1
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
2
|
Scattarella F, Altamura E, Albanese P, Siliqi D, Ladisa M, Mavelli F, Giannini C, Altamura D. Table-top combined scanning X-ray small angle scattering and transmission microscopies of lipid vesicles dispersed in free-standing gel. RSC Adv 2020; 11:484-492. [PMID: 35423036 PMCID: PMC8690998 DOI: 10.1039/d0ra08581b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
A mm thick free-standing gel containing lipid vesicles made of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) was studied by scanning Small Angle X-ray Scattering (SAXS) and X-ray Transmission (XT) microscopies. Raster scanning relatively large volumes, besides reducing the risk of radiation damage, allows signal integration, improving the signal-to-noise ratio (SNR), as well as high statistical significance of the dataset. The persistence of lipid vesicles in gel was demonstrated, while mapping their spatial distribution and concentration gradients. Information about lipid aggregation and packing, as well as about gel density gradients, was obtained. A posteriori confirmation of lipid presence in well-defined sample areas was obtained by studying the dried sample, featuring clear Bragg peaks from stacked bilayers. The comparison between wet and dry samples allowed it to be proved that lipids do not significantly migrate within the gel even upon drying, whereas bilayer curvature is lost by removing water, resulting in lipids packed in ordered lamellae. Suitable algorithms were successfully employed for enhancing transmission microscopy sensitivity to low absorbing objects, and allowing full SAXS intensity normalization as a general approach. In particular, data reduction includes normalization of the SAXS intensity against the local sample thickness derived from absorption contrast maps. The proposed study was demonstrated by a room-sized instrumentation, although equipped with a high brilliance X-ray micro-source, and is expected to be applicable to a wide variety of organic, inorganic, and multicomponent systems, including biomaterials. The employed routines for data reduction and microscopy, including Gaussian filter for contrast enhancement of low absorbing objects and a region growing segmentation algorithm to exclude no-sample regions, have been implemented and made freely available through the updated in-house developed software SUNBIM.
Collapse
Affiliation(s)
| | - Emiliano Altamura
- Chemistry Department University of Bari Aldo Moro via Orabona 4 70125 Bari Italy
| | - Paola Albanese
- Chemistry Department University of Bari Aldo Moro via Orabona 4 70125 Bari Italy
| | - Dritan Siliqi
- Istituto di Cristallografia - CNR Via Amendola 122/O 70126 Bari Italy
| | - Massimo Ladisa
- Istituto di Cristallografia - CNR Via Amendola 122/O 70126 Bari Italy
| | - Fabio Mavelli
- Chemistry Department University of Bari Aldo Moro via Orabona 4 70125 Bari Italy
| | - Cinzia Giannini
- Istituto di Cristallografia - CNR Via Amendola 122/O 70126 Bari Italy
| | - Davide Altamura
- Istituto di Cristallografia - CNR Via Amendola 122/O 70126 Bari Italy
| |
Collapse
|
3
|
Paternò G, Cardarelli P, Gambaccini M, Taibi A. Comprehensive data set to include interference effects in Monte Carlo models of x-ray coherent scattering inside biological tissues. ACTA ACUST UNITED AC 2020; 65:245002. [DOI: 10.1088/1361-6560/aba7d2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Picone G, Cappadone C, Pasini A, Lovecchio J, Cortesi M, Farruggia G, Lombardo M, Gianoncelli A, Mancini L, Ralf H. M, Donato S, Giordano E, Malucelli E, Iotti S. Analysis of Intracellular Magnesium and Mineral Depositions during Osteogenic Commitment of 3D Cultured Saos2 Cells. Int J Mol Sci 2020; 21:ijms21072368. [PMID: 32235449 PMCID: PMC7177893 DOI: 10.3390/ijms21072368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/23/2022] Open
Abstract
In this study, we explore the behaviour of intracellular magnesium during bone phenotype modulation in a 3D cell model built to mimic osteogenesis. In addition, we measured the amount of magnesium in the mineral depositions generated during osteogenic induction. A two-fold increase of intracellular magnesium content was found, both at three and seven days from the induction of differentiation. By X-ray microscopy, we characterized the morphology and chemical composition of the mineral depositions secreted by 3D cultured differentiated cells finding a marked co-localization of Mg with P at seven days of differentiation. This is the first experimental evidence on the presence of Mg in the mineral depositions generated during biomineralization, suggesting that Mg incorporation occurs during the bone forming process. In conclusion, this study on the one hand attests to an evident involvement of Mg in the process of cell differentiation, and, on the other hand, indicates that its multifaceted role needs further investigation.
