1
|
Tang Q, Li L, Wang Y, Wu P, Hou X, Ouyang J, Fan C, Li Z, Wang F, Guo C, Zhou M, Liao Q, Wang H, Xiang B, Jiang W, Li G, Zeng Z, Xiong W. RNA modifications in cancer. Br J Cancer 2023; 129:204-221. [PMID: 37095185 PMCID: PMC10338518 DOI: 10.1038/s41416-023-02275-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
Currently, more than 170 modifications have been identified on RNA. Among these RNA modifications, various methylations account for two-thirds of total cases and exist on almost all RNAs. Roles of RNA modifications in cancer are garnering increasing interest. The research on m6A RNA methylation in cancer is in full swing at present. However, there are still many other popular RNA modifications involved in the regulation of gene expression post-transcriptionally besides m6A RNA methylation. In this review, we focus on several important RNA modifications including m1A, m5C, m7G, 2'-O-Me, Ψ and A-to-I editing in cancer, which will provide a new perspective on tumourigenesis by peeking into the complex regulatory network of epigenetic RNA modifications, transcript processing, and protein translation.
Collapse
Affiliation(s)
- Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Xiangchan Hou
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Jiawei Ouyang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zheng Li
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Hui Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
2
|
snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Dis 2022; 8:259. [PMID: 35552378 PMCID: PMC9098889 DOI: 10.1038/s41420-022-01056-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
Abstract
Small nucleolar RNAs (snoRNAs), a type of non-coding RNA, are widely present in the nucleoli of eukaryotic cells and play an important role in rRNA modification. With the recent increase in research on snoRNAs, new evidence has emerged indicating that snoRNAs also participate in tRNA and mRNA modification. Studies suggest that numerous snoRNAs, including tumor-promoting and tumor-suppressing snoRNAs, are not only dysregulated in tumors but also show associations with clinical prognosis. In this review, we summarize the reported functions of snoRNAs and the possible mechanisms underlying their role in tumorigenesis and cancer development to guide the snoRNA-based clinical diagnosis and treatment of cancer in the future.
Collapse
|
3
|
Schmidt A, Hanspach G, Hengesbach M. Structural dynamics govern substrate recruitment and catalytic turnover in H/ACA RNP pseudouridylation. RNA Biol 2021; 18:1300-1309. [PMID: 33111609 PMCID: PMC8354600 DOI: 10.1080/15476286.2020.1842984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 01/17/2023] Open
Abstract
H/ACA ribonucleoproteins catalyse the sequence-dependent pseudouridylation of ribosomal and spliceosomal RNAs. Here, we reconstitute site-specifically fluorophore labelled H/ACA complexes and analyse their structural dynamics using single-molecule FRET spectroscopy. Our results show that the guide RNA is distorted into a substrate-binding competent conformation by specific protein interactions. Analysis of the reaction pathway using atomic mutagenesis establishes a new model how individual protein domains contribute to catalysis. Taken together, these results identify and characterize individual roles for all accessory proteins on the assembly and function of H/ACA RNPs.
