad2, and cited2. This study revealed a novel regulator mechanism of EBAF, which may be a potential molecular target for halting the onset of VSDs. They also indicate that smad2, cited2, and p300 may play important roles in modulating the confirmation of ventricular septal defects.
Collapse
Affiliation(s)
- Dongmei Su
- Department of Genetics, National Research Institute for Family Planning, China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
p16(INK4a), located on chromosome 9p21.3, is lost among a cluster of neighboring tumor suppressor genes. Although it is classically known for its capacity to inhibit cyclin-dependent kinase (CDK) activity, p16(INK4a) is not just a one-trick pony. Long-term p16(INK4a) expression pushes cells to enter senescence, an irreversible cell-cycle arrest that precludes the growth of would-be cancer cells but also contributes to cellular aging. Importantly, loss of p16(INK4a) is one of the most frequent events in human tumors and allows precancerous lesions to bypass senescence. Therefore, precise regulation of p16(INK4a) is essential to tissue homeostasis, maintaining a coordinated balance between tumor suppression and aging. This review outlines the molecular pathways critical for proper p16(INK4a) regulation and emphasizes the indispensable functions of p16(INK4a) in cancer, aging, and human physiology that make this gene special.
Collapse
Affiliation(s)
- Kyle M LaPak
- Biomedical Research Tower, Rm 586, The Ohio State University, 460 W. 12th Avenue, Columbus, OH 43210.
| | | |
Collapse
|
37
|
Rb protein is essential to the senescence-associated heterochromatic foci formation induced by HMGA2 in primary WI38 cells. J Genet Genomics 2013; 40:391-8. [PMID: 23969248 DOI: 10.1016/j.jgg.2013.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/22/2013] [Accepted: 05/27/2013] [Indexed: 01/22/2023]
Abstract
Cellular senescence is an irreversible form of cell cycle arrest that provides a barrier to neoplastic transformation. The integrity of the Rb (Retinoblastoma) pathway is necessary for the formation of the senescence-associated heterochromatin foci (SAHF) that offers a molecular basis for the stability of the senescent state. Surprisingly, although high mobility group A2 protein (HMGA2) can promote tumorigenesis and inhibit Rb function in tumor cells, high-level expression of HMGA2 is sufficient to induce SAHF formation in primary cells. It therefore becomes significant to determine whether Rb protein is necessary in HMGA2-induced SAHF formation. In this study, we established the cellular senescence and SAHF assembly WI38 cell model by ectopic expression of HMGA2, in which typical senescent markers were seen, including notable upregulation of p53, p21 and p16, and elevated SA-β-galactosidase staining together with downregulation of E2F target genes. We then showed that the Rb pathway inhibitor E7 protein was able to partly abolish the ability of SAHF formation after HMGA2 expression in WI38 cells, indicating that Rb is a crucial factor for HMGA2-induced SAHF formation. However, Rb depletion did not completely rescue the cell growth arrest induced by HMGA2, suggesting that Rb is not an exclusive pathway for HMGA2-induced senescence in WI38 cells.
Collapse
|
38
|
Anacardic acid (6-pentadecylsalicylic acid) induces apoptosis of prostate cancer cells through inhibition of androgen receptor and activation of p53 signaling. Chin J Cancer Res 2013. [DOI: 10.1007/s11670-012-0264-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
39
|
PSG gene expression is up-regulated by lysine acetylation involving histone and nonhistone proteins. PLoS One 2013; 8:e55992. [PMID: 23418492 PMCID: PMC3572148 DOI: 10.1371/journal.pone.0055992] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 01/04/2013] [Indexed: 11/25/2022] Open
Abstract
Background Lysine acetylation is an important post-translational modification that plays a central role in eukaryotic transcriptional activation by modifying chromatin and transcription-related factors. Human pregnancy-specific glycoproteins (PSG) are the major secreted placental proteins expressed by the syncytiotrophoblast at the end of pregnancy and represent early markers of cytotrophoblast differentiation. Low PSG levels are associated with complicated pregnancies, thus highlighting the importance of studying the mechanisms that control their expression. Despite several transcription factors having been implicated as key regulators of PSG gene family expression; the role of protein acetylation has not been explored. Methodology/Principal Findings Here, we explored the role of acetylation on PSG gene expression in the human placental-derived JEG-3 cell line. Pharmacological inhibition of histone deacetylases (HDACs) up-regulated PSG protein and mRNA expression levels, and augmented the amount of acetylated histone H3 associated with PSG 5′regulatory regions. Moreover, PSG5 promoter activation mediated by Sp1 and KLF6, via the core promoter element motif (CPE, −147/−140), was markedly enhanced in the presence of the HDAC inhibitor trichostatin A (TSA). This effect correlated with an increase in Sp1 acetylation and KLF6 nuclear localization as revealed by immunoprecipitation and subcellular fractionation assays. The co-activators PCAF, p300, and CBP enhanced Sp1-dependent PSG5 promoter activation through their histone acetylase (HAT) function. Instead, p300 and CBP acetyltransferase domain was dispensable for sustaining co-activation of PSG5 promoter by KLF6. Conclusions/Significance Results are consistent with a regulatory role of lysine acetylation on PSG expression through a relaxed chromatin state and an increase in the transcriptional activity of Sp1 and KLF6 following an augmented Sp1 acetylation and KLF6 nuclear localization.