Collapse
Affiliation(s)
- Giovanna Picone
- Department of Pharmacy and Biotechnology, University of Bologna, 33-40126 Bologna, Italy; (G.P.)
| | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, 33-40126 Bologna, Italy; (G.P.)
| | - Alice Pasini
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna 50, 47522 Cesena, Italy
| | - Joseph Lovecchio
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna 50, 47522 Cesena, Italy
| | - Marilisa Cortesi
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna 50, 47522 Cesena, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, 33-40126 Bologna, Italy; (G.P.)
- National Institute of Biostructures and Biosystems (NIBB), 00136 Rome, Italy
| | - Marco Lombardo
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum–Università di Bologna, via Selmi 2, I-40126 Bologna, Italy
| | | | - Lucia Mancini
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, 34149 Basovizza, Italy
| | - Menk Ralf H.
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, 34149 Basovizza, Italy
- INFN section of Trieste, 2-34127 Trieste, Italy
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Sandro Donato
- Elettra-Sincrotrone Trieste S.C.p.A., Trieste, 34149 Basovizza, Italy
- Department of Physics, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), University of Bologna 50, 47522 Cesena, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, 33-40126 Bologna, Italy; (G.P.)
- Correspondence: ; Tel.: +39-051-209-5414
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, 33-40126 Bologna, Italy; (G.P.)
- National Institute of Biostructures and Biosystems (NIBB), 00136 Rome, Italy
| |
Collapse
|
5
|
Treurniet S, Eekhoff EMW, Schmidt FN, Micha D, Busse B, Bravenboer N. A Clinical Perspective on Advanced Developments in Bone Biopsy Assessment in Rare Bone Disorders. Front Endocrinol (Lausanne) 2020; 11:399. [PMID: 32714279 PMCID: PMC7344330 DOI: 10.3389/fendo.2020.00399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/18/2020] [Indexed: 01/22/2023] Open
Abstract
Introduction: Bone biopsies have been obtained for many centuries and are one of the oldest known medical procedures in history. Despite the introduction of new noninvasive radiographic imaging techniques and genetic analyses, bone biopsies are still valuable in the diagnosis of bone diseases. Advanced techniques for the assessment of bone quality in bone biopsies, which have emerged during the last decades, allows in-depth tissue analyses beyond structural changes visible in bone histology. In this review, we give an overview of the application and advantages of the advanced techniques for the analysis of bone biopsies in the clinical setting of various rare metabolic bone diseases. Method: A systematic literature search on rare metabolic bone diseases and analyzing techniques of bone biopsies was performed in PubMed up to 2019 week 34. Results: Advanced techniques for the analysis of bone biopsies were described for rare metabolic bone disorders including Paget's disease of bone, osteogenesis imperfecta, fibrous dysplasia, Fibrodysplasia ossificans progressiva, PLS3 X-linked osteoporosis, Loeys-Diets syndrome, osteopetrosis, Erdheim-Chester disease, and Cherubism. A variety of advanced available analytical techniques were identified that may help to provide additional detail on cellular, structural, and compositional characteristics in rare bone diseases complementing classical histopathology. Discussion: To date, these techniques have only been used in research and not in daily clinical practice. Clinical application of bone quality assessment techniques depends upon several aspects such as availability of the technique in hospitals, the existence of reference data, and a cooperative network of researchers and clinicians. The evaluation of rare metabolic bone disorders requires a repertoire of different methods, owing to their distinct bone tissue characteristics. The broader use of bone material obtained from biopsies could provide much more information about pathophysiology or treatment options and establish bone biopsies as a valuable tool in rare metabolic bone diseases.
Collapse
Affiliation(s)
- Sanne Treurniet
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Elisabeth M. W. Eekhoff
- Department of Internal Medicine, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Felix N. Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Bravenboer
- Bone and Calcium Metabolism Lab, Department of Clinical Chemistry, Amsterdam University Medical Center, Amsterdam Movement Sciences, Amsterdam, Netherlands
- *Correspondence: Nathalie Bravenboer
| |
Collapse
|
6
|
Procopio A, Malucelli E, Pacureanu A, Cappadone C, Farruggia G, Sargenti A, Castiglioni S, Altamura D, Sorrentino A, Giannini C, Pereiro E, Cloetens P, Maier JAM, Iotti S. Chemical Fingerprint of Zn-Hydroxyapatite in the Early Stages of Osteogenic Differentiation. ACS CENTRAL SCIENCE 2019; 5:1449-1460. [PMID: 31482128 PMCID: PMC6716342 DOI: 10.1021/acscentsci.9b00509] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Indexed: 06/01/2023]
Abstract
The core knowledge about biomineralization is provided by studies on the advanced phases of the process mainly occurring in the extracellular matrix. Here, we investigate the early stages of biomineralization by evaluating the chemical fingerprint of the initial mineral nuclei deposition in the intracellular milieu and their evolution toward hexagonal hydroxyapatite. The study is conducted on human bone mesenchymal stem cells exposed to an osteogenic cocktail for 4 and 10 days, exploiting laboratory X-ray diffraction techniques and cutting-edge developments of synchrotron-based 2D and 3D cryo-X-ray microscopy. We demonstrate that biomineralization starts with Zn-hydroxyapatite nucleation within the cell, rapidly evolving toward hexagonal hydroxyapatite crystals, very similar in composition and structure to the one present in human bone. These results provide experimental evidence of the germinal role of Zn in hydroxyapatite nucleation and foster further studies on the intracellular molecular mechanisms governing the initial phases of bone tissue formation.