Collapse
Affiliation(s)
- Andreas Schmidt
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Hanspach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Czekay DP, Kothe U. H/ACA Small Ribonucleoproteins: Structural and Functional Comparison Between Archaea and Eukaryotes. Front Microbiol 2021; 12:654370. [PMID: 33776984 PMCID: PMC7991803 DOI: 10.3389/fmicb.2021.654370] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/18/2021] [Indexed: 01/04/2023] Open
Abstract
During ribosome synthesis, ribosomal RNA is modified through the formation of many pseudouridines and methylations which contribute to ribosome function across all domains of life. In archaea and eukaryotes, pseudouridylation of rRNA is catalyzed by H/ACA small ribonucleoproteins (sRNPs) utilizing different H/ACA guide RNAs to identify target uridines for modification. H/ACA sRNPs are conserved in archaea and eukaryotes, as they share a common general architecture and function, but there are also several notable differences between archaeal and eukaryotic H/ACA sRNPs. Due to the higher protein stability in archaea, we have more information on the structure of archaeal H/ACA sRNPs compared to eukaryotic counterparts. However, based on the long history of yeast genetic and other cellular studies, the biological role of H/ACA sRNPs during ribosome biogenesis is better understood in eukaryotes than archaea. Therefore, this review provides an overview of the current knowledge on H/ACA sRNPs from archaea, in particular their structure and function, and relates it to our understanding of the roles of eukaryotic H/ACA sRNP during eukaryotic ribosome synthesis and beyond. Based on this comparison of our current insights into archaeal and eukaryotic H/ACA sRNPs, we discuss what role archaeal H/ACA sRNPs may play in the formation of ribosomes.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
5
|
Post-Transcriptional Modifications of Conserved Nucleotides in the T-Loop of tRNA: A Tale of Functional Convergent Evolution. Genes (Basel) 2021; 12:genes12020140. [PMID: 33499018 PMCID: PMC7912444 DOI: 10.3390/genes12020140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
The high conservation of nucleotides of the T-loop, including their chemical identity, are hallmarks of tRNAs from organisms belonging to the three Domains of Life. These structural characteristics allow the T-loop to adopt a peculiar intraloop conformation able to interact specifically with other conserved residues of the D-loop, which ultimately folds the mature tRNA in a unique functional canonical L-shaped architecture. Paradoxically, despite the high conservation of modified nucleotides in the T-loop, enzymes catalyzing their formation depend mostly on the considered organism, attesting for an independent but convergent evolution of the post-transcriptional modification processes. The driving force behind this is the preservation of a native conformation of the tRNA elbow that underlies the various interactions of tRNA molecules with different cellular components.
Collapse
|
6
|
Czekay DP, Schultz SK, Kothe U. Assaying the Molecular Determinants and Kinetics of RNA Pseudouridylation by H/ACA snoRNPs and Stand-Alone Pseudouridine Synthases. Methods Mol Biol 2021; 2298:357-378. [PMID: 34085255 DOI: 10.1007/978-1-0716-1374-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Posttranscriptional modifications of RNA play an important role in promoting the maturation and functional diversity of many RNA species. Accordingly, understanding the enzymes and mechanisms that underlie RNA modifications is an important aspect in advancing our knowledge of the continually expanding RNA modification field. However, of the more than 160 currently identified RNA modifications, a large portion remains without quantitative detection assays for their biochemical characterization. Here, we describe the tritium release assay as a convenient tool allowing for the quantitative assessment of in vitro RNA pseudouridylation by stand-alone or box H/ACA RNA-guided pseudouridine synthases. This assay enables quantification of RNA pseudouridylation over a time course to effectively compare pseudouridylation activity between different substrates and/or different recombinant enzymes as well as to determine kinetic parameters. With the help of a quench-flow apparatus, the tritium release assay can be adapted for rapid kinetic measurements under single-turnover conditions to dissect reaction mechanisms. As examples, we show the formation of pseudouridines by a reconstituted Saccharomyces cerevisiae H/ACA small ribonucleoprotein (snoRNP) and an Escherichia coli stand-alone pseudouridine synthase.
