1
|
Zoroddu S, Lucariello A, De Luca A, Bagella L. Dysregulation of miRNAs in Soft Tissue Sarcomas. Cells 2024; 13:1853. [PMID: 39594601 PMCID: PMC11592554 DOI: 10.3390/cells13221853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
MicroRNAs (miRNAs) are pivotal regulators of gene expression, influencing key cellular processes such as proliferation, differentiation, apoptosis, and metastasis. In the realm of sarcomas-a diverse group of malignant tumors affecting soft tissues and bone sarcomas-miRNAs have emerged as crucial players in tumorigenesis and tumor progression. This review delves into the intricate roles of miRNAs across various soft tissue sarcoma subtypes, including rhabdomyosarcoma, liposarcoma, leiomyosarcoma, synovial sarcoma, fibrosarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma (UPS), and malignant peripheral nerve sheath tumor (MPNST). We explore how dysregulated miRNAs function as oncogenes or tumor suppressors, modulating critical pathways that define the aggressive nature of these cancers. Furthermore, we discuss the diagnostic and prognostic potential of specific miRNAs and highlight their promise as therapeutic targets. By understanding the miRNA-mediated regulatory networks, this review aims to provide a comprehensive overview of current research while pointing towards future directions for miRNA-based therapies. Our findings underscore the potential of miRNAs to transform the landscape of sarcoma treatment, offering hope for more precise, personalized, and effective therapeutic strategies.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, 80100 Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Naples, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
La Ferlita A, Sp N, Goryunova M, Nigita G, Pollock RE, Croce CM, Beane JD. Small Non-Coding RNAs in Soft-Tissue Sarcomas: State of the Art and Future Directions. Mol Cancer Res 2023; 21:511-524. [PMID: 37052491 PMCID: PMC10238653 DOI: 10.1158/1541-7786.mcr-22-1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
Soft-tissue sarcomas (STS) are a rare and heterogeneous group of tumors that arise from connective tissue and can occur anywhere in the body. Among the plethora of over 50 different STS types, liposarcoma (LPS) is one of the most common. The subtypes of STS are characterized by distinct differences in tumor biology that drive responses to pharmacologic therapy and disparate oncologic outcomes. Small non-coding RNAs (sncRNA) are a heterogeneous class of regulatory RNAs involved in the regulation of gene expression by targeting mRNAs. Among the several types of sncRNAs, miRNAs and tRNA-derived ncRNAs are the most studied in the context of tumor biology, and we are learning more about the role of these molecules as important regulators of STS tumorigenesis and differentiation. However, challenges remain in translating these findings and no biomarkers or therapeutic approaches targeting sncRNAs have been developed for clinical use. In this review, we summarize the current landscape of sncRNAs in the context of STS with an emphasis on LPS, including the role of sncRNAs in the tumorigenesis and differentiation of these rare malignancies and their potential as novel biomarkers and therapeutic targets. Finally, we provide an appraisal of published studies and outline future directions to study sncRNAs in STS, including tRNA-derived ncRNAs.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Nipin Sp
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Marina Goryunova
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Raphael E. Pollock
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Joal D. Beane
- Department of Surgery, Division of Surgical Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Ravegnini G, Nannini M, Indio V, Serrano C, Gorini F, Astolfi A, Di Vito A, Morroni F, Pantaleo MA, Hrelia P, Angelini S. miRNA Expression May Have Implications for Immunotherapy in PDGFRA Mutant GISTs. Int J Mol Sci 2022; 23:ijms232012248. [PMID: 36293105 PMCID: PMC9603477 DOI: 10.3390/ijms232012248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) harboring mutations in the PDGFRA gene occur in only about 5-7% of patients. The most common PDGFRA mutation is exon 18 D842V, which is correlated with specific clinico-pathological features compared to the other PDGFRA mutated GISTs. Herein, we present a miRNA expression profile comparison of PDGFRA D842V mutant GISTs and PDGFRA with mutations other than D842V (non-D842V). miRNA expression profiling was carried out on 10 patients using a TLDA miRNA array. Then, miRNA expression was followed by bioinformatic analysis aimed at evaluating differential expression, pathway enrichment, and miRNA-mRNA networks. We highlighted 24 differentially expressed miRNAs between D842V and non-D842V GIST patients. Pathway enrichment analysis showed that deregulated miRNAs targeted genes that are mainly involved in the immune response pathways. The miRNA-mRNA networks highlighted a signature of miRNAs/mRNA that could explain the indolent behavior of the D842V mutated GIST. The results highlighted a different miRNA fingerprint in PDGFRA D842V GISTs compared to non-D842Vmutated patients, which could explain the different biological behavior of this GIST subset.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Division of Oncology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, 40164 Ozzano, Italy
| | - Cesar Serrano
- Sarcoma Translational Research Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Campus, C/ Natzaret 115-117, 08035 Barcelona, Spain
- Department of Medical Oncology, Vall d’Hebron University Hospital, P/Vall d’Hebron 119, 08035 Barcelona, Spain
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Annalisa Astolfi
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Division of Oncology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
4
|
Hu X, Wang Z, Su P, Zhang Q, Kou Y. Advances in the research of the mechanism of secondary resistance to imatinib in gastrointestinal stromal tumors. Front Oncol 2022; 12:933248. [PMID: 36147927 PMCID: PMC9485670 DOI: 10.3389/fonc.2022.933248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/18/2022] [Indexed: 11/15/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. At present, surgery is the first-line treatment for primary resectable GISTs; however, the recurrence rate is high. Imatinib mesylate (IM) is an effective first-line drug used for the treatment of unresectable or metastatic recurrent GISTs. More than 80% of patients with GISTs show significantly improved 5-year survival after treatment; however, approximately 50% of patients develop drug resistance after 2 years of IM treatment. Therefore, an in-depth research is urgently needed to reveal the mechanisms of secondary resistance to IM in patients with GISTs and to develop new therapeutic targets and regimens to improve their long-term prognoses. In this review, research on the mechanisms of secondary resistance to IM conducted in the last 5 years is discussed and summarized from the aspects of abnormal energy metabolism, gene mutations, non-coding RNA, and key proteins. Studies have shown that different drug-resistance mechanism networks are closely linked and interconnected. However, the influence of these drug-resistance mechanisms has not been compared. The combined inhibition of drug-resistance mechanisms with IM therapy and the combined inhibition of multiple drug-resistance mechanisms are expected to become new therapeutic options in the treatment of GISTs. In addition, implementing individualized therapies based on the identification of resistance mechanisms will provide new adjuvant treatment options for patients with IM-resistant GISTs, thereby delaying the progression of GISTs. Previous studies provide theoretical support for solving the problems of drug-resistance mechanisms. However, most studies on drug-resistance mechanisms are still in the research stage. Further clinical studies are needed to confirm the safety and efficacy of the inhibition of drug-resistance mechanisms as a potential therapeutic target.
Collapse
Affiliation(s)
- Xiangchen Hu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Youwei Kou
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Youwei Kou,
| |
Collapse
|
5
|
Zhang P, Li X, Huang L, Hu F, Niu X, Sun Y, Yao W. Association between microRNA 671 polymorphisms and the susceptibility to soft tissue sarcomas in a Chinese population. Front Oncol 2022; 12:960269. [PMID: 36016604 PMCID: PMC9396023 DOI: 10.3389/fonc.2022.960269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the association between the microRNA (miRNA) gene polymorphisms and the susceptibility to soft tissue sarcomas (STSs). In this case–control study, DNA was extracted from leukocytes in peripheral blood, which was collected from 169 STSs patients and 170 healthy controls. Three SNPs for miR-210, five SNPs for miR-206, two SNPs for miR-485, two SNPs for miR-34b, two SNPs for miR-671, and three SNPs for miR-381 were investigated and genotyped using a Sequenom Mass ARRAY matrix-assisted laser desorption/ionization-time of flight mass spectrometry platform. Unconditional logistic regression analysis was used to analyze the association between miRNA gene polymorphisms and the susceptibility to STSs. The results showed that miR-671 rs1870238 GC + CC (OR = 1.963, 95% CI = 1.258–3.064, P = 0.003) and miR-671 rs2446065 CG + GG (OR =1.838, 95% CI = 1.178–2.868, P = 0.007) may be genetic risk factors for STSs after adjustment for age and smoking. Therefore, this study suggests that individuals carrying the GC + CC genotype for miR-671 rs1870238 or the CG + GG genotype for miR-671 rs2446065 are susceptible to STSs.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Peng Zhang,
| | - Xinling Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lingling Huang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoying Niu
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yang Sun
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Weitao Yao
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Buhagiar A, Seria E, Borg M, Borg J, Ayers D. Overview of microRNAs as liquid biopsy biomarkers for colorectal cancer sub-type profiling and chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:934-945. [PMID: 35582382 PMCID: PMC8992439 DOI: 10.20517/cdr.2021.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/01/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. It has also been demonstrated that over the last ten years the incidence of CRC among younger people below the age of 50 is also increasing. Screening for colorectal cancer is of utmost importance; the rationale behind screening is to target the malignancy and reduce the incidence and mortality of the disease. Diagnostic methods to screen for incidence or relapse are therefore a requisite to detect cancer as early as possible. Scientific findings demonstrate that many deaths are due to lack of screening and therefore early identification will lead to greater survivability. In colorectal cancer, diagnostic tests include liquid biopsy biomarkers. Since the discovery of microRNAs (miRNAs), many studies have demonstrated the relationship between miRNAs and the various sub-types of CRC. Several miRNAs have been identified after analysing serum or plasma samples in patients, and such miRNAs were found to be significantly dysregulated. Such findings place the possibility of miRNAs to be at the epicentre of novel diagnostic techniques for CRC identification and sub-type stratification, including other characteristics associated with CRC development such as patient prognosis. The following review serves to underline the latest findings for miRNAs with such potential for routine diagnostic employment in CRC diagnostics and treatments.