Collapse
Affiliation(s)
- Alessandra Procopio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Emil Malucelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | | | - Concettina Cappadone
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Giovanna Farruggia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
- National Institute of Biostructures and Biosystems, Rome 00136, Italy
| | - Azzurra Sargenti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan 20122, Italy
| | - Davide Altamura
- Institute of Crystallography, National Research Council, Bari 70126, Italy
| | - Andrea Sorrentino
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, Bari 70126, Italy
| | - Eva Pereiro
- ALBA Synchrotron Light Source, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Peter Cloetens
- ID16A Beamline, ESRF, the European Synchrotron, Grenoble 38043, France
| | - Jeanette A M Maier
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan 20122, Italy
| | - Stefano Iotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40127, Italy
- National Institute of Biostructures and Biosystems, Rome 00136, Italy
| |
Collapse
|
7
|
Gao Z, Guizar-Sicairos M, Lutz-Bueno V, Schröter A, Liebi M, Rudin M, Georgiadis M. High-speed tensor tomography: iterative reconstruction tensor tomography (IRTT) algorithm. Acta Crystallogr A Found Adv 2019; 75:223-238. [PMID: 30821257 PMCID: PMC6396401 DOI: 10.1107/s2053273318017394] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/08/2018] [Indexed: 11/10/2022] Open
Abstract
The recent advent of tensor tomography techniques has enabled tomographic investigations of the 3D nanostructure organization of biological and material science samples. These techniques extended the concept of conventional X-ray tomography by reconstructing not only a scalar value such as the attenuation coefficient per voxel, but also a set of parameters that capture the local anisotropy of nanostructures within every voxel of the sample. Tensor tomography data sets are intrinsically large as each pixel of a conventional X-ray projection is substituted by a scattering pattern, and projections have to be recorded at different sample angular orientations with several tilts of the rotation axis with respect to the X-ray propagation direction. Currently available reconstruction approaches for such large data sets are computationally expensive. Here, a novel, fast reconstruction algorithm, named iterative reconstruction tensor tomography (IRTT), is presented to simplify and accelerate tensor tomography reconstructions. IRTT is based on a second-rank tensor model to describe the anisotropy of the nanostructure in every voxel and on an iterative error backpropagation reconstruction algorithm to achieve high convergence speed. The feasibility and accuracy of IRTT are demonstrated by reconstructing the nanostructure anisotropy of three samples: a carbon fiber knot, a human bone trabecula specimen and a fixed mouse brain. Results and reconstruction speed were compared with those obtained by the small-angle scattering tensor tomography (SASTT) reconstruction method introduced by Liebi et al. [Nature (2015), 527, 349-352]. The principal orientation of the nanostructure within each voxel revealed a high level of agreement between the two methods. Yet, for identical data sets and computer hardware used, IRTT was shown to be more than an order of magnitude faster. IRTT was found to yield robust results, it does not require prior knowledge of the sample for initializing parameters, and can be used in cases where simple anisotropy metrics are sufficient, i.e. the tensor approximation adequately captures the level of anisotropy and the dominant orientation within a voxel. In addition, by greatly accelerating the reconstruction, IRTT is particularly suitable for handling large tomographic data sets of samples with internal structure or as a real-time analysis tool during the experiment for online feedback during data acquisition. Alternatively, the IRTT results might be used as an initial guess for models capturing a higher complexity of structural anisotropy such as spherical harmonics based SASTT in Liebi et al. (2015), improving both overall convergence speed and robustness of the reconstruction.