Collapse
Affiliation(s)
- Dominic P Czekay
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Sarah K Schultz
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada
| | - Ute Kothe
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
7
|
Distinct Modified Nucleosides in tRNA Trp from the Hyperthermophilic Archaeon Thermococcus kodakarensis and Requirement of tRNA m 2G10/m 2 2G10 Methyltransferase (Archaeal Trm11) for Survival at High Temperatures. J Bacteriol 2019; 201:JB.00448-19. [PMID: 31405913 DOI: 10.1128/jb.00448-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
tRNA m2G10/m2 2G10 methyltransferase (archaeal Trm11) methylates the 2-amino group in guanosine at position 10 in tRNA and forms N 2,N 2-dimethylguanosine (m2 2G10) via N 2-methylguanosine (m2G10). We determined the complete sequence of tRNATrp, one of the substrate tRNAs for archaeal Trm11 from Thermococcus kodakarensis, a hyperthermophilic archaeon. Liquid chromatography/mass spectrometry following enzymatic digestion of tRNATrp identified 15 types of modified nucleoside at 21 positions. Several modifications were found at novel positions in tRNA, including 2'-O-methylcytidine at position 6, 2-thiocytidine at position 17, 2'-O-methyluridine at position 20, 5,2'-O-dimethylcytidine at position 32, and 2'-O-methylguanosine at position 42. Furthermore, methylwyosine was found at position 37 in this tRNATrp, although 1-methylguanosine is generally found at this location in tRNATrp from other archaea. We constructed trm11 (Δtrm11) and some gene disruptant strains and compared their tRNATrp with that of the wild-type strain, which confirmed the absence of m2 2G10 and other corresponding modifications, respectively. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this methylation is mediated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures. The m2 2G10 modification might have effects on stabilization of tRNA and/or correct folding of tRNA at the high temperatures. Collectively, these results provide new clues to the function of modifications and the substrate specificities of modification enzymes in archaeal tRNA, enabling us to propose a strategy for tRNA stabilization of this archaeon at high temperatures.IMPORTANCE Thermococcus kodakarensis is a hyperthermophilic archaeon that can grow at 60 to 100°C. The sequence of tRNATrp from this archaeon was determined by liquid chromatography/mass spectrometry. Fifteen types of modified nucleoside were observed at 21 positions, including 5 modifications at novel positions; in addition, methylwyosine at position 37 was newly observed in an archaeal tRNATrp The construction of trm11 (Δtrm11) and other gene disruptant strains confirmed the enzymes responsible for modifications in this tRNA. The lack of 2-methylguanosine (m2G) at position 67 in the trm11 trm14 double disruptant strain suggested that this position is methylated by Trm14, which was previously identified as an m2G6 methyltransferase. The Δtrm11 strain grew poorly at 95°C, indicating that archaeal Trm11 is required for T. kodakarensis survival at high temperatures.
Collapse
|
8
|
tRNA Modification Profiles and Codon-Decoding Strategies in Methanocaldococcus jannaschii. J Bacteriol 2019; 201:JB.00690-18. [PMID: 30745370 DOI: 10.1128/jb.00690-18] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
tRNAs play a critical role in mRNA decoding, and posttranscriptional modifications within tRNAs drive decoding efficiency and accuracy. The types and positions of tRNA modifications in model bacteria have been extensively studied, and tRNA modifications in a few eukaryotic organisms have also been characterized and localized to particular tRNA sequences. However, far less is known regarding tRNA modifications in archaea. While the identities of modifications have been determined for multiple archaeal organisms, Haloferax volcanii is the only organism for which modifications have been extensively localized to specific tRNA sequences. To improve our understanding of archaeal tRNA modification patterns and codon-decoding strategies, we have used liquid chromatography and tandem mass spectrometry to characterize and then map posttranscriptional modifications on 34 of the 35 unique tRNA sequences of Methanocaldococcus jannaschii A new posttranscriptionally modified nucleoside, 5-cyanomethyl-2-thiouridine (cnm5s2U), was discovered and localized to position 34. Moreover, data consistent with wyosine pathway modifications were obtained beyond the canonical tRNAPhe as is typical for eukaryotes. The high-quality mapping of tRNA anticodon loops enriches our understanding of archaeal tRNA modification profiles and decoding strategies.IMPORTANCE While many posttranscriptional modifications in M. jannaschii tRNAs are also found in bacteria and eukaryotes, several that are unique to archaea were identified. By RNA modification mapping, the modification profiles of M. jannaschii tRNA anticodon loops were characterized, allowing a comparative analysis with H. volcanii modification profiles as well as a general comparison with bacterial and eukaryotic decoding strategies. This general comparison reveals that M. jannaschii, like H. volcanii, follows codon-decoding strategies similar to those used by bacteria, although position 37 appears to be modified to a greater extent than seen in H. volcanii.