Collapse
Affiliation(s)
- Alfred Buhagiar
- Faculty of Medicine and Surgery, University of Malta, Msida 2080, Malta
| | - Elisa Seria
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida 2080, Malta
| | - Miriana Borg
- Faculty of medical sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida 2080, Malta
| | - Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida 2080, Malta
- Faculty of Biology, Medicine and Health Sciences, The University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
7
|
Qin LX, Zou J, Shi J, Lee A, Mihailovic A, Farazi TA, Tuschl T, Singer S. Statistical Assessment of Depth Normalization for Small RNA Sequencing. JCO Clin Cancer Inform 2021; 4:567-582. [PMID: 32598180 PMCID: PMC7330947 DOI: 10.1200/cci.19.00118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Methods for depth normalization have been assessed primarily with simulated data or cell-line–mixture data. There is a pressing need for benchmark data enabling a more realistic and objective assessment, especially in the context of small RNA sequencing. METHODS We collected a unique pair of microRNA sequencing data sets for the same set of tumor samples; one data set was collected with and the other without uniform handling and balanced design. The former provided a benchmark for evaluating evidence of differential expression and the latter served as a test bed for normalization. Next, we developed a data perturbation algorithm to simulate additional data set pairs. Last, we assembled a set of computational tools to visualize and quantify the assessment. RESULTS We validated the quality of the benchmark data and showed the need for normalization of the test data. For illustration, we applied the data and tools to assess the performance of 9 existing normalization methods. Among them, trimmed mean of M-values was a better scaling method, whereas the median and the upper quartiles were consistently the worst performers; one variation of remove unwanted variation had the best chance of capturing true positives but at the cost of increased false positives. In general, these methods were, at best, moderately helpful when the level of differential expression was extensive and asymmetric. CONCLUSION Our study (1) provides the much-needed benchmark data and computational tools for assessing depth normalization, (2) shows the dependence of normalization performance on the underlying pattern of differential expression, and (3) calls for continued research efforts to develop more effective normalization methods.
Collapse
Affiliation(s)
- Li-Xuan Qin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jian Zou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jiejun Shi
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ann Lee
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Thalia A Farazi
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY
| | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
8
|
Tuysuz EC, Ozbey U, Gulluoglu S, Kuskucu A, Sahin F, Bayrak OF. miRNAs as cell fate determinants of lateral and paraxial mesoderm differentiation from embryonic stem cells. Dev Biol 2021; 478:212-221. [PMID: 34245726 DOI: 10.1016/j.ydbio.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
To date, the role of miRNAs on pluripotency and differentiation of ESCs into specific lineages has been studied extensively. However, the specific role of miRNAs during lateral and paraxial mesoderm cell fate decision is still unclear. To address this, we firstly determined miRNA profile of mouse ESCs differentiating towards lateral and paraxial lineages which were detected using Flk1 and PDGFαR antibodies, and of myogenic and hematopoietic differentiation potential of purified paraxial and lateral mesodermal cells within these populations. miRNAs associated with lateral and paraxial mesoderm, and their targets were identified using bioinformatics tools. The targets of the corresponding miRNAs were validated after transfection into mouse ESCs. The roles of the selected miRNAs in lateral, and paraxial mesoderm formation were assessed along with hematopoietic and myogenic differentiation capacity. Among the miRNAs, mmu-miR-126a-3p, mmu-miR-335-5p and mmu-miR-672-5p, upregulated in lateral mesoderm cells, and mmu-miR-10b-5p, mmu-miR-196a-5p and mmu-miR-615-3p, upregulated in paraxial mesoderm cells. While transient co-transfection of mmu-miR-126a-3p, mmu-miR-335-5p and mmu-miR-672-5p increased the number of lateral mesodermal cells, co-transfection of mmu-miR-10b-5p, mmu-miR-196a-5p and mmu-miR-615-3p increased the number of paraxial mesodermal cells. Moreover, differentiation potential of the lateral mesodermal cells into hematopoietic cell lineage increased upon co-transfection of mmu-miR-126a-3p, mmu-miR-335-5p and mmu-miR-672-5p and differentiation potential of the paraxial mesodermal cells into skeletal muscle lineage were increased upon co-transfection of mmu-miR-10b-5p, mmu-miR-196a-5p and mmu-miR-615-3p. In conclusion, we determined the miRNA profile of lateral and paraxial mesodermal cells and co-transfection of miRNAs increased differentiation potential of both lateral and paraxial mesodermal cells transiently.
Collapse
Affiliation(s)
- Emre Can Tuysuz
- Department of Medical Genetics, Yeditepe University Medical School, 34755, Istanbul, Turkey; Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Utku Ozbey
- Department of Medical Genetics, Yeditepe University Medical School, 34755, Istanbul, Turkey; Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Sukru Gulluoglu
- Department of Immunology, School of Medicine, Marmara University, 34854, Istanbul, Turkey
| | - Aysegul Kuskucu
- Department of Medical Genetics, Yeditepe University Medical School, 34755, Istanbul, Turkey
| | - Fikrettin Sahin
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Omer Faruk Bayrak
- Department of Medical Genetics, Yeditepe University Medical School, 34755, Istanbul, Turkey.
| |
Collapse
|
9
|
Pillozzi S, Bernini A, Palchetti I, Crociani O, Antonuzzo L, Campanacci D, Scoccianti G. Soft Tissue Sarcoma: An Insight on Biomarkers at Molecular, Metabolic and Cellular Level. Cancers (Basel) 2021; 13:cancers13123044. [PMID: 34207243 PMCID: PMC8233868 DOI: 10.3390/cancers13123044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Soft tissue sarcoma is a rare mesenchymal malignancy. Despite the advancements in the fields of radiology, pathology and surgery, these tumors often recur locally and/or with metastatic disease. STS is considered to be a diagnostic challenge due to the large variety of histological subtypes with clinical and histopathological characteristics which are not always distinct. One of the important clinical problems is a lack of useful biomarkers. Therefore, the discovery of biomarkers that can be used to detect tumors or predict tumor response to chemotherapy or radiotherapy could help clinicians provide more effective clinical management. Abstract Soft tissue sarcomas (STSs) are a heterogeneous group of rare tumors. Although constituting only 1% of all human malignancies, STSs represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. Over 100 histologic subtypes have been characterized to date (occurring predominantly in the trunk, extremity, and retroperitoneum), and many more are being discovered due to molecular profiling. STS mortality remains high, despite adjuvant chemotherapy. New prognostic stratification markers are needed to help identify patients at risk of recurrence and possibly apply more intensive or novel treatments. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the most relevant cellular, molecular and metabolic biomarkers for STS, and highlight advances in STS-related biomarker research.
Collapse
Affiliation(s)
- Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Correspondence:
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Ilaria Palchetti
- Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Domenico Campanacci
- Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Guido Scoccianti
- Department of Orthopaedic Oncology and Reconstructive Surgery, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| |
Collapse
|
10
|
Esperança-Martins M, Fernandes I, Soares do Brito J, Macedo D, Vasques H, Serafim T, Costa L, Dias S. Sarcoma Metabolomics: Current Horizons and Future Perspectives. Cells 2021; 10:1432. [PMID: 34201149 PMCID: PMC8226523 DOI: 10.3390/cells10061432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/29/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
The vast array of metabolic adaptations that cancer cells are capable of assuming, not only support their biosynthetic activity, but also fulfill their bioenergetic demands and keep their intracellular reduction-oxidation (redox) balance. Spotlight has recently been placed on the energy metabolism reprogramming strategies employed by cancer cells to proliferate. Knowledge regarding soft tissue and bone sarcomas metabolome is relatively sparse. Further characterization of sarcoma metabolic landscape may pave the way for diagnostic refinement and new therapeutic target identification, with benefit to sarcoma patients. This review covers the state-of-the-art knowledge on cancer metabolomics and explores in detail the most recent evidence on soft tissue and bone sarcoma metabolomics.
Collapse
Affiliation(s)
- Miguel Esperança-Martins
- Centro Hospitalar Universitário Lisboa Norte, Medical Oncology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal; (I.F.); (L.C.)
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.S.); (S.D.)
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Isabel Fernandes
- Centro Hospitalar Universitário Lisboa Norte, Medical Oncology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal; (I.F.); (L.C.)
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
| | - Joaquim Soares do Brito
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
- Centro Hospitalar Universitário Lisboa Norte, Orthopedics and Traumatology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal
| | - Daniela Macedo
- Medical Oncology Department, Hospital Lusíadas Lisboa, 1500-458 Lisboa, Portugal;
| | - Hugo Vasques
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
- General Surgery Department, Instituto Português de Oncologia de Lisboa Francisco Gentil, 1099-023 Lisboa, Portugal
| | - Teresa Serafim
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.S.); (S.D.)
| | - Luís Costa
- Centro Hospitalar Universitário Lisboa Norte, Medical Oncology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal; (I.F.); (L.C.)
- Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
| | - Sérgio Dias
- Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (T.S.); (S.D.)
- Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; (J.S.d.B.); (H.V.)
| |
Collapse
|
11
|
Osteosarcoma, chondrosarcoma and Ewing sarcoma: Clinical aspects, biomarker discovery and liquid biopsy. Crit Rev Oncol Hematol 2021; 162:103340. [PMID: 33894338 DOI: 10.1016/j.critrevonc.2021.103340] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 01/01/2023] Open
Abstract
Bone sarcomas, although rare, are associated with significant morbidity and mortality. The most frequent primary bone cancers include osteosarcoma, chondrosarcoma and Ewing sarcoma. The treatment approaches are heterogeneous and mainly chosen based on precise tumour staging. Unfortunately, clinical outcome has not changed significantly in over 30 years and tumour grade is still the best prognosticator of metastatic disease and survival. An option to improve this scenario is to identify molecular biomarkers in the early stage of the disease, or even before the disease onset. Blood-based liquid biopsies are a promising, non-invasive way to achieve this goal and there are an increasing number of studies which investigate their potential application in bone cancer diagnosis, prognosis and personalised therapy. This review summarises the interplay between clinical and molecular aspects of the three main bone sarcomas, alongside biomarker discovery and promising applications of liquid biopsy in each tumour context.
Collapse
|
12
|
Non-Coding RNAs, a Novel Paradigm for the Management of Gastrointestinal Stromal Tumors. Int J Mol Sci 2020; 21:ijms21186975. [PMID: 32972022 PMCID: PMC7555847 DOI: 10.3390/ijms21186975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal malignancies found in the gastrointestinal tract. At a molecular level, most GISTs are characterized by gain-of-function mutations in V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (KIT) and Platelet Derived Growth Factor Receptor Alpha (PDGFRA), leading to constitutive activated signaling through these receptor tyrosine kinases, which drive GIST pathogenesis. In addition to surgery, treatment with the tyrosine kinase inhibitor imatinib forms the mainstay of GIST treatment, particularly in the advanced setting. Nevertheless, the majority of GISTs develop imatinib resistance. Biomarkers that indicate metastasis, drug resistance and disease progression early on could be of great clinical value. Likewise, novel treatment strategies that overcome resistance mechanisms are equally needed. Non-coding RNAs, particularly microRNAs, can be employed as diagnostic, prognostic or predictive biomarkers and have therapeutic potential. Here we review which non-coding RNAs are deregulated in GISTs, whether they can be linked to specific clinicopathological features and discuss how they can be used to improve the clinical management of GISTs.