Collapse
|
40
|
Tan J, Chen B, He L, Tang Y, Jiang Z, Yin G, Wang J, Jiang X. Anacardic acid (6-pentadecylsalicylic acid) induces apoptosis of prostate cancer cells through inhibition of androgen receptor and activation of p53 signaling. Chin J Cancer Res 2013; 24:275-83. [PMID: 23359208 DOI: 10.3978/j.issn.1000-9604.2012.10.07] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 10/09/2012] [Indexed: 12/31/2022] Open
Abstract
Anacardic acid (AA) is a mixture of 2-hydroxy-6-alkylbenzoic acid homologs. It is widely regarded as a non-specific histone acetyltransferase inhibitor of p300. The effects and the mechanisms of AA in LNCaP cells (prostate cancer cells) remain unknown. To investigate the effect of AA on LNCaP cells, we had carried out several experiments and found that AA inhibits LNCaP cell proliferation, induces G1/S cell cycle arrest and apoptosis of LNCaP cell. The mechanisms via which AA acts on LNCaP cells may be due to the following aspects. First, AA can regulate p300 transcription and protein level except for its mechanisms regulating function of p300 through post-translational modification in LNCaP cells. Second, AA can activate p53 through increasing the phosphorylation of p53 on Ser15 in LNCaP cells. AA can selectively activate p21 (target genes of p53). Third, AA can down-regulates androgen receptor (AR) through supressing p300. Our study suggests that AA has multiple anti-tumor activities in LNCaP cells and warrants further investigation.
Collapse
Affiliation(s)
- Jing Tan
- Department of Urology, the third Xiangya Hospital of Xiangya Medical College, Central South University, Changsha 410013, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang X, Huang Y, Zhao J, Zhang Y, Lu J, Huang B. Suppression of PRMT6-mediated arginine methylation of p16 protein potentiates its ability to arrest A549 cell proliferation. Int J Biochem Cell Biol 2012; 44:2333-41. [PMID: 23032699 DOI: 10.1016/j.biocel.2012.09.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 09/14/2012] [Accepted: 09/24/2012] [Indexed: 10/27/2022]
Abstract
The tumor suppressor p16(INK4A) (p16) blocks the cell cycle progression by inhibiting phosphorylation of the retinoblastoma protein. We describe here a novel aspect of the posttranslational control that has an important functional consequence on p16 protein. We first discovered that the p16 protein was methylated in various cell lineages. We then determined that the arginine 22, 131 and 138 of p16 were the main methylation sites. Western blotting and TUNEL analyses revealed that the p16 protein bearing these point mutations induced a higher apoptosis ratio than wild-type p16 in A549 cells. Furthermore, co-immunoprecipitation assays suggested that decrease of p16 arginine methylation level promoted the association of p16 with CDK4. Additionally, we determined that the protein arginine methyltransferase 6 (PRMT6) was responsible for the p16 arginine methylation. Results from flow cytometric analysis demonstrated that PRMT6 overexpression counteracted the cell cycle arrest at G1 phase induced by wild-type p16 in A549 cells. We also provided evidence that PRMT6 was able to interact with p16, and that the intensity of p16-CDK4 association was reduced upon PRMT6 overexpression. Together, data presented in this report establish that methylation at specific arginine residues of p16 protein by PRMT6 may be critical for the activity of p16.