Collapse
Affiliation(s)
- Zirui Gao
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | | | | | - Aileen Schröter
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Marianne Liebi
- Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Chalmers University of Technology, Gothenburg, SE-412 96, Sweden
| | - Markus Rudin
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Marios Georgiadis
- Institute for Biomedical Engineering, ETH Zurich, Zurich, 8093, Switzerland
- New York University Medical Center, New York, NY 10016, USA
| |
Collapse
|
8
|
Bernhardt M, Nicolas JD, Osterhoff M, Mittelstädt H, Reuss M, Harke B, Wittmeier A, Sprung M, Köster S, Salditt T. Correlative microscopy approach for biology using X-ray holography, X-ray scanning diffraction and STED microscopy. Nat Commun 2018; 9:3641. [PMID: 30194418 PMCID: PMC6128893 DOI: 10.1038/s41467-018-05885-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
We present a correlative microscopy approach for biology based on holographic X-ray imaging, X-ray scanning diffraction, and stimulated emission depletion (STED) microscopy. All modalities are combined into the same synchrotron endstation. In this way, labeled and unlabeled structures in cells are visualized in a complementary manner. We map out the fluorescently labeled actin cytoskeleton in heart tissue cells and superimpose the data with phase maps from X-ray holography. Furthermore, an array of local far-field diffraction patterns is recorded in the regime of small-angle X-ray scattering (scanning SAXS), which can be interpreted in terms of biomolecular shape and spatial correlations of all contributing scattering constituents. We find that principal directions of anisotropic diffraction patterns coincide to a certain degree with the actin fiber directions and that actin stands out in the phase maps from holographic recordings. In situ STED recordings are proposed to formulate models for diffraction data based on co-localization constraints.
Collapse
Affiliation(s)
- M Bernhardt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - J-D Nicolas
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - M Osterhoff
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - H Mittelstädt
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077, Göttingen, Germany
| | - M Reuss
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077, Göttingen, Germany
| | - B Harke
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077, Göttingen, Germany
| | - A Wittmeier
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - M Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 47c, D-22607, Hamburg, Germany
| | - S Köster
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - T Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany.
| |
Collapse
|
9
|
Bini F, Pica A, Marinozzi A, Marinozzi F. 3D diffusion model within the collagen apatite porosity: An insight to the nanostructure of human trabecular bone. PLoS One 2017; 12:e0189041. [PMID: 29220377 PMCID: PMC5722326 DOI: 10.1371/journal.pone.0189041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 11/19/2017] [Indexed: 11/18/2022] Open
Abstract
Bone tissue at nanoscale is a composite mainly made of apatite crystals, collagen molecules and water. This work is aimed to study the diffusion within bone nanostructure through Monte-Carlo simulations. To this purpose, an idealized geometric model of the apatite-collagen structure was developed. Gaussian probability distribution functions were employed to design the orientation of the apatite crystals with respect to the axes (length L, width W and thickness T) of a plate-like trabecula. We performed numerical simulations considering the influence of the mineral arrangement on the effective diffusion coefficient of water. To represent the hindrance of the impermeable apatite crystals on the water diffusion process, the effective diffusion coefficient was scaled with the tortuosity, the constrictivity and the porosity factors of the structure. The diffusion phenomenon was investigated in the three main directions of the single trabecula and the introduction of apatite preferential orientation allowed the creation of an anisotropic medium. Thus, different diffusivities values were observed along the axes of the single trabecula. We found good agreement with previous experimental results computed by means of a genetic algorithm.