Collapse
|
9
|
Deogharia M, Mukhopadhyay S, Joardar A, Gupta R. The human ortholog of archaeal Pus10 produces pseudouridine 54 in select tRNAs where its recognition sequence contains a modified residue. RNA (NEW YORK, N.Y.) 2019; 25:336-351. [PMID: 30530625 PMCID: PMC6380271 DOI: 10.1261/rna.068114.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/06/2018] [Indexed: 05/25/2023]
Abstract
The nearly conserved U54 of tRNA is mostly converted to a version of ribothymidine (T) in Bacteria and eukaryotes and to a version of pseudouridine (Ψ) in Archaea. Conserved U55 is nearly always modified to Ψ55 in all organisms. Orthologs of TrmA and TruB that produce T54 and Ψ55, respectively, in Bacteria and eukaryotes are absent in Archaea. Pus10 produces both Ψ54 and Ψ55 in Archaea. Pus10 orthologs are found in nearly all sequenced archaeal and most eukaryal genomes, but not in yeast and bacteria. This coincides with the presence of Ψ54 in most archaeal tRNAs and some animal tRNAs, but its absence from yeast and bacteria. Moreover, Ψ54 is found in several tRNAs that function as primers for retroviral DNA synthesis. Previously, no eukaryotic tRNA Ψ54 synthase had been identified. We show here that human Pus10 can produce Ψ54 in select tRNAs, including tRNALys3, the primer for HIV reverse transcriptase. This synthase activity of Pus10 is restricted to the cytoplasm and is distinct from nuclear Pus10, which is known to be involved in apoptosis. The sequence GUUCAm1AAUC (m1A is 1-methyladenosine) at position 53-61 of tRNA along with a stable acceptor stem results in maximum Ψ54 synthase activity. This recognition sequence is unique for a Ψ synthase in that it contains another modification. In addition to Ψ54, SF9 cells-derived recombinant human Pus10 can also generate Ψ55, even in tRNAs that do not contain the Ψ54 synthase recognition sequence. This activity may be redundant with that of TruB.
Collapse
Affiliation(s)
- Manisha Deogharia
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Shaoni Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Archi Joardar
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
10
|
Hori H, Kawamura T, Awai T, Ochi A, Yamagami R, Tomikawa C, Hirata A. Transfer RNA Modification Enzymes from Thermophiles and Their Modified Nucleosides in tRNA. Microorganisms 2018; 6:E110. [PMID: 30347855 PMCID: PMC6313347 DOI: 10.3390/microorganisms6040110] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
To date, numerous modified nucleosides in tRNA as well as tRNA modification enzymes have been identified not only in thermophiles but also in mesophiles. Because most modified nucleosides in tRNA from thermophiles are common to those in tRNA from mesophiles, they are considered to work essentially in steps of protein synthesis at high temperatures. At high temperatures, the structure of unmodified tRNA will be disrupted. Therefore, thermophiles must possess strategies to stabilize tRNA structures. To this end, several thermophile-specific modified nucleosides in tRNA have been identified. Other factors such as RNA-binding proteins and polyamines contribute to the stability of tRNA at high temperatures. Thermus thermophilus, which is an extreme-thermophilic eubacterium, can adapt its protein synthesis system in response to temperature changes via the network of modified nucleosides in tRNA and tRNA modification enzymes. Notably, tRNA modification enzymes from thermophiles are very stable. Therefore, they have been utilized for biochemical and structural studies. In the future, thermostable tRNA modification enzymes may be useful as biotechnology tools and may be utilized for medical science.