Collapse
|
13
|
Stefanou IK, Gazouli M, Zografos GC, Toutouzas KG. Role of non-coding RNAs in pathogenesis of gastrointestinal stromal tumors. World J Meta-Anal 2020; 8:233-244. [DOI: 10.13105/wjma.v8.i3.233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are considered the model solid malignancies of targeted therapy after the discovery of imatinib effectiveness against their tyrosine kinase inhibitors. Non-coding RNAs are molecules with no protein coding capacity that play crucial role to several biological steps of normal cell proliferation and differentiation. When the expression of these molecules found to be altered it seems that they affect the process of carcinogenesis in multiple ways, such as proliferation, apoptosis, differentiation, metastasis, and drug resistance. This review aims to provide an overview of the latest research papers and summarize the current evidence about the role of non-coding RNAs in pathogenesis of GISTs, including their potential clinical applications.
Collapse
Affiliation(s)
- Ioannis K Stefanou
- Department of Surgery, Hippocration Hospital Athens, Athens 11527, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Georgios C Zografos
- 1st Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Konstantinos G Toutouzas
- 1st Propaedeutic Department of Surgery, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
14
|
Leonardi L, Benassi MS, Pollino S, Locaputo C, Pazzaglia L. miR-106B-25 Cluster expression: a comparative human and canine osteosarcoma study. Vet Rec Open 2020; 7:e000379. [PMID: 32201579 PMCID: PMC7061892 DOI: 10.1136/vetreco-2019-000379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/05/2019] [Accepted: 02/07/2020] [Indexed: 12/19/2022] Open
Abstract
Background Osteosarcoma (OS) is the most common primary malignant bone tumour in dogs and human beings, characterised by similar genetic and clinical features. With the aim to define similarities and differences in the biological aspects involved in OS progression, a comparative study was performed to create a model to improve patient outcome. Methods First, the expression of microRNAs (miRNAs) belonging to the cluster miR-106b-25 (miR-106b, miR-25 and miR-93-5p) in human and canine OS tissue was compared. Results miR-25 and miR-106b presented a variable expression not significantly different from the corresponding normal bone, while miR-93-5p expression was increased in all OS specimens, with higher levels in the canine subset compared with human. Accordingly, its target p21 presented a weaker and less homogeneous immunostaining distribution in the canine group. Given the high expression of miR-93-5p in all OS specimens, the functional response of human 143B and canine DAN OS cells to miRNA inhibition was evaluated. Although p21 expression increased after miR-93-5p inhibition both at mRNA and protein level, a more significant cell response in terms of proliferation and apoptosis was seen in canine OS cells. Conclusions In conclusion, canine OS tissue and cell line presented higher expression levels of miR-93-5p than human OS. In addition, the introduction of miR-93-5p inhibitor caused a cell response in 143B and DAN that differed for the more intense functional impact in the canine OS cell line.
Collapse
Affiliation(s)
- Leonardo Leonardi
- Department of Veterinary Medicine - Veterinary Pathology, Università degli Studi di Perugia, Perugia, PG, Italy
| | - Maria Serena Benassi
- Oncologia Sperimentale, Istituto Ortopedico Rizzoli Istituto di Ricovero e Cura a Carattere Scientifico, Bologna, Italy
| | - Serena Pollino
- Oncologia Sperimentale, Istituto Ortopedico Rizzoli Istituto di Ricovero e Cura a Carattere Scientifico, Bologna, Italy
| | - Carmen Locaputo
- Oncologia Sperimentale, Istituto Ortopedico Rizzoli Istituto di Ricovero e Cura a Carattere Scientifico, Bologna, Italy
| | - Laura Pazzaglia
- Oncologia Sperimentale, Istituto Ortopedico Rizzoli Istituto di Ricovero e Cura a Carattere Scientifico, Bologna, Italy
| |
Collapse
|
15
|
Piano MA, Brunello A, Cappellesso R, Del Bianco P, Mattiolo A, Fritegotto C, Montini B, Zamuner C, Del Fiore P, Rastrelli M, Sommariva A, De Salvo GL, Montesco MC, Rossi CR, Zagonel V, Calabrò ML. Periostin and Epithelial-Mesenchymal Transition Score as Novel Prognostic Markers for Leiomyosarcoma, Myxofibrosarcoma, and Undifferentiated Pleomorphic Sarcoma. Clin Cancer Res 2020; 26:2921-2931. [PMID: 32127392 DOI: 10.1158/1078-0432.ccr-19-2297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/17/2019] [Accepted: 02/28/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Interpatient clinical variability in soft-tissue sarcomas (STS) highlights the need for novel prognostic markers supporting patient risk stratification. As sarcomas might exhibit a more mesenchymal or a more epithelial state, we focused on epithelial-mesenchymal and mesenchymal-epithelial transitions (EMT/MET) for prognostic clues, and selected three histotypes with variable aggressiveness. EXPERIMENTAL DESIGN The expression of EMT/MET-related factors was measured by qRT-PCR in 55 tumor samples from patients with leiomyosarcoma, myxofibrosarcoma, or undifferentiated pleomorphic sarcoma. The identified marker was further evaluated by IHC in 31 leiomyosarcomas and by measuring its circulating levels in 67 patients. The prognostic value of a sarcoma-tailored EMT score was analyzed. Epirubicin chemosensitivity and migration were studied in primary STS cultures. Associations with overall survival (OS) were assessed using Kaplan-Meier and Cox regression methods. RESULTS High expression of periostin, a mesenchymal matricellular protein, in sarcoma tissues (P = 0.0024), its high stromal accumulation in leiomyosarcomas (P = 0.0075), and increased circulation (>20 ng/mL, P = 0.0008) were associated with reduced OS. High periostin expression [HR 2.9; 95% confidence interval (CI), 1.3-6.9; P = 0.0134] and circulation (HR 2.6; 95% CI, 1.3-5.1; P = 0.0086), and a mesenchymal EMT score (mesenchymal vs. transitioning; HR, 5.2; 95% CI, 2.1-13.0, P = 0.0005) were associated with increased risk in multivariable models. An intrinsic or induced mesenchymal state enhanced chemoresistance and migration in sarcoma cell lines. CONCLUSIONS Although limited to a pilot study, these findings suggest that periostin might contribute prognostic information in the three studied STS histotypes. Moreover, a transitioning EMT score measured in the tumor might predict a less active and a more chemosensitive disease.
Collapse
Affiliation(s)
- Maria Assunta Piano
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonella Brunello
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Rocco Cappellesso
- Surgical Pathology and Cytopathology, Department of Medicine, University of Padua, Padua, Italy
| | - Paola Del Bianco
- Clinical Trials and Biostatistics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Adriana Mattiolo
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Chiara Fritegotto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Barbara Montini
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Carolina Zamuner
- Anatomy and Pathological Histology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Paolo Del Fiore
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marco Rastrelli
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Antonio Sommariva
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Gian Luca De Salvo
- Clinical Trials and Biostatistics, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Carlo Riccardo Rossi
- Surgical Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Vittorina Zagonel
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
16
|
Cooperation between SS18-SSX1 and miR-214 in Synovial Sarcoma Development and Progression. Cancers (Basel) 2020; 12:cancers12020324. [PMID: 32019274 PMCID: PMC7072427 DOI: 10.3390/cancers12020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
SS18-SSX fusion proteins play a central role in synovial sarcoma development, although, the genetic network and mechanisms of synovial sarcomagenesis remain unknown. We established a new ex vivo synovial sarcoma mouse model through retroviral-mediated gene transfer of SS18-SSX1 into mouse embryonic mesenchymal cells followed by subcutaneous transplantation into nude mice. This approach successfully induced subcutaneous tumors in 100% recipients, showing invasive proliferation of short spindle tumor cells with occasional biphasic appearance. Cytokeratin expression was observed in epithelial components in tumors and expression of TLE1 and BCL2 was also shown. Gene expression profiling indicated SWI/SNF pathway modulation by SS18-SSX1 introduction into mesenchymal cells and Tle1 and Atf2 upregulation in tumors. These findings indicate that the model exhibits phenotypes typical of human synovial sarcoma. Retroviral tagging of the tumor identified 15 common retroviral integration sites within the Dnm3 locus as the most frequent in 30 mouse synovial sarcomas. miR-199a2 and miR-214 upregulation within the Dnm3 locus was observed. SS18-SSX1 and miR-214 cointroduction accelerated sarcoma onset, indicating that miR-214 is a cooperative oncomiR in synovial sarcomagenesis. miR-214 functions in a cell non-autonomous manner, promoting cytokine gene expression (e.g., Cxcl15/IL8). Our results emphasize the role of miR-214 in tumor development and disease progression.
Collapse
|
17
|
Vos M, Boers R, Vriends ALM, Boers J, van Kuijk PF, van Houdt WJ, van Leenders GJLH, Wagrodzki M, van IJcken WFJ, Gribnau J, Grünhagen DJ, Verhoef C, Sleijfer S, Wiemer EAC. MicroRNA expression and DNA methylation profiles do not distinguish between primary and recurrent well-differentiated liposarcoma. PLoS One 2020; 15:e0228014. [PMID: 31971976 PMCID: PMC6977735 DOI: 10.1371/journal.pone.0228014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Approximately one-third of the patients with well-differentiated liposarcoma (WDLPS) will develop a local recurrence. Not much is known about the molecular relationship between the primary tumor and the recurrent tumor, which is important to reveal potential drivers of recurrence. Here we investigated the biology of recurrent WDLPS by comparing paired primary and recurrent WDLPS using microRNA profiling and genome-wide DNA methylation analyses. In total, 27 paired primary and recurrent WDLPS formalin-fixed and paraffin-embedded tumor samples were collected. MicroRNA expression profiles were determined using TaqMan® Low Density Array (TLDA) cards. Genome-wide DNA methylation and differentially methylated regions (DMRs) were assessed by methylated DNA sequencing (MeD-seq). A supervised cluster analysis based on differentially expressed microRNAs between paired primary and recurrent WDLPS did not reveal a clear cluster pattern separating the primary from the recurrent tumors. The clustering was also not based on tumor localization, time to recurrence, age or status of the resection margins. Changes in DNA methylation between primary and recurrent tumors were extremely variable, and no consistent DNA methylation changes were found. As a result, a supervised clustering analysis based on DMRs between primary and recurrent tumors did not show a distinct cluster pattern based on any of the features. Subgroup analysis for tumors localized in the extremity or the retroperitoneum also did not yield a clear distinction between primary and recurrent WDLPS samples. In conclusion, microRNA expression profiles and DNA methylation profiles do not distinguish between primary and recurrent WDLPS and no putative common drivers could be identified.
