1
|
Ratnayake R, Gunasekera SP, Ma JJ, Dang LH, Carney TJ, Paul VJ, Luesch H. Dolastatin 15 from a Marine Cyanobacterium Suppresses HIF-1α Mediated Cancer Cell Viability and Vascularization. Chembiochem 2020; 21:2356-2366. [PMID: 32237262 PMCID: PMC7438311 DOI: 10.1002/cbic.202000180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Chemical investigation of a benthic marine cyanobacterium yielded the anticancer agent dolastatin 15, originally isolated from a mollusk. Dolastatin 15 is a microtubule-destabilizing agent with analogues undergoing clinical evaluation. Profiling against a panel of isogenic HCT116 colorectal cancer cells showed remarkable differential cytotoxicity against the parental cells over isogenic cells lacking HIF or other key players in the pathway, including oncogenic KRAS and VEGF. Dolastatin 15 displayed an antivascularization effect in human endothelial cells and in zebrafish vhl mutants with activated Hif, thus signifying its clinical potential as a treatment for solid tumors with an angiogenic component. Global transcriptome analysis with RNA sequencing suggested that dolastatin 15 could affect other major cancer pathways that might not directly involve tubulin or HIF. The identification of the true producer of a clinically relevant agent is important for sustainable supply, as is understanding the biosynthesis, and future genetic manipulation of the biosynthetic gene cluster for analogue production.
Collapse
Affiliation(s)
- Ranjala Ratnayake
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
| | | | - Jia Jia Ma
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore, 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Long H Dang
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
- Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Thomas J Carney
- Institute of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore, 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Valerie J Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, FL, 34949, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, FL, 32610, USA
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| |
Collapse
|
2
|
Wang T, Wang Q, Song R, Zhang Y, Zhang K, Yuan Y, Bian J, Liu X, Gu J, Liu Z. Autophagy Plays a Cytoprotective Role During Cadmium-Induced Oxidative Damage in Primary Neuronal Cultures. Biol Trace Elem Res 2015; 168:481-9. [PMID: 26041154 DOI: 10.1007/s12011-015-0390-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/26/2015] [Indexed: 11/30/2022]
Abstract
Cadmium (Cd) induces significant oxidative damage in cells. Recently, it was reported that autophagy could be induced by Cd in neurons. However, little is known about the role of reactive oxygen species (ROS) during Cd-induced autophagy. In our study, we examined the cross-talk between ROS and autophagy by using N-acetyl cysteine (NAC, an antioxidant) and chloroquine (CQ, a pharmacological inhibitor of autophagy) in a primary rat neuronal cell cultures. We observed accumulation of acidic vesicular organelles and the increased expression of endogenous protein light chain 3 (LC3) in Cd-treated neurons, revealing that Cd induced a high level of autophagy. Moreover, increased levels of ROS were observed in neurons treated with Cd, showing that ROS accumulation was closely associated with neuron's exposure to Cd. Furthermore, we found that autophagy was inhibited by using CQ and/or NAC with further aggravation of mitochondrial damage, lactate dehydrogenase (LDH) leakage and hypoploid apoptotic cell number in Cd-treated neurons. These results proved that autophagy has a cytoprotective role during Cd-induced toxicity in neurons, and it can prevent the oxidative damage. These findings may enable the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Qiwen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
- Bijie Pilot Area Research Institute of Bijie University, Bijie, 551700, People's Republic of China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Yajing Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Kangbao Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
3
|
Watson VG, Hardison NE, Harris T, Motsinger-Reif A, McLeod HL. Genomic profiling in CEPH cell lines distinguishes between the camptothecins and indenoisoquinolines. Mol Cancer Ther 2011; 10:1839-45. [PMID: 21750217 DOI: 10.1158/1535-7163.mct-10-0872] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have attempted to use a familial genetics strategy to study mechanisms of topoisomerase 1 (Top1) inhibition. Investigations have steadily been chipping away at the pathways involved in cellular response following Top1 inhibition for more than 20 years. Our system-wide approach, which phenotypes a collection of genotyped human cell lines for sensitivity to compounds and interrogates all genes and molecular pathways simultaneously. Previously, we characterized the in vitro sensitivity of 15 families of Centre d'Etude Polymorphisme Humain (CEPH) cell lines (n = 142) to 9 camptothecin analogues. Linkage analysis revealed a pattern of 7 quantitative trait loci (QTL) shared by all of the camptothecins. To identify which, if any, QTLs are related to the general mechanism of Top1 inhibition or should be considered camptothecin specific, we characterized the in vitro sensitivity of the same panel of CEPH cell lines to the indenisoquinolones, a structurally distinct class of Top1 inhibitors. Four QTLs on chromosomes 1, 5, 11, and 16 were shared by both the camptothecins and the indenoisoquinolines and are considered associated with the general mechanism of Top1 inhibition. The remaining 3 QTLs (chromosomes 6 and 20) are considered specific to camptothecin-induced cytotoxicity. Finally, 8 QTLs were identified, which were unique to the indenoisoquinolines.
Collapse
Affiliation(s)
- Venita Gresham Watson
- UNC Institute for Pharmacogenomics and Individualized Therapy, Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|