Collapse
Affiliation(s)
- Fabiano Bini
- Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, Rome, Italy
- * E-mail:
| | - Andrada Pica
- Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, Rome, Italy
| | - Andrea Marinozzi
- Orthopedy and Traumatology Area, “Campus Bio-Medico” University, Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|
10
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
11
|
Georgiadis M, Guizar-Sicairos M, Gschwend O, Hangartner P, Bunk O, Müller R, Schneider P. Ultrastructure Organization of Human Trabeculae Assessed by 3D sSAXS and Relation to Bone Microarchitecture. PLoS One 2016; 11:e0159838. [PMID: 27547973 PMCID: PMC4993496 DOI: 10.1371/journal.pone.0159838] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 07/08/2016] [Indexed: 01/27/2023] Open
Abstract
Although the organization of bone ultrastructure, i.e. the orientation and arrangement of the mineralized collagen fibrils, has been in the focus of research for many years for cortical bone, and many models on the osteonal arrangement have been proposed, limited attention has been paid to trabecular bone ultrastructure. This is surprising because trabeculae play a crucial role for the mechanical strength of several bone sites, including the vertebrae and the femoral head. On this account, we first validated a recently developed method (3D sSAXS or 3D scanning small-angle X-ray scattering) for investigating bone ultrastructure in a quantitative and spatially resolved way, using conventional linearly polarized light microscopy as a gold standard. While both methods are used to analyze thin tissue sections, in contrast to polarized light microscopy, 3D sSAXS has the important advantage that it provides 3D information on the orientation and arrangement of bone ultrastructure. In this first study of its kind, we used 3D sSAXS to investigate the ultrastructural organization of 22 vertebral trabeculae of different alignment, types and sizes, obtained from 4 subjects of different ages. Maps of ultrastructure orientation and arrangement of the trabeculae were retrieved by stacking information from consecutive 20-μm-thick bone sections. The organization of the ultrastructure was analyzed in relation to trabecular microarchitecture obtained from computed tomography and to relevant parameters such as distance to trabecular surface, local curvature or local bone mineralization. We found that (i) ultrastructure organization is similar for all investigated trabeculae independent of their particular characteristics, (ii) bone ultrastructure exhibiting a high degree of orientation was arranged in domains, (iii) highly oriented ultrastructural areas were located closer to the bone surface, (iv) the ultrastructure of the human trabecular bone specimens followed the microarchitecture, being oriented mostly parallel to bone surface, and (v) local surface curvature seems to have an effect on the ultrastructure organization. Further studies that investigate bone ultrastructure orientation and arrangement are needed in order to understand its organization and consequently its relation to bone biology and mechanics.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Bunk
- Paul Scherrer Institut (PSI), Villigen, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
X-ray Diffraction: A Powerful Technique for the Multiple-Length-Scale Structural Analysis of Nanomaterials. CRYSTALS 2016. [DOI: 10.3390/cryst6080087] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Tuchin VV. Polarized light interaction with tissues. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:71114. [PMID: 27121763 DOI: 10.1117/1.jbo.21.7.071114] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/22/2016] [Indexed: 05/02/2023]
Abstract
This tutorial-review introduces the fundamentals of polarized light interaction with biological tissues and presents some of the recent key polarization optical methods that have made possible the quantitative studies essential for biomedical diagnostics. Tissue structures and the corresponding models showing linear and circular birefringence, dichroism, and chirality are analyzed. As the basis for a quantitative description of the interaction of polarized light with tissues, the theory of polarization transfer in a random medium is used. This theory employs the modified transfer equation for Stokes parameters to predict the polarization properties of single- and multiple-scattered optical fields. The near-order of scatterers in tissues is accounted for to provide an adequate description of tissue polarization properties. Biomedical diagnostic techniques based on polarized light detection, including polarization imaging and spectroscopy, amplitude and intensity light scattering matrix measurements, and polarization-sensitive optical coherence tomography are described. Examples of biomedical applications of these techniques for early diagnostics of cataracts, detection of precancer, and prediction of skin disease are presented. The substantial reduction of light scattering multiplicity at tissue optical clearing that leads to a lesser influence of scattering on the measured intrinsic polarization properties of the tissue and allows for more precise quantification of these properties is demonstrated.
Collapse
Affiliation(s)
- Valery V Tuchin
- Saratov National Research State University, Research-Educational Institute of Optics and Biophotonics, 83 Astrakhanskaya street, Saratov 410012, RussiabInstitute of Precision Mechanics and Control of Russian Academy of Sciences, 24 Rabochaya street, Sarat
| |
Collapse
|
14
|
Siliqi D, De Caro L, Ladisa M, Scattarella F, Mazzone A, Altamura D, Sibillano T, Giannini C. SUNBIM: a package for X-ray imaging of nano- and biomaterials using SAXS, WAXS, GISAXS and GIWAXS techniques. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576716006932] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SUNBIM(supramolecular and submolecular nano- and biomaterials X-ray imaging) is a suite of integrated programs which, through a user-friendly graphical user interface, are optimized to perform the following: (i)q-scale calibration and two-dimensional → one-dimensional folding on small- and wide-angle X-ray scattering (SAXS/WAXS) and grazing-incidence SAXS/WAXS (GISAXS/GIWAXS) data, also including possible eccentricity corrections for WAXS/GIWAXS data; (ii) background evaluation and subtraction, denoising, and deconvolution of the primary beam angular divergence on SAXS/GISAXS profiles; (iii) indexing of two-dimensional GISAXS frames and extraction of one-dimensional GISAXS profiles along specific cuts; (iv) scanning microscopy in absorption and SAXS contrast. The latter includes collection of transmission and SAXS data, respectively, in a mesh across a mm2area, organization of the as-collected data into a single composite image of transmission values or two-dimensional SAXS frames, analysis of the composed data to derive the absorption map and/or the spatial distribution, and orientation of nanoscale structures over the scanned area.