Collapse
Affiliation(s)
- Melissa Vos
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- * E-mail: (MV); (EACW)
| | - Ruben Boers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anne L. M. Vriends
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Joachim Boers
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Patricia F. van Kuijk
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Winan J. van Houdt
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Michal Wagrodzki
- Department of Pathology, Maria Skłodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | | | - Joost Gribnau
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Dirk J. Grünhagen
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Cornelis Verhoef
- Department of Surgical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Erik A. C. Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- * E-mail: (MV); (EACW)
| |
Collapse
|
18
|
Kosela-Paterczyk H, Paziewska A, Kulecka M, Balabas A, Kluska A, Dabrowska M, Piatkowska M, Zeber-Lubecka N, Ambrozkiewicz F, Karczmarski J, Mikula M, Rutkowski P, Ostrowski J. Signatures of circulating microRNA in four sarcoma subtypes. J Cancer 2020; 11:874-882. [PMID: 31949491 PMCID: PMC6959019 DOI: 10.7150/jca.34723] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Sarcomas are rare malignant tumors of mesenchymal origin. The discovery of circulating biomarkers with high diagnostic value could supplement diagnosis of this heterogenous group of tumors. The aim of this study was to identify the profiles of circulating miRNA (c-miRNAs) in four groups of common bone and soft tissue sarcomas. Methods: At the time of diagnosis, blood samples were collected from 86 patients: 36 with locally advanced/unresectable/metastatic gastrointestinal stromal tumor (GIST) who received first-line treatment with imatinib; 16 with locally advanced osteosarcoma (OS); 26 with locally advanced synovial sarcoma (SS); and eight with locally advanced Ewing sarcoma (ES). In addition, samples were collected from 30 healthy controls. C-miRNAs were isolated using a miRCURY RNA Isolation Kit, followed by preparation of cDNA libraries and sequencing on the Ion Proton platform. Results: Pair-wise comparisons identified 156 unique c-miRNAs (adjusted P-value < 0.05) showing significant dysregulation between controls and patients; of these, 24, 36, 42, and 99 differentiated controls from pretherapeutic OS, SS, ES, and GIST, respectively. Ten c-miRNAs were commonly altered in at least three sarcoma types. Receiver operating characteristic curves and area under the curve (ROC-AUC) analyses revealed that a four-miRNA diagnostic classifier was able to differentiate controls from ES, GIST, OS, and SS, with AUC-ROC values of 1, 0.97, 0.95, and 0.94, respectively. Conclusions: Aberrant miRNA expression signatures were identified in serum from patients with four different sarcoma subtypes. Differences in miRNA expression profiles between sarcoma patients and healthy volunteers suggest that miRNAs may play a role in sarcoma development.
Collapse
Affiliation(s)
- Hanna Kosela-Paterczyk
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Centre, Warsaw, Poland
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Aneta Balabas
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Michalina Dabrowska
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Magdalena Piatkowska
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Filip Ambrozkiewicz
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue, Bone Sarcoma and Melanoma, Maria Sklodowska-Curie Institute - Oncology Centre, Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland.,Department of Genetics, Maria Sklodowska-Curie Institute - Oncology Centre; 02-781 Warsaw, Poland
| |
Collapse
|
19
|
Zhang Y, Zhan Y, Liu D, Yu B. Inhibition of microRNA-183 expression resists human umbilical vascular endothelial cells injury by upregulating expression of IRS1. Drug Deliv 2019; 26:612-621. [PMID: 31210063 PMCID: PMC6586131 DOI: 10.1080/10717544.2019.1628117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 06/03/2019] [Indexed: 12/23/2022] Open
Abstract
Our study aims to investigate the effect of microRNA-183 (miR-183) on human umbilical vascular endothelial cells (HUVECs) injury by targeting IRS1. HUVECs injury was induced by oxidized low-density lipoprotein (ox-LDL). HUVECs were grouped so as to explore the role of ox-LDL and miR-183 in HUVECs injury, with the expression of miR-183 and IRS1 detected. Additionally, the related factors of oxidative stress and inflammation, as well as angiogenesis ability, proliferation, cell cycle, apoptosis, invasion, and migration abilities were also measured. Ox-LDL treatment could decrease the activity of HUVECs, increase the level of oxidative stress and inflammation, and induce the HUVECs injury. miR-183 could inhibit the expression of IRS1. The inhibition of miR-183 expression in ox-LDL-induced HUVECs injury could enhance cell activity, inhibit inflammatory level, and thus resist cell injury. Low expression of IRS1 could reverse the inhibition of miR-183 on HUVECs injury. This study highlights that inhibition of miR-183 expression may resist HUVECs injury by upregulating expression of IRS1.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, and the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Yefei Zhan
- Department of Intensive Care Unit, Ningbo No 2 Hospital, Ningbo, People’s Republic of China
| | - Dandan Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, and the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, and the Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, People’s Republic of China
| |
Collapse
|
20
|
Zhang X, Ye Y, Fu M, Zheng B, Qiu Q, Huang Z. Implication of viral microRNAs in the genesis and diagnosis of Epstein-Barr virus-associated tumors. Oncol Lett 2019; 18:3433-3442. [PMID: 31516561 DOI: 10.3892/ol.2019.10713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) is tightly associated with a variety of human tumors, including Burkitt lymphoma and acquired immune deficiency syndrome-related lymphoma of B-cell origin, as well as nasopharyngeal carcinoma and gastric cancer of epithelial origin. The virus latently infects the host cells and expresses proteins and non-coding RNAs to achieve malignancy. MicroRNAs (miRNAs or miRs) are small RNAs consisting of 19-25 nucleotides, which directly bind to the 3'-untranslated region of mRNAs to promote degradation and inhibit translation of mRNAs. EBV-encoded miRs are generated from two regions of the viral genome, within the apoptosis regulator BHRF1 gene locus and near the BamHI A region in a latency type-dependent manner. In addition, EBV-encoded miRs epigenetically regulate the expression of molecules that are effectors of the cell cycle progression, migration, apoptosis and innate immunity, serving a vital role in supporting viral replication and occurrence of EBV-associated tumors. The feasibility of using such miRs as biomarkers for the diagnosis and prognosis of EBV-associated tumors is currently under investigation.
Collapse
Affiliation(s)
- Xiangning Zhang
- Department of Pathophysiology, Chinese-American Collaborative Cancer Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Yudong Ye
- Department of Otolaryngology, Dongguan City People's Hospital, Dongguan, Guangdong 523059, P.R. China
| | - Ming Fu
- Department of Otolaryngology, Dongguan City People's Hospital, Dongguan, Guangdong 523059, P.R. China
| | - Biying Zheng
- Department of Clinical Microbiology, College of Laboratory Medicine, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Qianhui Qiu
- Department of Otolaryngology, Pearl River Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Zunnan Huang
- Department of Pathophysiology, Chinese-American Collaborative Cancer Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
21
|
Kesharwani RK, Chiesa M, Bellazzi R, Colombo GI. CBS-miRSeq: A comprehensive tool for accurate and extensive analyses of microRNA-sequencing data. Comput Biol Med 2019; 110:234-243. [DOI: 10.1016/j.compbiomed.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 05/24/2019] [Accepted: 05/25/2019] [Indexed: 12/15/2022]
|
22
|
Neoplastic Transformation of Human Mesenchymal Stromal Cells Mediated via LIN28B. Sci Rep 2019; 9:8101. [PMID: 31147574 PMCID: PMC6542832 DOI: 10.1038/s41598-019-44536-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/20/2019] [Indexed: 01/12/2023] Open
Abstract
Bone marrow stromal (Mesenchymal) stem cells (MSCs) are multipotent bone cells capable of differentiating into mesoderm-type cells, such as osteoblasts and adipocytes. Existing evidence suggests that transformation of MSCs gives rise to sarcoma. In order to identify the molecular mechanism leading to spontaneous transformation of human bone marrow MSCs (hBMSCs), we performed comprehensive microRNA (miRNA) and mRNA profiling in the transformed hBMSC-Tum line compared to the parental clone. As a result, we identified multiple dysregulated molecular networks associated with the hBMSC transformed phenotype. LIN28B was upregulated 177.0-fold in hBMSC-Tum, which was associated with marked reduction in LET-7 expression and upregulated expression of its target HMGA2. Targeted depletion of LIN28B or exogenous expression of LET-7b suppressed hBMSC-Tum proliferation, colony formation, and migration. On the other hand, forced expression of LIN28B promoted malignant transformation of parental hBMSC cells as shown by enhanced in vitro colony formation, doxorubicin resistance, and in vivo tumor formation in immunocompromised mice. Analysis of LIN28B and HMGA2 expression levels in cohorts from The Cancer Genome Atlas sarcoma dataset revealed a strong inverse-relationship between elevated expression and overall survival (OS) in 260 patients (p = 0.005) and disease-free survival (DFS) in 231 patients (p = 0.02), suggesting LIN28B and HMGA2 are important regulators of sarcoma biology. Our results highlight an important role for the LIN28B/LET-7 axis in human sarcoma pathogenesis and suggest that the therapeutic targeting of LIN28B may be relevant for patients with sarcoma.
Collapse
|
23
|
Botti G, Giordano A, Feroce F, De Chiara AR, Cantile M. Noncoding RNAs as circulating biomarkers in osteosarcoma patients. J Cell Physiol 2019; 234:19249-19255. [PMID: 31032924 DOI: 10.1002/jcp.28744] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Noncoding RNAs (ncRNAs) identify a large family of RNAs that do not encode proteins and represent an important group of tumor biomarkers, directly involved in the process of tumor pathogenesis and progression. Many of them have also been identified in biological fluids of patients with cancer, especially blood, suggesting their role as an emerging class of circulating biomarkers. Many ncRNAs, both miRNAs and lncRNAs, are deregulated in sarcoma tissues, with the most consistent data in osteosarcomas. In patients with osteosarcoma, the role of ncRNAs as circulating biomarkers is taking enormous value, above all for their ability to vary expression levels during disease progression and in response to therapy. In this mini-review, we summarize the main studies supporting the role of circulating ncRNAs in monitoring disease status in patients with osteosarcoma.
Collapse
Affiliation(s)
- Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Florinda Feroce
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, Naples, Italy
| | | | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, Naples, Italy
| |
Collapse
|
24
|
Hajieghrari B, Farrokhi N, Goliaei B, Kavousi K. In Silico Identification of Conserved MiRNAs from Physcomitrella patens ESTs and their Target Characterization. Curr Bioinform 2018. [DOI: 10.2174/1574893612666170530081523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background:
MicroRNAs (miRNAs) are groups of small non-protein-coding endogenous
single stranded RNAs with approximately 18-24 nucleotides in length. High evolutionary sequence conservation
of miRNAs among plant species and availability of powerful computational tools allow identification
of new orthologs and paralogs.
Methods:
New conserved miRNAs in P. patens were found by EST-based homology search approaches.