Collapse
Affiliation(s)
- Hiroyuki Hori
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takuya Kawamura
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Takako Awai
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Anna Ochi
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Ryota Yamagami
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Chie Tomikawa
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| | - Akira Hirata
- Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
11
|
Fujikane R, Behm-Ansmant I, Tillault AS, Loegler C, Igel-Bourguignon V, Marguet E, Forterre P, Branlant C, Motorin Y, Charpentier B. Contribution of protein Gar1 to the RNA-guided and RNA-independent rRNA:Ψ-synthase activities of the archaeal Cbf5 protein. Sci Rep 2018; 8:13815. [PMID: 30218085 PMCID: PMC6138745 DOI: 10.1038/s41598-018-32164-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023] Open
Abstract
Archaeal RNA:pseudouridine-synthase (PUS) Cbf5 in complex with proteins L7Ae, Nop10 and Gar1, and guide box H/ACA sRNAs forms ribonucleoprotein (RNP) catalysts that insure the conversion of uridines into pseudouridines (Ψs) in ribosomal RNAs (rRNAs). Nonetheless, in the absence of guide RNA, Cbf5 catalyzes the in vitro formation of Ψ2603 in Pyrococcus abyssi 23S rRNA and of Ψ55 in tRNAs. Using gene-disrupted strains of the hyperthermophilic archaeon Thermococcus kodakarensis, we studied the in vivo contribution of proteins Nop10 and Gar1 to the dual RNA guide-dependent and RNA-independent activities of Cbf5 on 23S rRNA. The single-null mutants of the cbf5, nop10, and gar1 genes are viable, but display a thermosensitive slow growth phenotype. We also generated a single-null mutant of the gene encoding Pus10, which has redundant activity with Cbf5 for in vitro formation of Ψ55 in tRNA. Analysis of the presence of Ψs within the rRNA peptidyl transferase center (PTC) of the mutants demonstrated that Cbf5 but not Pus10 is required for rRNA modification. Our data reveal that, in contrast to Nop10, Gar1 is crucial for in vivo and in vitro RNA guide-independent formation of Ψ2607 (Ψ2603 in P. abyssi) by Cbf5. Furthermore, our data indicate that pseudouridylation at orphan position 2589 (2585 in P. abyssi), for which no PUS or guide sRNA has been identified so far, relies on RNA- and Gar1-dependent activity of Cbf5.
Collapse
Affiliation(s)
- Ryosuke Fujikane
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
- Fukuoka Dental College, Department of Physiological Sciences and Molecular Biology, Section of Cellular and Molecular Regulation, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Isabelle Behm-Ansmant
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Anne-Sophie Tillault
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Christine Loegler
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Valérie Igel-Bourguignon
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Evelyne Marguet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France
- Institut Pasteur, Département de Microbiologie, 25 rue du Dr Roux, F-7505, Paris, France
| | - Christiane Branlant
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France
- Université de Lorraine, CNRS, INSERM, UMS2008 IBSLor, F-54500, Nancy, France
| | - Bruno Charpentier
- Université de Lorraine, CNRS, UMR 7365 Ingénierie Moléculaire et Physiopathologie Articulaire (IMoPA), F-54500, Nancy, France.
| |
Collapse
|
12
|
Tillault AS, Schultz SK, Wieden HJ, Kothe U. Molecular Determinants for 23S rRNA Recognition and Modification by the E. coli Pseudouridine Synthase RluE. J Mol Biol 2018; 430:1284-1294. [PMID: 29555553 DOI: 10.1016/j.jmb.2018.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/25/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
The isomerization of uridine to pseudouridine is the most common type of RNA modification found in RNAs across all domains of life and is performed by RNA-dependent and RNA-independent enzymes. The Escherichia coli pseudouridine synthase RluE acts as a stand-alone, highly specific enzyme forming the universally conserved pseudouridine at position 2457, located in helix 89 (H89) of the 23S rRNA in the peptidyltransferase center. Here, we conduct a detailed structure-function analysis to determine the structural elements both in RluE and in 23S rRNA required for RNA-protein interaction and pseudouridine formation. We determined that RluE recognizes a large part of 23S rRNA comprising both H89 and the single-stranded flanking regions which explains the high substrate specificity of RluE. Within RluE, the target RNA is recognized through sequence-specific contacts with loop L7-8 as well as interactions with loop L1-2 and the flexible N-terminal region. We demonstrate that RluE is a faster pseudouridine synthase than other enzymes which likely enables it to act in the early stages of ribosome formation. In summary, our biochemical characterization of RluE provides detailed insight into the molecular mechanism of RluE forming a highly conserved pseudouridine during ribosome biogenesis.