Collapse
|
15
|
Skjønsfjell ET, Kringeland T, Granlund H, Høydalsvik K, Diaz A, Breiby DW. Retrieving the spatially resolved preferred orientation of embedded anisotropic particles by small-angle X-ray scattering tomography. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576716005574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Experimental nondestructive methods for probing the spatially varying arrangement and orientation of ultrastructures in hierarchical materials are in high demand. While conventional computed tomography (CT) is the method of choice for nondestructively imaging the interior of objects in three dimensions, it retrieves only scalar density fields. In addition to the traditional absorption contrast, other contrast mechanisms for image formation based on scattering and refraction are increasingly used in combination with CT methods, improving both the spatial resolution and the ability to distinguish materials of similar density. Being able to obtain vectorial information, like local growth directions and crystallite orientations, in addition to scalar density fields, is a longstanding scientific desire. In this work, it is demonstrated that, under certain conditions, the spatially varying preferred orientation of anisotropic particles embedded in a homogeneous matrix can be retrieved using CT with small-angle X-ray scattering as the contrast mechanism. Specifically, orientation maps of filler talc particles in injection-moulded isotactic polypropylene are obtained nondestructively under the key assumptions that the preferred orientation varies slowly in space and that the orientation of the flake-shaped talc particles is confined to a plane. It is expected that the method will find application inin situstudies of the mechanical deformation of composites and other materials with hierarchical structures over a range of length scales.
Collapse
|
16
|
Altamura D, Pastore SG, Raucci MG, Siliqi D, De Pascalis F, Nacucchi M, Ambrosio L, Giannini C. Scanning Small- and Wide-Angle X-ray Scattering Microscopy Selectively Probes HA Content in Gelatin/Hydroxyapatite Scaffolds for Osteochondral Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8728-8736. [PMID: 27020229 DOI: 10.1021/acsami.6b00557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study is aimed at investigating the structure of a scaffold made of bovine gelatin and hydroxyapatite for bone tissue engineering purposes. In particular, the detailed characterization of such a material has a great relevance because of its application in the healing process of the osteochondral defect that consists of a damage of cartilage and injury of the adjacent subchondral bone, significantly compromising millions of patient's quality of life. Two different techniques exploiting X-ray radiation, with table-top setups, are used: microtomography (micro-CT) and microdiffraction. Micro-CT characterizes the microstructure in the three dimensions at the micrometer scale spatial resolution, whereas microdiffraction provides combined structural/morphological information at the atomic and nanoscale, in two dimensional microscopy images with a hundred micrometer spatial resolution. The combination of these two techniques allowed an appropriate structural characterization for the purpose of validating the engineering approach used for the realization of the hydroxyapatite gradient across the scaffold, with properties close to the natural model.
Collapse
Affiliation(s)
- Davide Altamura
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Stella G Pastore
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Maria G Raucci
- Institute of Polymers, Composites, and Biomaterials (IPCB), National Research Council , Naples, Italy
| | - Dritan Siliqi
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| | - Fabio De Pascalis
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Brindisi 72100, Italy
| | - Michele Nacucchi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) , Brindisi 72100, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites, and Biomaterials (IPCB), National Research Council , Naples, Italy
- Department of Chemical Sciences and Materials Technology (DSCTM), National Research Council , Rome 000133, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council , Bari 70125, Italy
| |
Collapse
|
17
|
Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography. Nature 2015; 527:349-52. [PMID: 26581291 DOI: 10.1038/nature16056] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/29/2015] [Indexed: 11/09/2022]
Abstract
The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and allows, for example, the role of ultrastructure in the mechanical response of a biological tissue or manufactured material to be studied.
Collapse
|
18
|
Zimmermann EA, Ritchie RO. Bone as a Structural Material. Adv Healthc Mater 2015; 4:1287-304. [PMID: 25865873 DOI: 10.1002/adhm.201500070] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/12/2015] [Indexed: 01/02/2023]
Abstract
As one of the most important natural materials, cortical bone is a composite material comprising assemblies of tropocollagen molecules and nanoscale hydroxyapatite mineral crystals, forming an extremely tough, yet lightweight, adaptive and multi-functional material. Bone has evolved to provide structural support to organisms, and therefore its mechanical properties are vital physiologically. Like many mineralized tissues, bone can resist deformation and fracture from the nature of its hierarchical structure, which spans molecular to macroscopic length-scales. In fact, bone derives its fracture resistance with a multitude of deformation and toughening mechanisms that are active at most of these dimensions. It is shown that bone's strength and ductility originate primarily at the scale of the nano to submicrometer structure of its mineralized collagen fibrils and fibers, whereas bone toughness is additionally generated at much larger, micro- to near-millimeter, scales from crack-tip shielding associated with interactions between the crack path and the microstructure. It is further shown how the effectiveness with which bone's structural features can resist fracture at small to large length-scales can become degraded by biological factors such as aging and disease, which affect such features as the collagen cross-linking environment, the homogeneity of mineralization, and the density of the osteonal structures.