All candidates were screened according to a series of miRNA filtering criteria. Unigene, DFCI Gene
Index (PpspGI) databases and psRNATarget algorithm were applied to identify target transcripts using
P. patens putative conserved miRNA sequences.
Results:
Nineteen conserved P. patens miRNAs were identified. The sequences were homologous to
known reference plant mature miRNA from 10 miRNA families. They could be folded into the typical
miRNA secondary structures. RepeatMasker algorithm demonstrated that ppt-miR2919e and pptmiR1533
had simple sequence repeats in their sequences. Target sites (49 genes) were identified for 7
out of 19 miRNAs. GO and KEGG analysis of targets indicated the involvement of some in important
multiple biological and metabolic processes.
Conclusion:
The majority of the registered miRNAs in databases were predicted by computational approaches
while many more have remained unknown. Due to the conserved nature of miRNAs in plant
species from closely to distantly related, homology search-based approaches between plants species
could lead to the identification of novel miRNAs in other plant species providing baseline information
for further search about the biological functions and evolution of miRNAs.
Collapse
Affiliation(s)
- Behzad Hajieghrari
- Department of Plant Sciences & Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University G.C., Evin, Tehran, P.O. Box 19839-4716, Iran
| | - Naser Farrokhi
- Department of Plant Sciences & Biotechnology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University G.C., Evin, Tehran, P.O. Box 19839-4716, Iran
| | - Bahram Goliaei
- Departments of Biophysics and Bioinformatics laboratories, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, P.O.Box 13145-1365, Iran
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, P.O.Box 13145-1365, Iran
| |
Collapse
|
25
|
Strub GM, Perkins JA. MicroRNAs for the pediatric otolaryngologist. Int J Pediatr Otorhinolaryngol 2018; 112:195-207. [PMID: 30055733 DOI: 10.1016/j.ijporl.2018.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
The scope of pediatric otolaryngology is broad and encompasses a wide variety of diseases in which the fundamental phenotype-causing abnormality exists at the level of gene regulation and expression. Development of novel molecular biology instruments to diagnose disease, monitor treatment response, and prevent recurrence will facilitate the delivery of appropriate surgical and adjuvant medical treatments with lower morbidity. MicroRNAs (miRNAs) have emerged as a relatively new class of molecules that directly modulate gene expression and are abnormally expressed in a multitude of disease processes including those within the scope of pediatric otolaryngology. Functionally, miRNAs control multiple cellular functions including angiogenesis, cell proliferation, cell survival, genome stability, and inflammation. These short, non-protein coding RNA molecules are present and stable in tissue, blood, saliva, and urine, making them ideal disease biomarkers. The simple structure of miRNAs and their ability to directly modulate the expression of specific genes lends exciting therapeutic potential to miRNA-based therapies. Here we review the current literature of miRNAs as it relates to diseases within the scope of pediatric otolaryngology, and discuss their potential as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Graham M Strub
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA, 98105, United States; Department of Otolaryngology and Communication Enhancement, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, United States
| | - Jonathan A Perkins
- Department of Otolaryngology - Head and Neck Surgery, University of Washington, Seattle, WA, 98105, United States; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA, 98101, United States; Division of Pediatric Otolaryngology, Department of Surgery, Seattle Children's Hospital, Seattle, WA, 98105, United States.
| |
Collapse
|
26
|
miR-34a exerts as a key regulator in the dedifferentiation of osteosarcoma via PAI-1-Sox2 axis. Cell Death Dis 2018; 9:777. [PMID: 29991717 PMCID: PMC6039486 DOI: 10.1038/s41419-018-0778-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/29/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is a malignant bone cancer with severe chromosomal abnormalities and genetic aberrations. Our previous work reported the dedifferentiation of OS, which is related to poor prognosis. However, the molecular mechanism that regulates OS dedifferentiation is still a subject of exploration. Emerging evidence has suggested that microRNAs (miRNAs) are associated with the pathogenesis of OS and could potentially be developed for use as diagnostic biomarkers and therapeutic strategies. In the present study, we intended to illustrate the role of miR-34a in the dedifferentiation of OS. Upregulation of miR-34a was observed while OS cells were induced into stem-like phenotype. Notably, inhibition of miR-34a could promote the reprogramming transition of OS. Further exploration on the downstream network of miR-34a identified that blocking plasminogen activator inhibitor-1 (PAI-1) expression could restrain OS dedifferentiation into cancer stem-like cells by downregulating SRY-related-HMG box (Sox) 2. We also showed that Sox2 overexpression rescued the suppression phenotype driven by PAI-1 inhibition. Conversely, PAI-1 inhibitor (PAI-039) could suppress the upregulation of Sox2 expression caused by miR-34a inhibition. Be applying bone extracellular matrix (BEM)-OS models, we demonstrated the phenotypic heterogeneity of OS cells, consistent with a strong concordance between PAI-1 and Sox2 expression levels. Taken together, our findings proved miR-34a to be a bona fide suppressor involved in the regulation of OS dedifferentiation. Targeting miR-34a or its direct target PAI-1 could offer new strategies for OS treatment.
Collapse
|
27
|
Wang S, Zhang Y, Yuan S, Ji X. MicroRNA‑485 targets MACC1 and inhibits cervical cancer cell proliferation and invasion. Mol Med Rep 2018; 18:2407-2416. [PMID: 29916552 DOI: 10.3892/mmr.2018.9186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 05/04/2018] [Indexed: 11/05/2022] Open
Abstract
A large body of evidence has indicated that microRNAs (miRNAs/miRs) have essential roles in the development and progression of cervical cancer. Thus, miRNAs with dysregulated expression are potential biomarkers for cervical cancer diagnosis and prognosis. In the present study, expression levels of miR‑485 were detected in cervical cancer tissues and cell lines. The effects of miR‑485 overexpression on the proliferation and invasion of cervical cancer cells were determined with Cell Counting kit‑8 and Transwell invasion assays. The mechanisms underlying the action of miR‑485 in cervical cancer were investigated using bioinformatics analysis, a luciferase reporter assay, reverse transcription‑quantitative polymerase chain reaction and western blot analysis. In addition, the association between miR‑485 and metastasis associated in colon cancer‑1 (MACC1) in cervical cancer tissues was examined. The present study demonstrated that miR‑485 expression was significantly downregulated in cervical cancer tissues and cell lines. Reduced miR‑485 expression in patients with cervical cancer was correlated with International Federation of Gynecology and Obstetrics stage and lymph node metastasis. Furthermore, restored expression of miR‑485 significantly reduced cervical cancer cell proliferation and invasion. MACC1 was identified as a direct target gene of miR‑485 in cervical cancer. MACC1 expression was significantly upregulated in cervical cancer specimens and was inversely correlated with miR‑485 expression. Additionally, the restored expression of MACC1 eliminated the suppressive effects of miR‑485 overexpression on the proliferation and invasion of cervical cancer cells. Notably, the upregulation of miR‑485 suppressed the MET proto‑oncogene, receptor tyrosine kinase (Met)/RAC‑α serine/threonine‑protein kinase (AKT) signaling pathway. These results demonstrated that miR‑485 may perform its tumor suppressive function in cervical cancer by directly targeting MACC1 and inhibiting the Met/AKT signaling pathway. Therefore, the miR‑485/MACC1 axis may be a novel and effective therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Shumei Wang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 252500, P.R. China
| | - Yaqi Zhang
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 252500, P.R. China
| | - Shunping Yuan
- Department of Obstetrics and Gynecology, Yidu Central Hospital of Weifang, Weifang, Shandong 252500, P.R. China
| | - Xiaoling Ji
- Department of Obstetrics and Gynecology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
28
|
Differential expression profiles of miRNAs and correlation with clinical outcomes in acute myeloid leukemia. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
29
|
miR-1 and miR-133b expression in canine osteosarcoma. Res Vet Sci 2018; 117:133-137. [DOI: 10.1016/j.rvsc.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022]
|
30
|
Kupcinskas J. Small Molecules in Rare Tumors: Emerging Role of MicroRNAs in GIST. Int J Mol Sci 2018; 19:E397. [PMID: 29385688 PMCID: PMC5855619 DOI: 10.3390/ijms19020397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of gastrointestinal tract. GISTs have very different clinical phenotypes and underlying molecular characteristics that are not yet completely understood. microRNAs (miRNAs) have been shown to participate in carcinogenesis pathways through post-transcriptional regulation of gene expression in different tumors. Over the last years emerging evidence has highlighted the role of miRNAs in GISTs. This review provides an overview of original research papers that analyze miRNA deregulation patterns, functional role, diagnostic, therapeutic and prognostic implications in GIST as well as provides directions for further research in the field.
Collapse
Affiliation(s)
- Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009 Kaunas, Lithuania.
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, Eiveniu str. 2, LT-50009 Kaunas, Lithuania.
| |
Collapse
|
31
|
PAX3-FOXO1 drives miR-486-5p and represses miR-221 contributing to pathogenesis of alveolar rhabdomyosarcoma. Oncogene 2018; 37:1991-2007. [PMID: 29367756 PMCID: PMC5895609 DOI: 10.1038/s41388-017-0081-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023]
Abstract
Rhabdomyosarcoma is the most common soft-tissue sarcoma in childhood and histologically resembles developing skeletal muscle. Alveolar rhabdomyosarcoma (ARMS) is an aggressive subtype with a higher rate of metastasis and poorer prognosis. The majority of ARMS tumors (80%) harbor a PAX3-FOXO1 or less commonly a PAX7-FOXO1 fusion gene. The presence of either the PAX3-FOXO1 or PAX7-FOXO1 fusion gene foretells a poorer prognosis resulting in clinical re-classification as either fusion-positive (FP-RMS) or fusion-negative RMS (FN-RMS). The PAX3/7-FOXO1 fusion genes result in the production of a rogue transcription factors that drive FP-RMS pathogenesis and block myogenic differentiation. Despite knowing the molecular driver of FP-RMS, targeted therapies have yet to make an impact for patients, highlighting the need for a greater understanding of the molecular consequences of PAX3-FOXO1 and its target genes including microRNAs. Here we show FP-RMS patient-derived xenografts and cell lines display a distinct microRNA expression pattern. We utilized both loss- and gain-of function approaches in human cell lines with knockdown of PAX3-FOXO1 in FP-RMS cell lines and expression of PAX3-FOXO1 in human myoblasts and identified microRNAs both positively and negatively regulated by the PAX3-FOXO1 fusion protein. We demonstrate PAX3-FOXO1 represses miR-221/222 that functions as a tumor suppressing microRNA through the negative regulation of CCND2, CDK6, and ERBB3. In contrast, miR-486-5p is transcriptionally activated by PAX3-FOXO1 and promotes FP-RMS proliferation, invasion, and clonogenic growth. Inhibition of miR-486-5p in FP-RMS xenografts decreased tumor growth, illustrating a proof of principle for future therapeutic intervention. Therefore, PAX3-FOXO1 regulates key microRNAs that may represent novel therapeutic vulnerabilities in FP-RMS.