Collapse
Affiliation(s)
- Xiuli Wang
- The Institute of Genetics and Cytology, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | | | | | | | | | | |
Collapse
|
42
|
Liu Z, Ren G, Shangguan C, Guo L, Dong Z, Li Y, Zhang W, Zhao L, Hou P, Zhang Y, Wang X, Lu J, Huang B. ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene. PLoS One 2012; 7:e40943. [PMID: 22808286 PMCID: PMC3396626 DOI: 10.1371/journal.pone.0040943] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/15/2012] [Indexed: 01/02/2023] Open
Abstract
All-trans retinoic acid (ATRA) has been widely investigated for treatments of many cancers including prostate cancer. HOXB13, silenced in androgen receptor-negative (AR(-)) prostate cancer cells, plays a role in AR(-) prostate cancer cell growth arrest. In this study we intended to elucidate the mechanisms that are involved in the proliferation inhibition of AR(-) prostate cancer cells triggered by ATRA. We discovered that ATRA was able to induce the growth arrest and to increase HOXB13 expression in AR(-) prostate cancer cells. Both EZH2 and DNMT3b participated in the repression of HOXB13 expression through an epigenetic mechanism involving DNA and histone methylation modifications. Specifically, EZH2 recruited DNMT3b to HOXB13 promoter to form a repression complex. Moreover, ATRA could upregulate HOXB13 through decreasing EZH2 and DNMT3b expressions and reducing their interactions with the HOXB13 promoter. Concurrently, the methylation level of the HOXB13 promoter was reduced upon the treatment of ATRA. Results from this study implicated a novel effect of ATRA in inhibition of the growth of AR(-) resistant human prostate cancer cells through alteration of HOXB13 expression as a result of epigenetic modifications.
Collapse
Affiliation(s)
- Zhiwei Liu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Guoling Ren
- College of Life Sciences, Daqing Normal University, Daqing, Heilongjiang, China
| | - Chenyan Shangguan
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Lijing Guo
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Zhixiong Dong
- The College of Life Science, Tianjin Normal University, Tianjin, China
| | - Yueyang Li
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Weina Zhang
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Li Zhao
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Pingfu Hou
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Yu Zhang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Xiuli Wang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| | - Jun Lu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, China
| |
Collapse
|
43
|
Akil A, Ezzikouri S, El Feydi AE, Benazzouz M, Afifi R, Diagne AG, Benjouad A, Dejean A, Pineau P, Benjelloun S. Associations of genetic variants in the transcriptional coactivators EP300 and PCAF with hepatocellular carcinoma. Cancer Epidemiol 2012; 36:e300-5. [PMID: 22709982 DOI: 10.1016/j.canep.2012.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/14/2012] [Accepted: 05/22/2012] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a common cause of death by cancer worldwide. In Morocco, HCC is characterized by few mutations and a mild chromosome instability suggesting that epigenetic changes may represent the driving force of tumorigenesis in the region. Recently, three studies looked for an association between EP300 or PCAF polymorphisms and cancer but there is a conspicuous lack of data regarding these histone acetyltransferase (HAT) variants and HCC development. The aim of the current study was to assess the impact of the Ile997Val in EP300 and Asn386Ser in PCAF polymorphisms on the risk of HCC. MATERIALS AND METHODS We performed a case-control study comparing 94 cases with HCC and 220 matching controls. Sequencing methods were used to determine the genotype at the Ile997Val and Asn386Ser on EP300 and PCAF. RESULTS We found an overall association between genotypes Val/Val in EP300 and HCC risk (OR, 3.03; 95% CI, 1.08-8.47; P=0.028). Population stratifications revealed a trend or significantly higher risks of HCC development for women and HCV-negative patients carrying the EP300 Val/Val genotype (OR, 4.06; 95% CI, 0.71-23.36; P=0.09 and OR, 4.48; 95% CI, 1.04-19.14; P=0.02, respectively). The PCAF Ser/Ser genotype at codon 386 was more frequent in HCC cases than in control group (P=0.03). We observed trends for higher risk of HCC among men and/or HCV-negative patients carrying Ser/Ser genotype when compared with controls (OR, 10.62; 95% CI, 0.50-225.13 and OR, 11.78; 95% CI, 0.47-295.56, respectively). CONCLUSION It appears that variants of the transcriptional coactivator genes (EP300 and PCAF) may influence HCC risk in populations with low mutations or chromosomal instability rates. Additional surveys are warranted to confirm this first report.