Collapse
Affiliation(s)
- Anne-Sophie Tillault
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Sarah K Schultz
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
13
|
Caton EA, Kelly EK, Kamalampeta R, Kothe U. Efficient RNA pseudouridylation by eukaryotic H/ACA ribonucleoproteins requires high affinity binding and correct positioning of guide RNA. Nucleic Acids Res 2018; 46:905-916. [PMID: 29177505 PMCID: PMC5778458 DOI: 10.1093/nar/gkx1167] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022] Open
Abstract
H/ACA ribonucleoproteins (H/ACA RNPs) are responsible for introducing many pseudouridines into RNAs, but are also involved in other cellular functions. Utilizing a purified and reconstituted yeast H/ACA RNP system that is active in pseudouridine formation under physiological conditions, we describe here the quantitative characterization of H/ACA RNP formation and function. This analysis reveals a surprisingly tight interaction of H/ACA guide RNA with the Cbf5p-Nop10p-Gar1p trimeric protein complex whereas Nhp2p binds comparably weakly to H/ACA guide RNA. Substrate RNA is bound to H/ACA RNPs with nanomolar affinity which correlates with the GC content in the guide-substrate RNA base pairing. Both Nhp2p and the conserved Box ACA element in guide RNA are required for efficient pseudouridine formation, but not for guide RNA or substrate RNA binding. These results suggest that Nhp2p and the Box ACA motif indirectly facilitate loading of the substrate RNA in the catalytic site of Cbf5p by correctly positioning the upper and lower parts of the H/ACA guide RNA on the H/ACA proteins. In summary, this study provides detailed insight into the molecular mechanism of H/ACA RNPs.
Collapse
Affiliation(s)
- Evan A Caton
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Erin K Kelly
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Rajashekhar Kamalampeta
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
14
|
Cao T, Rajasingh S, Samanta S, Dawn B, Bittel DC, Rajasingh J. Biology and clinical relevance of noncoding sno/scaRNAs. Trends Cardiovasc Med 2017; 28:81-90. [PMID: 28869095 DOI: 10.1016/j.tcm.2017.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022]
Abstract
Small nucleolar RNAs (snoRNAs) are a group of noncoding RNAs that perform various biological functions, including biochemical modifications of other RNAs, precursors of miRNA, splicing, and telomerase activity. The small Cajal body-associated RNAs (scaRNAs) are a subset of the snoRNA family and collect in the Cajal body where they perform their canonical function to biochemically modify spliceosomal RNAs prior to maturation. Failure of sno/scaRNAs have been implicated in pathology such as congenital heart anomalies, neuromuscular disorders, and various malignancies. Thus, understanding of sno/scaRNAs demonstrates the clinical value.
Collapse
Affiliation(s)
- Thuy Cao
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Sheeja Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Saheli Samanta
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS
| | | | - Johnson Rajasingh
- Division of Cardiovascular Diseases, Department of Internal Medicine, Cardiovascular Research Institute, Kansas City, KS; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS.
| |
Collapse
|
15
|
Abstract
Cellular RNAs are chemically modified by many RNA modification enzymes; however, often the functions of modifications remain unclear, such as for pseudouridine formation in the tRNA TΨC arm by the bacterial tRNA pseudouridine synthase TruB. Here we test the hypothesis that RNA modification enzymes also act as RNA chaperones. Using TruB as a model, we demonstrate that TruB folds tRNA independent of its catalytic activity, thus increasing the fraction of tRNA that can be aminoacylated. By rapid kinetic stopped-flow analysis, we identified the molecular mechanism of TruB's RNA chaperone activity: TruB binds and unfolds both misfolded and folded tRNAs thereby providing misfolded tRNAs a second chance at folding. Previously, it has been shown that a catalytically inactive TruB variant has no phenotype when expressed in an Escherichia coli truB KO strain [Gutgsell N, et al. (2000) RNA 6(12):1870-1881]. However, here we uncover that E. coli strains expressing a TruB variant impaired in tRNA binding and in in vitro tRNA folding cannot compete with WT E. coli. Consequently, the tRNA chaperone activity of TruB is critical for bacterial fitness. In conclusion, we prove the tRNA chaperone activity of the pseudouridine synthase TruB, reveal its molecular mechanism, and demonstrate its importance for cellular fitness. We discuss the likelihood that other RNA modification enzymes are also RNA chaperones.