Collapse
Affiliation(s)
| | - Robert O. Ritchie
- Materials Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
- Department of Materials Science & Engineering; University of California; Berkeley CA 94720 USA
| |
Collapse
|
19
|
Zimmermann EA, Köhne T, Bale HA, Panganiban B, Gludovatz B, Zustin J, Hahn M, Amling M, Ritchie RO, Busse B. Modifications to nano- and microstructural quality and the effects on mechanical integrity in Paget's disease of bone. J Bone Miner Res 2015; 30:264-73. [PMID: 25112610 DOI: 10.1002/jbmr.2340] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/04/2014] [Accepted: 08/07/2014] [Indexed: 12/28/2022]
Abstract
Paget's disease of bone (PDB) is the second most common bone disease mostly developing after 50 years of age at one or more localized skeletal sites; it is associated with severely high bone turnover, bone enlargement, bowing/deformity, cracking, and pain. Here, to specifically address the origins of the deteriorated mechanical integrity, we use a cohort of control and PDB human biopsies to investigate multiscale architectural and compositional modifications to the bone structure (ie, bone quality) and relate these changes to mechanical property measurements to provide further insight into the clinical manifestations (ie, deformities and bowing) and fracture risk caused by PDB. Here, at the level of the collagen and mineral (ie, nanometer-length scale), we find a 19% lower mineral content and lower carbonate-to-phosphate ratio in PDB, which accounts for the 14% lower stiffness and 19% lower hardness promoting plastic deformation in pathological bone. At the microstructural scale, trabecular regions are known to become densified, whereas cortical bone loses its characteristic parallel-aligned osteonal pattern, which is replaced with a mosaic of lamellar and woven bone. Although we find this loss of anisotropic alignment produces a straighter crack path in mechanically-loaded PDB cases, cortical fracture toughness appears to be maintained due to increased plastic deformation. Clearly, the altered quality of the bone structure in PDB affects the mechanical integrity leading to complications such as bowing, deformities, and stable cracks called fissure fractures associated with this disease. Although the lower mineralization and loss of aligned Haversian structures do produce a lower modulus tissue, which is susceptible to deformities, our results indicate that the higher levels of plasticity may compensate for the lost microstructural features and maintain the resistance to crack growth.
Collapse
Affiliation(s)
- Elizabeth A Zimmermann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Georgiadis M, Guizar-Sicairos M, Zwahlen A, Trüssel AJ, Bunk O, Müller R, Schneider P. 3D scanning SAXS: a novel method for the assessment of bone ultrastructure orientation. Bone 2015; 71:42-52. [PMID: 25306893 DOI: 10.1016/j.bone.2014.10.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 09/27/2014] [Accepted: 10/03/2014] [Indexed: 11/23/2022]
Abstract
The arrangement and orientation of the ultrastructure plays an important role for the mechanical properties of inhomogeneous and anisotropic materials, such as polymers, wood, or bone. However, there is a lack of techniques to spatially resolve and quantify the material's ultrastructure orientation in a macroscopic context. In this study, a new method is presented, which allows deriving the ultrastructural 3D orientation in a quantitative and spatially resolved manner. The proposed 3D scanning small-angle X-ray scattering (3D sSAXS) method was demonstrated on a thin trabecular bone specimen of a human vertebra. A micro-focus X-ray beam from a synchrotron radiation source was used to raster scan the sample for different rotation angles. Furthermore, a mathematical framework was developed, validated and employed to describe the relation between the SAXS data for the different rotation angles and the local 3D orientation and degree of orientation (DO) of the bone ultrastructure. The resulting local 3D orientation was visualized by a 3D orientation map using vector fields. Finally, by applying the proposed 3D scanning SAXS method on consecutive bone sections, a 3D map of the local orientation of a complete trabecular element could be reconstructed for the first time. The obtained 3D orientation map provided information on the bone ultrastructure organization and revealed links between trabecular bone microarchitecture and local bone ultrastructure. More specifically, we observed that trabecular bone ultrastructure is organized in orientation domains of tens of micrometers in size. In addition, it was observed that domains with a high DO were more likely to be found near the surface of the trabecular structure, and domains with lower DO (or transition zones) were located in-between the domains with high DO. The method reproducibility was validated by comparing the results obtained when scanning the sample under different sample tilt angles. 3D orientation maps such as the ones created using 3D scanning SAXS will help to quantify and understand structure-function relationships between bone ultrastructure and bone mechanics. Beyond that, the proposed method can also be used in other research fields such as material sciences, with the aim to locally determine the 3D orientation of material components.