Collapse
Affiliation(s)
- Abdellah Akil
- Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Rayess H, Wang MB, Srivatsan ES. Cellular senescence and tumor suppressor gene p16. Int J Cancer 2011; 130:1715-25. [PMID: 22025288 DOI: 10.1002/ijc.27316] [Citation(s) in RCA: 507] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/14/2011] [Indexed: 12/14/2022]
Abstract
Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. While the molecular mechanism of senescence involves p16 and p53 tumor suppressor genes and telomere shortening, this review is focused on the mechanism of p16 control. The p16-mediated senescence acts through the retinoblastoma (Rb) pathway inhibiting the action of the cyclin dependant kinases leading to G1 cell cycle arrest. Rb is maintained in a hypophosphorylated state resulting in the inhibition of transcription factor E2F1. Regulation of p16 expression is complex and involves epigenetic control and multiple transcription factors. PRC1 (Pombe repressor complex (1) and PRC2 (Pombe repressor complex (2) proteins and histone deacetylases play an important role in the promoter hypermethylation for suppressing p16 expression. While transcription factors YY1 and Id1 suppress p16 expression, transcription factors CTCF, Sp1 and Ets family members activate p16 transcription. Senescence occurs with the inactivation of suppressor elements leading to the enhanced expression of p16.
Collapse
Affiliation(s)
- Hani Rayess
- Department of Surgery, VA Greater Los Angeles Healthcare system, West Los Angeles, CA, USA
| | | | | |
Collapse
|
45
|
Zhou X, Huang SY, Feng JX, Gao YY, Zhao L, Lu J, Huang BQ, Zhang Y. SOX7 is involved in aspirin-mediated growth inhibition of human colorectal cancer cells. World J Gastroenterol 2011; 17:4922-7. [PMID: 22171135 PMCID: PMC3235637 DOI: 10.3748/wjg.v17.i44.4922] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/21/2011] [Accepted: 06/28/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To confirm the role of sex-determining region Y-box 7 (Sox7) in aspirin-mediated growth inhibition of COX-independent human colorectal cancer cells.
METHODS: The cell survival percentage was examined by MTT (Moto-nuclear cell direc cytotoxicity) assay. SOX7 expression was assessed by using reverse transcription-polymerase chain reaction and Western blotting. SB203580 was used to inhibit the p38MAPK signal pathway. SOX7 promoter activity was detected by Luciferase reporter assay.
RESULTS: SOX7 was upregulated by aspirin and was involved in aspirin-mediated growth inhibition of SW480 human colorectal cancer cells. The p38MAPK pathway played a role in aspirin-induced SOX7 expression, during which the AP1 transcription factors c-Jun and c-Fos upregulated SOX7 promoter activities.
RESULTS: SOX7 is upregulated by aspirin and is involved in aspirin-mediated growth inhibition of human colorectal cancer SW480 cells.