Collapse
|
32
|
Circulating MicroRNA-92b-3p as a Novel Biomarker for Monitoring of Synovial Sarcoma. Sci Rep 2017; 7:14634. [PMID: 29116117 PMCID: PMC5676745 DOI: 10.1038/s41598-017-12660-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/18/2017] [Indexed: 02/07/2023] Open
Abstract
The lack of useful biomarkers is a crucial problem for patients with soft tissue sarcomas (STSs). Emerging evidence has suggested that circulating microRNAs (miRNAs) in body fluids have novel impact as biomarkers for patients with malignant diseases, but their significance in synovial sarcoma (SS) patients remains unknown. Initial global miRNA screening using SS patient serum and SS cell culture media identified a signature of four upregulated miRNAs. Among these candidates, miR-92b-3p secretion from SS cells was confirmed, which was embedded within tumour-derived exosomes rather than argonaute-2. Animal experiments revealed a close correlation between serum miR-92b-3p levels and tumour dynamics. Clinical relevance was validated in two independent clinical cohorts, and we subsequently identified that serum miR-92b-3p levels were significantly higher in SS patients in comparison to that in healthy individuals. Moreover, serum miR-92b-3p was robust in discriminating patients with SS from the other STS patients and reflected tumour burden in SS patients. Overall, liquid biopsy using serum miR-92b-3p expression levels may represent a novel approach for monitoring tumour dynamics of SS.
Collapse
|
33
|
Kheirollahi M, Moodi M, Ashouri S, Nikpour P, Kazemi M. Evaluation of miR-362 Expression in Astrocytoma of Human Brain Tumors. Adv Biomed Res 2017; 6:129. [PMID: 29142892 PMCID: PMC5672651 DOI: 10.4103/2277-9175.216782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Patients affected by gliomas have a poor prognosis. Astrocytoma is a subtype of glioma. Identification of biomarkers could be an effective way to an early diagnosis of tumor or to distinguish more aggressive tumors that need more intensive therapy. In this study, we investigated whether the expression of miR-362 was increased or decreased in patients with different grades of astrocytoma. Materials and Methods: miR-362 expression was compared in 25 patients with astrocytoma with that of 4 normal nonneoplastic brain tissues. Results: In all tumor tissues, the expression of miR-362 was significantly decreased relative to its expression in normal brain tissues. However, there was no significant difference between miR-362 expressions in high and low grades of astrocytoma. Conclusions: In conclusion, miR-362 showed a down-regulation pattern in astrocytoma tissues that was different from the pattern obtained from previously published microarray studies.
Collapse
Affiliation(s)
- Majid Kheirollahi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdiye Moodi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeideh Ashouri
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Applied Physiology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan, Iran.,Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
34
|
MicroRNAs in Different Histologies of Soft Tissue Sarcoma: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18091960. [PMID: 28895916 PMCID: PMC5618609 DOI: 10.3390/ijms18091960] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022] Open
Abstract
Soft tissue sarcomas (STS) constitute a rare tumour entity comprising over 50 histological subtypes. MicroRNAs (miRNAs) are short non-protein coding RNA molecules that regulate gene expression by targeting the 3'-untranslated region of messenger RNAs. They are involved in a variety of human diseases, including malignancies, such as endometrial cancer, osteosarcoma, bronchial carcinoma and breast cancer. In STS, various miRNAs are differentially expressed, thus contributing to development, progression and invasion. Therefore, the aim of the present review is to summarise current knowledge on the role of miRNAs in STS. Furthermore, the potential role of miRNAs as diagnostic, prognostic and predictive biomarkers is discussed.
Collapse
|
35
|
Prediction of clinical outcome and survival in soft-tissue sarcoma using a ten-lncRNA signature. Oncotarget 2017; 8:80336-80347. [PMID: 29113307 PMCID: PMC5655202 DOI: 10.18632/oncotarget.18165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
The prognostic value of long non-coding RNAs (lncRNAs) in patients with soft-tissue sarcoma has rarely been unraveled. The aim of the study was to find a lncRNA signature to predict the clinical outcome and survival in soft-tissue sarcoma based on the high-throughput RNA-seq data from The Cancer Genome Atlas (TCGA) database. The lncRNAs which closely correlated with overall survival in 258 soft-tissue sarcoma patients were identified with Cox proportional regression model. Ten lncRNAs, including RP11-560J1.2, AP001432.14, RP4-665J23.1, LINC00680, AC006129.2, RP11-230G5.2, BACH1-IT2, RP11-274B21.9, RP11-504A18.1 and RP11-713P17.3, were selected to calculate a risk score. The risk score could effectively predict patients’ outcome, such as the status of mitotic count of tumor cells, person neoplasm cancer and residual tumor. More inspiringly, the risk score generated from the 10-lncRNA signature was an independent prognostic indicator for soft-tissue sarcoma patients. Overall, this 10-lncRNA signature gains the potential as an effective prognostic tool for soft-tissue sarcoma as part of the integrated clinical RNA-seq program.
Collapse
|
36
|
Koetz-Ploch L, Hanniford D, Dolgalev I, Sokolova E, Zhong J, Díaz-Martínez M, Bernstein E, Darvishian F, Flaherty KT, Chapman PB, Tawbi H, Hernando E. MicroRNA-125a promotes resistance to BRAF inhibitors through suppression of the intrinsic apoptotic pathway. Pigment Cell Melanoma Res 2017; 30:328-338. [PMID: 28140520 DOI: 10.1111/pcmr.12578] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022]
Abstract
Melanoma patients with BRAFV600E -mutant tumors display striking responses to BRAF inhibitors (BRAFi); however, almost all invariably relapse with drug-resistant disease. Here, we report that microRNA-125a (miR-125a) expression is upregulated in human melanoma cells and patient tissues upon acquisition of BRAFi resistance. We show that miR-125a induction confers resistance to BRAFV600E melanoma cells to BRAFi by directly suppressing pro-apoptotic components of the intrinsic apoptosis pathway, including BAK1 and MLK3. Apoptotic suppression and prolonged survival favor reactivation of the MAPK and AKT pathways by drug-resistant melanoma cells. We demonstrate that miR-125a inhibition suppresses the emergence of resistance to BRAFi and, in a subset of resistant melanoma cell lines, leads to partial drug resensitization. Finally, we show that miR-125a upregulation is mediated by TGFβ signaling. In conclusion, the identification of this novel role for miR-125a in BRAFi resistance exposes clinically relevant mechanisms of melanoma cell survival that can be exploited therapeutically.
Collapse
Affiliation(s)
- Lisa Koetz-Ploch
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Douglas Hanniford
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Igor Dolgalev
- Genomics Technology Center, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Elena Sokolova
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Judy Zhong
- NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,Division of Biostatistics, Department of Environmental Medicine, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | | | | | - Farbod Darvishian
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Keith T Flaherty
- Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Paul B Chapman
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Eva Hernando
- Department of Pathology, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA.,NYU Interdisciplinary Melanoma Cooperative Group, NYU School of Medicine, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
37
|
Bi Y, Shen W, Min M, Liu Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int J Mol Med 2017; 39:900-906. [PMID: 28259961 PMCID: PMC5360436 DOI: 10.3892/ijmm.2017.2894] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 01/11/2017] [Indexed: 12/31/2022] Open
Abstract
Interleukin enhancer binding factor 2 (ILF2) has been found to be markedly upregulated in pancreatic carcinoma and is involved in the pathogenesis of pancreatic carcinoma. Thus, ILF2 may be a potential target for therapy. Yet, the regulatory mechanisms of ILF2 in pancreatic carcinoma remain largely elusive. In the present study, we demonstrated that ILF2 functioned as an oncogene and regulated epithelial-mesenchymal transition (EMT)-associated genes in pancreatic carcinoma PANC-1 cells. MicroRNA-7 (miR-7) suppressed ILF2 mRNA expression and the protein level in PANC-1 cells. Contrary to ILF2, miRNA-7 functioned as a tumor-suppressor gene and negatively regulated EMT-associated genes in the PANC-1 cells. Curcumin, a polyphenol natural product isolated from the rhizome of the plant Curcuma longa, has emerged as a promising anticancer therapeutic agent. We found that treatment with curcumin increased miR-7 expression and suppressed ILF2 protein in the PANC-1 cells. Thus, we identified ILF2 as a new downstream target gene of curcumin. The results revealed that ILF2 is regulated by miR-7 and suggest that downregulation of miR-7 may be an important factor for the ILF2 overexpression in pancreatic carcinoma.
Collapse
Affiliation(s)
- Yiliang Bi
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Wei Shen
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Min Min
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| | - Yan Liu
- Department of Gastroenterology, 307 Hospital of PLA, Academy of Military Medical Science, Beijing 100071, P.R. China
| |
Collapse
|
38
|
Wiemer EAC, Wozniak A, Burger H, Smid M, Floris G, Nzokirantevye A, Sciot R, Sleijfer S, Schöffski P. Identification of microRNA biomarkers for response of advanced soft tissue sarcomas to eribulin: Translational results of the EORTC 62052 trial. Eur J Cancer 2017; 75:33-40. [PMID: 28214655 DOI: 10.1016/j.ejca.2016.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/08/2016] [Accepted: 12/24/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Recent phase II and III clinical trials demonstrated anti-tumour activity of eribulin, a tubulin-interacting cytotoxic agent, in patients with metastatic soft tissue sarcoma (STS). In this exploratory study, we aimed to identify putative microRNA biomarkers that associate with eribulin sensitivity or resistance in STS. MATERIALS AND METHODS Archival tumour tissue from primary tumours or metastatic lesions was collected prior to eribulin treatment, from 65 consenting patients involved in the EORTC trial 62052. This phase II study (ClinicalTrials.gov identifier NCT00413192) included multiple subtypes of STS. Tissue was available from 21 leiomyosarcomas, 14 adipocytic sarcomas, 9 synovial sarcomas and 21 other sarcoma histotypes. Total RNA was isolated from formalin-fixed, paraffin-embedded tumour samples and analysed using Taqman® Low Density Arrays to determine microRNA expression profiles. The expression of a total of 756 microRNAs was assessed. Progression-free survival at week 12 (RECIST 1.0) measured as a binary variable, was the primary end-point of the clinical trial and used as a primary response measure for correlative studies. Seventeen of 53 (32.1%) evaluable patients in the analysed subset had non-progressive disease at week 12 and were defined as responders. RESULTS The expression of 26 individual microRNAs (p < 0.05) differed significantly between non-responders and responders. Additional microRNAs of potential relevance were identified when considering the different histological subgroups. CONCLUSIONS The expression level of particular microRNAs in STS tissue samples may predict response to eribulin. Further validation studies as well as a preclinical assessment of the underlying molecular mechanisms are required.