Collapse
Affiliation(s)
| | | | | | | | - Oliver Bunk
- Paul Scherrer Institut, Villigen PSI, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland; Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.
| |
Collapse
|
21
|
Sibillano T, De Caro L, Altamura D, Siliqi D, Ramella M, Boccafoschi F, Ciasca G, Campi G, Tirinato L, Di Fabrizio E, Giannini C. An optimized table-top small-angle X-ray scattering set-up for the nanoscale structural analysis of soft matter. Sci Rep 2014; 4:6985. [PMID: 25382272 PMCID: PMC4225548 DOI: 10.1038/srep06985] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/23/2014] [Indexed: 01/30/2023] Open
Abstract
The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.
Collapse
Affiliation(s)
- T. Sibillano
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - L. De Caro
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - D. Altamura
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - D. Siliqi
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| | - M. Ramella
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - F. Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - G. Ciasca
- Istituto di Fisica, Universitá Cattolica S. Cuore, L.go Francesco Vito 1 I-00168, Roma, Italy
| | - G. Campi
- Istituto di Cristallografia (IC-CNR), Via Salaria Km 29.300, 00015 Monterotondo, Roma, Italy
| | - L. Tirinato
- King Abdullah University of Science and Technology, PSE and BESE Divisions, Thuwal. 23955 -6900, Kingdom of Saudi Arabia
- BIONEMlab University Magna Graecia, Department of Clinical and Experimental Medicine, Viale Europa, 88100 Catanzaro, Italy
| | - E. Di Fabrizio
- King Abdullah University of Science and Technology, PSE and BESE Divisions, Thuwal. 23955 -6900, Kingdom of Saudi Arabia
- BIONEMlab University Magna Graecia, Department of Clinical and Experimental Medicine, Viale Europa, 88100 Catanzaro, Italy
| | - C. Giannini
- Istituto di Cristallografia (IC-CNR), via Amendola 122/O, I-70126 Bari, Italy
| |
Collapse
|
22
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Ladisa M, Lamura A, Laudadio T. Blind source separation and automatic tissue typing of microdiffraction data by hierarchical nonnegative matrix factorization. J Appl Crystallogr 2013. [DOI: 10.1107/s0021889813021729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
In this article a nonnegative blind source separation technique, known as nonnegative matrix factorization, is applied to microdiffraction data in order to extract characteristic patterns and to determine their spatial distribution in tissue typing problems occurring in bone-tissue engineering. In contrast to other blind source separation methods, nonnegative matrix factorization only requires nonnegative constraints on the extracted sources and corresponding weights, which makes it suitable for the analysis of data occurring in a variety of applications. In particular, here nonnegative matrix factorization is hierarchically applied to two-dimensional meshes of X-ray diffraction data measured in bone samples with implanted tissue. Such data are characterized by nonnegative profiles and their analysis provides significant information about the structure of possibly new deposited bone tissue. A simulation and real data studies show that the proposed method is able to retrieve the patterns of interest and to provide a reliable and accurate segmentation of the given X-ray diffraction data.
Collapse
|
24
|
De Caro L, Altamura D, Sibillano T, Siliqi D, Filograsso G, Bunk O, Giannini C. Rat-tail tendon fiber SAXS high-order diffraction peaks recovered by a superbright laboratory source and a novel restoration algorithm. J Appl Crystallogr 2013. [DOI: 10.1107/s002188981300770x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The nanoscale structural order of air-dried rat-tail tendon is investigated using small-angle X-ray scattering (SAXS). SAXS fiber diffraction patterns were collected with a superbright laboratory microsource at XMI-LAB [Altamura, Lassandro, Vittoria, De Caro, Siliqi, Ladisa & Giannini (2012).J. Appl. Cryst.45, 869–873] for increasing integration times (up to 10 h) and a novel algorithm was used to estimate and subtract background, and to deconvolve the beam-divergence effects. Once the algorithm is applied, the peak visibility improves considerably and reciprocal space information up to the 22nd diffraction order is retrieved (q= 0.21 Å−1,d= 29 Å) for an 8–10 h integration time. The gain in the visibility is already significant for patterns collected for 0.5 h, at least on the more intense peaks. This demonstrates the viability of detecting structural changes on a molecular/nanoscale level in tissues with state-of-the-art laboratory sources and also the technical feasibility to adopt SAXS fiber diffraction as a future potential clinical indicator for disease.
Collapse
|