Collapse
|
46
|
Kong C, Wang C, Wang L, Ma M, Niu C, Sun X, Du J, Dong Z, Zhu S, Lu J, Huang B. NEDD9 is a positive regulator of epithelial-mesenchymal transition and promotes invasion in aggressive breast cancer. PLoS One 2011; 6:e22666. [PMID: 21829474 PMCID: PMC3145662 DOI: 10.1371/journal.pone.0022666] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) plays an important role in many biological processes. The latest studies revealed that aggressive breast cancer, especially the triple-negative breast cancer (TNBC) subtype was frequently associated with apparent EMT, but the mechanisms are still unclear. NEDD9/HEF1/Cas-L is a member of the Cas protein family and was identified as a metastasis marker in multiple cancer types. In this study, we wished to discern the role of NEDD9 in breast cancer progression and to investigate the molecular mechanism by which NEDD9 regulates EMT and promotes invasion in triple-negative breast cancer. We showed that expression of NEDD9 was frequently upregulated in TNBC cell lines, and in aggressive breast tumors, especially in TNBC subtype. Knockdown of endogenous NEDD9 reduced the migration, invasion and proliferation of TNBC cells. Moreover, ectopic overexpression of NEDD9 in mammary epithelial cells led to a string of events including the trigger of EMT, activation of ERK signaling, increase of several EMT-inducing transcription factors and promotion of their interactions with the E-cadherin promoter. Data presented in this report contribute to the understanding of the mechanisms by which NEDD9 promotes EMT, and provide useful clues to the evaluation of the potential of NEDD9 as a responsive molecular target for TNBC chemotherapy.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Blotting, Western
- Breast/metabolism
- Breast/pathology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cadherins/genetics
- Cadherins/metabolism
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Chromatin Immunoprecipitation
- Colony-Forming Units Assay
- Epithelial-Mesenchymal Transition
- Female
- Humans
- Luciferases/metabolism
- MAP Kinase Signaling System
- Neoplasm Invasiveness
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Snail Family Transcription Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Cells, Cultured
- Wound Healing
Collapse
Affiliation(s)
- Chenfei Kong
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Changqing Wang
- The Breast Surgery, The Tumor Hospital of Jilin Province, Changchun, People's Republic of China
| | - Liping Wang
- The Pathology Department, The Bethune Hospital of Jilin University, Changchun, People's Republic of China
| | - Musong Ma
- The Breast Surgery, The Tumor Hospital of Jilin Province, Changchun, People's Republic of China
| | - Chunbo Niu
- The Pathology Department, The Bethune Hospital of Jilin University, Changchun, People's Republic of China
| | - Xiaoqian Sun
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, People's Republic of China
| | - Juan Du
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Zhixiong Dong
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Shan Zhu
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
| | - Jun Lu
- The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, People's Republic of China
- * E-mail: (BH); (JL)
| | - Baiqu Huang
- The Institute of Genetics and Cytology, Northeast Normal University, Changchun, People's Republic of China
- * E-mail: (BH); (JL)
| |
Collapse
|
47
|
Li J, Poi MJ, Tsai MD. Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 2011; 50:5566-82. [PMID: 21619050 PMCID: PMC3127263 DOI: 10.1021/bi200642e] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
P16(INK4A) (also known as P16 and MTS1), a protein consisting exclusively of four ankyrin repeats, is recognized as a tumor suppressor mainly because of the prevalence of genetic inactivation of the p16(INK4A) (or CDKN2A) gene in virtually all types of human cancers. However, it has also been shown that an elevated level of expression (upregulation) of P16 is involved in cellular senescence, aging, and cancer progression, indicating that the regulation of P16 is critical for its function. Here, we discuss the regulatory mechanisms of P16 function at the DNA level, the transcription level, and the posttranscriptional level, as well as their implications for the structure-function relationship of P16 and for human cancers.
Collapse
Affiliation(s)
- Junan Li
- Division of Environmental Health Sciences, College of Public Health, The Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
48
|
Xu Y, Li J, Zuo Y, Deng J, Wang LS, Chen GQ. SUMO-specific protease 1 regulates the in vitro and in vivo growth of colon cancer cells with the upregulated expression of CDK inhibitors. Cancer Lett 2011; 309:78-84. [PMID: 21669491 DOI: 10.1016/j.canlet.2011.05.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 11/16/2022]
Abstract
SUMO conjugation emerges as an important mechanism in regulating protein localization, stability and activity. SUMOylation is a dynamic process and can be reversed by a family of sentrin/SUMO-specific proteases (SENPs). However, the biological roles of SENPs in cellular processes are largely unknown. Here, we show that SENP1, a member of SENP family, is overexpressed in most of colon cancer tissues. Silencing of SENP1 expression inhibits cell growth with G(1) arrest in vitro and in nude mice and colony formation in colon cancer cell line DLD-1, suggesting that SENP1 is essential for cell growth in the colon cancer cell line. Accordingly, silencing of SENP1 results in upregulation of CDK inhibitors such as p16, p19, p21 and p27. These results suggest that SENP1 might play a role in cell cycle regulation of colon cancer cells.