Collapse
Affiliation(s)
- Erik A C Wiemer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Herman Burger
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Giuseppe Floris
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Axelle Nzokirantevye
- European Organisation for Research and Treatment of Cancer (EORTC), Brussels, Belgium
| | - Raf Sciot
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium; Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium; Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
39
|
Prognostic microRNAs modulate the RHO adhesion pathway: A potential therapeutic target in undifferentiated pleomorphic sarcomas. Oncotarget 2016; 6:39127-39. [PMID: 25970788 PMCID: PMC4770761 DOI: 10.18632/oncotarget.3926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
A common and aggressive subtype of soft-tissue sarcoma, undifferentiated pleomorphic sarcoma (UPS) was examined to determine the role of micro-RNAs (miRNAs) in modulating distant metastasis. Following histopathologic review, 110 fresh frozen clinically annotated UPS samples were divided into two independent cohorts for Training (42 patients), and Validation (68 patients) analyses. Global miRNA profiling on the Training Set and functional analysis in vitro suggested that miRNA-138 and its downstream RHO-ROCK cell adhesion pathway was a convergent target of miRNAs associated with the development of metastasis. A six-miRNA signature set prognostic of distant metastasis-free survival (DMFS) was developed from Training Set miRNA expression values. Using the six-miRNA signature, patients were successfully categorized into high- and low-risk groups for DMFS in an independent Validation Set, with a hazard ratio (HR) of 2.25 (p = 0.048). After adjusting for other known prognostic variables such as age, gender, tumor grade, size, depth, and treatment with radiotherapy, the six-miRNA signature retained prognostic value with a HR of 3.46 (p < 0.001). A prognostic miRNA biomarker for clinical validation was thus identified along with a functional pathway that modulates UPS metastatic phenotype.
Collapse
|
40
|
miR-152 down-regulation is associated with MET up-regulation in leiomyosarcoma and undifferentiated pleomorphic sarcoma. Cell Oncol (Dordr) 2016; 40:77-88. [PMID: 27900663 DOI: 10.1007/s13402-016-0306-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Highly aggressive adult soft tissue sarcomas (STS), i.e., leiomyosarcomas (LMS) and undifferentiated pleomorphic sarcomas (UPS), present complex genomic anomalies and overall 5-year survival rates of 20 to 40%. Here, we aimed to identify new biomarkers that may be employed to improve the treatment of non-translocation STS patients. We validated 12 miRNAs implicated in tumor development using primary STS samples and selected miR-152 for further analysis in STS-derived cell lines. METHODS 59 primary STS samples (27 LMS and 32 UPS) and 10 matched normal control tissues were included in the study, as well as 3 STS-derived cell lines (HT1080, SW872 and SKLMS1) and a normal control mesenchymal cell line (hMSC). miRNA expression analyses were performed using a TaqMan microRNA Array platform and qRT-PCR (miR-152), respectively. The expression levels of the putative miR-152 targets MET and KIT were assessed using qRT-PCR and immunohistochemistry on tissue microarrays, respectively. In addition, various functional analyses were performed before and after miR-152 transfection into SKLMS1 cells. RESULTS We found that 12 pre-selected miRNAs were down-regulated in primary STS tumor samples compared to its normal control samples. A statistically significant miR-152 down-regulation was found to be accompanied by high MET and KIT mRNA levels in both the primary samples and the STS-derived cell lines tested. miR-152 transfection in SKLMS1 cells led to a reduction in KIT and MET mRNA and protein levels which, in turn, was associated with a transient down-regulation of the PI3K/AKT pathway, a transient decrease in cell growth, and a transient increase in both apoptotic and S-phase cells. CONCLUSIONS Our data indicate that over-expression of MET and KIT in primary STS samples and its derived cell lines is associated with miR-152 down-regulation. This shift may play a role in STS development and, thus, may be used to identify patients at risk. The effect of MET down-regulation on downstream signaling pathways, such as the PI3K/AKT pathway, may provide a basis for the future design of novel STS treatment strategies.
Collapse
|
41
|
Missiaglia E, Shepherd CJ, Aladowicz E, Olmos D, Selfe J, Pierron G, Delattre O, Walters Z, Shipley J. MicroRNA and gene co-expression networks characterize biological and clinical behavior of rhabdomyosarcomas. Cancer Lett 2016; 385:251-260. [PMID: 27984116 PMCID: PMC5157784 DOI: 10.1016/j.canlet.2016.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022]
Abstract
Rhabdomyosarcomas (RMS) in children and adolescents are heterogeneous sarcomas broadly defined by skeletal muscle features and the presence/absence of PAX3/7-FOXO1 fusion genes. MicroRNAs are small non-coding RNAs that regulate gene expression in a cell context specific manner. Sequencing analyses of microRNAs in 64 RMS revealed expression patterns separating skeletal muscle, fusion gene positive and negative RMS. Integration with parallel gene expression data assigned biological functions to 12 co-expression networks/modules that reassuringly included myogenic roles strongly correlated with microRNAs known in myogenesis and RMS development. Modules also correlated with clinical outcome and fusion status. Regulation of microRNAs by the fusion protein was demonstrated after PAX3-FOXO1 reduction, exemplified by miR-9-5p. MiR-9-5p levels correlated with poor outcome, even within fusion gene positive RMS, and were higher in metastatic versus non-metastatic disease. MiR-9-5p reduction inhibited RMS cell migration. Our findings reveal microRNAs in a regulatory framework of biological and clinical significance in RMS. RNAseq profiled miRNA expression in 64 rhabdomyosarcomas (RMS). MiRNA expression distinguished muscle and RMS on the basis of fusion gene status. Co-expression networks linked to function, clinical data and fusion gene status. Identified miRNAs, including miR-9-5p, altered by the PAX3-FOXO1 fusion protein. Demonstrated clinical and functional role for miR-9-5p in RMS.
Collapse
Affiliation(s)
- Edoardo Missiaglia
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Chris J Shepherd
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Ewa Aladowicz
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - David Olmos
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Joanna Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Gaëlle Pierron
- Unité de Génétique Somatique, Institut Curie, 26 Rue d'Ulm, 75248, Paris Cedex 05, France
| | - Olivier Delattre
- Unité de Génétique Somatique, Institut Curie, 26 Rue d'Ulm, 75248, Paris Cedex 05, France
| | - Zoe Walters
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Surrey, SM2 5NG, UK.
| |
Collapse
|
42
|
Bill KLJ, Casadei L, Prudner BC, Iwenofu H, Strohecker AM, Pollock RE. Liposarcoma: molecular targets and therapeutic implications. Cell Mol Life Sci 2016; 73:3711-8. [PMID: 27173057 PMCID: PMC7175098 DOI: 10.1007/s00018-016-2266-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/07/2016] [Accepted: 05/03/2016] [Indexed: 01/07/2023]
Abstract
Liposarcoma (LPS) is the most common soft tissue sarcoma and accounts for approximately 20 % of all adult sarcomas. Current treatment modalities (surgery, chemotherapy, and radiotherapy) all have limitations; therefore, molecularly driven studies are needed to improve the identification and increased understanding of genetic and epigenetic deregulations in LPS if we are to successfully target specific tumorigenic drivers. It can be anticipated that such biology-driven therapeutics will improve treatments by selectively deleting cancer cells while sparing normal tissues. This review will focus on several therapeutically actionable molecular markers identified in well-differentiated LPS and dedifferentiated LPS, highlighting their potential clinical applicability.
Collapse
Affiliation(s)
- Kate Lynn J Bill
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
| | - Lucia Casadei
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
| | - Bethany C Prudner
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
| | - Hans Iwenofu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Anne M Strohecker
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology, and Medical Genetics, The Ohio State University, Columbus, OH, USA
| | - Raphael E Pollock
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
- Division of Surgical Oncology, Department of Surgery, Wexner Medical Center, The Ohio State University, 410W 10th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
43
|
Kohashi K, Tanaka Y, Kishimoto H, Yamamoto H, Yamada Y, Taguchi T, Iwamoto Y, Oda Y. Reclassification of rhabdoid tumor and pediatric undifferentiated/unclassified sarcoma with complete loss of SMARCB1/INI1 protein expression: three subtypes of rhabdoid tumor according to their histological features. Mod Pathol 2016; 29:1232-42. [PMID: 27338635 DOI: 10.1038/modpathol.2016.106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 04/29/2016] [Accepted: 05/01/2016] [Indexed: 12/21/2022]
Abstract
Rhabdoid tumor is characterized by rhabdoid cells and shows complete loss of SMARCB1/INI1 protein expression. In existing classifications, the diagnostic synonyms vary depending on the anatomic site: rhabdoid tumors in the central nervous system or extra-central nervous system are, respectively, classified as atypical teratoid/rhabdoid tumor or malignant rhabdoid tumor. In this study, we analyzed the histological, immunohistochemical, microRNA, and clinicopathological statuses of tumors initially diagnosed as malignant rhabdoid tumor (n=33), atypical teratoid/rhabdoid tumor (n=11), and pediatric undifferentiated/unclassified sarcoma (n=8) with complete loss of SMARCB1/INI1 expression, and considered the possibility of their histological reclassification. Our analysis indicated that the tumors could be histologically reclassified into three groups: conventional-type tumors resembling malignant rhabdoid tumor, atypical teratoid/rhabdoid-type tumors resembling atypical teratoid/rhabdoid tumor, and small cell-type tumors resembling malignant lymphoma. The reclassified conventional type was composed of 27 malignant rhabdoid tumors and 9 atypical teratoid/rhabdoid tumors (36 cases). The atypical teratoid/rhabdoid type consisted of six malignant rhabdoid tumors, two atypical teratoid/rhabdoid tumors, and two undifferentiated/unclassified sarcomas (10 cases). The six cases of small cell type were made up of six undifferentiated/unclassified sarcomas. All of the available tumor specimens were positive for vimentin and epithelial marker (EMA, CAM5.2, or AE1/AE3). MicroRNA profiles were not significantly different between the conventional- and small cell-type tumors (Pearson's correlation coefficient: 0.888300 or 0.891388). There was no significant difference in overall survival between atypical teratoid/rhabdoid tumor and malignant rhabdoid tumor (P=0.16). In addition, there were no significant differences in survival between any of the reclassified combinations. In conclusion, we could classify eight tumors initially diagnosed as undifferentiated/unclassified sarcomas into two cases of atypical teratoid/rhabdoid type and six cases of small cell type. We suggest that reclassification of malignant rhabdoid tumors into three groups according to their histologic features rather than the traditional classification by sites of origin would be favorable for their histopathological diagnosis.
Collapse
Affiliation(s)
- Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukichi Tanaka
- Department of Pathology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroshi Kishimoto
- Department of Pathology, Saitama Children's Medical Center, Saitama, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoaki Taguchi
- Department of Pediatric Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yukihide Iwamoto
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
44
|
Soini Y. Epigenetic and genetic changes in soft tissue sarcomas: a review. APMIS 2016; 124:925-934. [PMID: 27670825 DOI: 10.1111/apm.12600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/03/2016] [Indexed: 11/26/2022]
Abstract
Soft tissue sarcomas are a versatile group of tumors with a proposed origin from mesenchymal stem cells. During recent years, the molecular biologic mechanisms behind the histogenesis of these tumors have become clearer. In addition to translocations and other genomic changes, epigenetic mechanisms have been shown to be greatly involved in the histogenesis of sarcomas as well as other cancers. Even though the molecular mechanisms behind sarcomas appear to be more complex than previously expected, epigenetic mechanisms bring new opportunities and means for the treatment of these complex diseases.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Pathology and Forensic Medicine, University of Eastern Finland, Kuopio and Cancer Center of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
45
|
Zhang XH, Qian Y, Li Z, Zhang NN, Xie YJ. Let-7g-5p inhibits epithelial-mesenchymal transition consistent with reduction of glioma stem cell phenotypes by targeting VSIG4 in glioblastoma. Oncol Rep 2016; 36:2967-2975. [DOI: 10.3892/or.2016.5098] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 09/02/2016] [Indexed: 11/06/2022] Open
|
46
|
Bersani F, Lingua MF, Morena D, Foglizzo V, Miretti S, Lanzetti L, Carrà G, Morotti A, Ala U, Provero P, Chiarle R, Singer S, Ladanyi M, Tuschl T, Ponzetto C, Taulli R. Deep Sequencing Reveals a Novel miR-22 Regulatory Network with Therapeutic Potential in Rhabdomyosarcoma. Cancer Res 2016; 76:6095-6106. [PMID: 27569217 DOI: 10.1158/0008-5472.can-16-0709] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/28/2016] [Indexed: 12/12/2022]
Abstract
Current therapeutic options for the pediatric cancer rhabdomyosarcoma have not improved significantly, especially for metastatic rhabdomyosarcoma. In the current work, we performed a deep miRNA profiling of the three major human rhabdomyosarcoma subtypes, along with cell lines and normal muscle, to identify novel molecular circuits with therapeutic potential. The signature we determined could discriminate rhabdomyosarcoma from muscle, revealing a subset of muscle-enriched miRNA (myomiR), including miR-22, which was strongly underexpressed in tumors. miR-22 was physiologically induced during normal myogenic differentiation and was transcriptionally regulated by MyoD, confirming its identity as a myomiR. Once introduced into rhabdomyosarcoma cells, miR-22 decreased cell proliferation, anchorage-independent growth, invasiveness, and promoted apoptosis. Moreover, restoring miR-22 expression blocked tumor growth and prevented tumor dissemination in vivo Gene expression profiling analysis of miR-22-expressing cells suggested TACC1 and RAB5B as possible direct miR-22 targets. Accordingly, loss- and gain-of-function experiments defined the biological relevance of these genes in rhabdomyosarcoma pathogenesis. Finally, we demonstrated the ability of miR-22 to intercept and overcome the intrinsic resistance to MEK inhibition based on ERBB3 upregulation. Overall, our results identified a novel miR-22 regulatory network with critical therapeutic implications in rhabdomyosarcoma. Cancer Res; 76(20); 6095-106. ©2016 AACR.
Collapse
Affiliation(s)
- Francesca Bersani
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Marcello Francesco Lingua
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Deborah Morena
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Valentina Foglizzo
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy
| | - Silvia Miretti
- Department of Veterinary Science, University of Turin, Grugliasco, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. Candiolo Cancer Institute, Candiolo, Turin, Italy
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy
| | - Ugo Ala
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Roberto Chiarle
- CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy. Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy. Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Thomas Tuschl
- Department of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York
| | - Carola Ponzetto
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Turin, Orbassano, Turin, Italy. CeRMS, Center for Experimental Research and Medical Studies, Turin, Italy.
| |
Collapse
|
47
|
Rimondi E, Benassi MS, Bazzocchi A, Balladelli A, Facchini G, Rossi G, Taieb S, Vanel D. Translational research in diagnosis and management of soft tissue tumours. Cancer Imaging 2016; 16:13. [PMID: 27266712 PMCID: PMC4897899 DOI: 10.1186/s40644-016-0071-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/21/2016] [Indexed: 02/08/2023] Open
Abstract
Finding a soft tissue mass in the superficial regions is a common event in daily clinical practice. Correct management of the diagnostic process is crucial to avoid blunders. Diagnosis is posed by pathology, although both imaging and a better understanding of the cellular and molecular mechanisms play an important a role in the characterization, staging and follow-up of soft tissue masses. Cellular and molecular mechanisms can explain either the development of chemo-resistance and the underlying pre- and post-surgery metastasis formation. These are mandatory to improve prognosis and unveil novel parameters predicting therapeutic response. Imaging mainly involves ultrasound and MR and is fundamental not only in diagnosis but also in the first step of therapy: the biopsy. Novel imaging techniques like Ultrasound Elastosonography, Dynamic Contrast-Enhanced MR imaging (DCE), Diffusion Weighted MR imaging (DWI) and MR Spectroscopy (MRS) are discussed. This paper aims at reviewing and discussing pathological methods and imaging in the diagnosis of soft tissue masses underscoring that the most appropriate treatment depends on advanced molecular and radiological studies.
Collapse
Affiliation(s)
- Eugenio Rimondi
- Diagnostic and Interventional Radiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alba Balladelli
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giancarlo Facchini
- Diagnostic and Interventional Radiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giuseppe Rossi
- Interventional Angiographic Radiology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | - Daniel Vanel
- Research Department, Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
48
|
Akçakaya P, Lui WO. MicroRNAs and Gastrointestinal Stromal Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 889:51-70. [PMID: 26658996 DOI: 10.1007/978-3-319-23730-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is the most commonly diagnosed mesenchymal tumor in the gastrointestinal tract. This tumor type is driven by gain-of-function mutations in receptor tyrosine kinases (such as KIT, PDGFRA, and BRAF) or loss-of-function mutations in succinate dehydrogenase complex subunit genes (SDHx). Molecular studies on GIST have improved our understanding of the biology of the disease and have led to the use of targeted therapy approach, such as imatinib for KIT/PDGFRA-mutated GIST. Recently, microRNAs have emerged as important regulators of KIT expression, cancer cell behavior, and imatinib response in GIST. This chapter aims to provide an overview on current understanding of the biological roles of microRNAs in GIST and possible implications in prognosis and therapeutic response.
Collapse
Affiliation(s)
- Pinar Akçakaya
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, SE-17176, Sweden. .,Cancer Center Karolinska, Karolinska University Hospital, Stockholm, SE-17176, Sweden.
| | - Weng-Onn Lui
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, SE-17176, Sweden. .,Cancer Center Karolinska, Karolinska University Hospital, Stockholm, SE-17176, Sweden.
| |
Collapse
|
49
|
A selective screening platform reveals unique global expression patterns of microRNAs in a cohort of human soft-tissue sarcomas. J Transl Med 2016; 96:481-91. [PMID: 26878133 DOI: 10.1038/labinvest.2015.168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/18/2015] [Indexed: 01/29/2023] Open
Abstract
Sarcomas are malignant heterogenous tumors of mesenchymal derivation. Emerging data suggest that miRNA might have a causal role in sarcomagenesis. Herein, we used a selective miRNA screening platform to study the comparative global miRNA expression signatures in a cohort of human sarcomas with the caveat that comparisons between tumor and non-tumor cells were performed from the same patients using formalin-fixed paraffin-embedded tissue. Five histologic types were examined that included: myxoid liposarcoma, well-differentiated liposarcoma, dedifferentiated liposarcoma, pleomorphic rhabdomyosarcoma, and synovial sarcoma. In addition, soft-tissue lipomas and normal fat were included as a separate set of controls for the lipogenic tumors. Clustering analysis showed a distinct global difference in expression patterns between the normal and sarcoma tissues. Expression signatures in an unsupervised hierarchical clustering analysis revealed tight clustering in synovial and myxoid liposarcomas, and the least clustering was observed in the pleomorphic rhabdomyosarcoma subtype. MiR-145 showed underexpression in pleomorphic rhabdomyosarcoma, well-differentiated liposarcoma, and synovial sarcoma. Unexpectedly, we found that a set of muscle-specific microRNAs (miRNAs; myomiRs): miR-133, miR-1, and miR-206 was significantly underexpressed in well-differentiated liposarcoma and synovial sarcoma, suggesting that they may function as tumor suppressors as described in muscle-relevant rhabdomyosarcomas. In addition, a tight linear progression of miRNA expression was identified from normal fat to dedifferentiated liposarcoma. These results suggest that miRNA expression profiles could elucidate classes of miRNAs that may elicit tumor-relevant activities in specific sarcoma subtypes.
Collapse
|
50
|
Osaka E, Kelly AD, Spentzos D, Choy E, Yang X, Shen JK, Yang P, Mankin HJ, Hornicek FJ, Duan Z. MicroRNA-155 expression is independently predictive of outcome in chordoma. Oncotarget 2016; 6:9125-39. [PMID: 25823817 PMCID: PMC4496207 DOI: 10.18632/oncotarget.3273] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/07/2015] [Indexed: 12/24/2022] Open
Abstract
Background Chordoma pathogenesis remains poorly understood. In this study, we aimed to evaluate the relationships between microRNA-155 (miR-155) expression and the clinicopathological features of chordoma patients, and to evaluate the functional role of miR-155 in chordoma. Methods The miRNA expression profiles were analyzed using miRNA microarray assays. Regulatory activity of miR-155 was assessed using bioinformatic tools. miR-155 expression levels were validated by reverse transcription-polymerase chain reaction. The relationships between miR-155 expression and the clinicopathological features of chordoma patients were analyzed. Proliferative, migratory and invasive activities were assessed by MTT, wound healing, and Matrigel invasion assays, respectively. Results The miRNA microarray assay revealed miR-155 to be highly expressed and biologically active in chordoma. miR-155 expression in chordoma tissues was significantly elevated, and this expression correlated significantly with disease stage (p = 0.036) and the presence of metastasis (p = 0.035). miR-155 expression also correlated significantly with poor outcomes for chordoma patients (hazard ratio, 5.32; p = 0.045). Inhibition of miR-155 expression suppressed proliferation, and the migratory and invasive activities of chordoma cells. Conclusions We have shown miR-155 expression to independently affect prognosis in chordoma. These results collectively indicate that miR-155 expression may serve not only as a prognostic marker, but also as a potential therapeutic target in chordoma.
Collapse
Affiliation(s)
- Eiji Osaka
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Andrew D Kelly
- Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Dimitrios Spentzos
- Division of Hematology/Oncology, Sarcoma Program, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiaoqian Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Pei Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Henry J Mankin
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|