Collapse
Affiliation(s)
- Ying Xu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences-Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | | | | | | | | | | |
Collapse
|
49
|
Du J, Li L, Ou Z, Kong C, Zhang Y, Dong Z, Zhu S, Jiang H, Shao Z, Huang B, Lu J. FOXC1, a target of polycomb, inhibits metastasis of breast cancer cells. Breast Cancer Res Treat 2011; 131:65-73. [PMID: 21465172 DOI: 10.1007/s10549-011-1396-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 02/04/2011] [Indexed: 01/02/2023]
Abstract
Polycomb group (PcG) proteins have recently been shown related to cancer development. The PcG protein EZH2 is involved in progression of prostate and breast cancers, and has been identified as a molecular marker in breast cancer. Nevertheless, the molecular mechanism by which PcG proteins regulate cancer progression and malignant metastasis is still unclear. PcG proteins methylate H3K27 in undifferentiated epithelial cells, resulting in the repression of differentiation genes such as HOX. FOXC1 is a member of the Forkhead box transcription factor family, which plays an important role in differentiation, and is involved in eye development. We discovered in this study that the expression of FOXC1 gene was negatively correlated to that of PcG genes, i.e., Bmi1, EZH2, and SUZ12, in MCF-7 and MDA-MB-231 cells. To investigate the regulatory effects of PcG proteins on FOXC1 gene, the two cell lines were transfected with either expression plasmids or siRNA plasmids of Bmi1, EZH2, and SUZ12, and we found that PcGs, especially EZH2, could repress the transcription of FOXC1 gene. Chromatin immunoprecipitation (ChIP) assay showed that histone methylation and acetylation modifications played critical roles in this regulatory process. When FOXC1 was stably transfected into MDA-MB-231 cells, the migration and invasion of the cells were repressed. Moreover, the tumorigenicity and the spontaneous metastatic capability regulated by FOXC1 were determined by using an orthotropic xenograft tumor model of athymic mice with the FOXC1-MDA-MB-231HM and the GFP-MDA-MB-231HM cells, and the results showed that FOXC1 in MDA-MB-231HM cells inhibited migration and invasion in vitro and reduced the pulmonary metastasis in vivo. Data presented in this report contribute to the understanding of the mechanisms by which EZH2 participates in tumor development.
Collapse
Affiliation(s)
- Juan Du
- The Institute of Genetics and Cytology, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang Y, Gao Y, Zhang G, Huang S, Dong Z, Kong C, Su D, Du J, Zhu S, Liang Q, Zhang J, Lu J, Huang B. DNMT3a plays a role in switches between doxorubicin-induced senescence and apoptosis of colorectal cancer cells. Int J Cancer 2011; 128:551-61. [PMID: 20473858 DOI: 10.1002/ijc.25365] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The DNA-damaging drug doxorubicin (Dox) induces cell senescence at concentrations significantly lower than those required for induction of apoptosis. At low Dox concentrations, tumor suppressor p53 is activated, which enhances the expression of p21(Waf1/Cip1) (p21). At high concentrations, Dox activates p53 leading to apoptosis without enhancing p21 expression. The underlying mechanisms and factors that govern the differential effects of Dox in inducing senescence and apoptosis are unclear. Here, we report that the DNA methyltransferase (DNMT) DNMT3a was upregulated by Dox especially at concentrations that induced apoptosis in HCT116 colorectal cancer cells, and this process was regulated by p53. Meanwhile, p21 expression was significantly upregulated at senescence-inducing concentrations and kept low on treatment with apoptosis-inducing concentrations of Dox. The differential expression of DNMT3a and p21 in response to Dox suggests that DNMT3a may be a key factor in switches between Dox-induced senescence and apoptosis. Moreover, when DNMT3a was silenced, treatment of HCT116 cells with apoptosis-inducing concentration of Dox increased the percentage of cells undergoing senescence, accompanied by upregulation of p21. Contrarily, senescence-inducing concentration of Dox promoted apoptosis rate, and p21 expression was repressed. Surprisingly, no changes in DNA methylation status at p21 promoter were detected at either ranges of Dox, although DNMT3a and HDAC1 were recruited to p21 promoter at apoptosis-inducing Dox concentration, where they were present in the same complex. Overall, these data demonstrate that DNMT3a impacts the expression of p21 and plays a role in determining the Dox-induced senescence and apoptosis in HCT116 cells.
Collapse
Affiliation(s)
- Yu Zhang
- The Institute of Genetics and Cytology, The Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|