Collapse
|
16
|
Majumder M, Bosmeny MS, Gupta R. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation. RNA (NEW YORK, N.Y.) 2016; 22:1604-1619. [PMID: 27539785 PMCID: PMC5029457 DOI: 10.1261/rna.057547.116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/25/2016] [Indexed: 05/31/2023]
Abstract
In Eukarya and Archaea, in addition to protein-only pseudouridine (Ψ) synthases, complexes containing one guide RNA and four proteins can also produce Ψ. Cbf5 protein is the Ψ synthase in the complex. Previously, we showed that Ψ's at positions 1940, 1942, and 2605 of Haloferax volcanii 23S rRNA are absent in a cbf5-deleted strain, and a plasmid-borne copy of cbf5 can rescue the synthesis of these Ψ's. Based on published reports of the structure of archaeal Cbf5 complexed with other proteins and RNAs, we identified several potential residues and structures in H. volcanii Cbf5, which were expected to play important roles in pseudouridylation. We mutated these structures and determined their effects on Ψ production at the three rRNA positions under in vivo conditions. Mutations of several residues in the catalytic domain and certain residues in the thumb loop either abolished Ψ's or produced partial modification; the latter indicates a slower rate of Ψ formation. The universal catalytic aspartate of Ψ synthases could be replaced by glutamate in Cbf5. A conserved histidine, which is common to Cbf5 and TruB is not needed, but another conserved histidine of Cbf5 is required for the in vivo RNA-guided Ψ formation. We also identified a previously unreported novelty in the pseudouridylation activity of Cbf5 where a single stem-loop of a guide H/ACA RNA is used to produce two closely placed Ψ's and mutations of certain residues of Cbf5 abolished one of these two Ψ's. In summary, this first in vivo study identifies several structures of an archaeal Cbf5 protein that are important for its RNA-guided pseudouridylation activity.
Collapse
Affiliation(s)
- Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Michael S Bosmeny
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
17
|
Toffano-Nioche C, Gautheret D, Leclerc F. Revisiting the structure/function relationships of H/ACA(-like) RNAs: a unified model for Euryarchaea and Crenarchaea. Nucleic Acids Res 2015; 43:7744-61. [PMID: 26240384 PMCID: PMC4652768 DOI: 10.1093/nar/gkv756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/22/2023] Open
Abstract
A structural and functional classification of H/ACA and H/ACA-like motifs is obtained from the analysis of the H/ACA guide RNAs which have been identified previously in the genomes of Euryarchaea (Pyrococcus) and Crenarchaea (Pyrobaculum). A unified structure/function model is proposed based on the common structural determinants shared by H/ACA and H/ACA-like motifs in both Euryarchaea and Crenarchaea. Using a computational approach, structural and energetic rules for the guide:target RNA-RNA interactions are derived from structural and functional data on the H/ACA RNP particles. H/ACA(-like) motifs found in Pyrococcus are evaluated through the classification and their biological relevance is discussed. Extra-ribosomal targets found in both Pyrococcus and Pyrobaculum might support the hypothesis of a gene regulation mediated by H/ACA(-like) guide RNAs in archaea.
Collapse
Affiliation(s)
- Claire Toffano-Nioche
- I2BC, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| | - Daniel Gautheret
- I2BC, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| | - Fabrice Leclerc
- I2BC, Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris Sud, 1 avenue de la terrasse, 91198 Gif sur Yvette, France
| |
Collapse
|
18
|
Wang P, Yang L, Gao YQ, Zhao XS. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation. Nucleic Acids Res 2015. [PMID: 26206671 PMCID: PMC4551948 DOI: 10.1093/nar/gkv757] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
H/ACA RNA-guided ribonucleoprotein particle (RNP), the most complicated RNA pseudouridylase so far known, uses H/ACA guide RNA for substrate capture and four proteins (Cbf5, Nop10, L7Ae and Gar1) for pseudouridylation. Although it was shown that Gar1 not only facilitates the product release, but also enhances the catalytic activity, the chemical role that Gar1 plays in this complicated machinery is largely unknown. Kinetics measurement on Pyrococcus furiosus RNPs at different temperatures making use of fluorescence anisotropy showed that Gar1 reduces the catalytic barrier through affecting the activation entropy instead of enthalpy. Site-directed mutagenesis combined with molecular dynamics simulations demonstrated that V149 in the thumb loop of Cbf5 is critical in placing the target uridine to the right position toward catalytic D85 of Cbf5. The enzyme elegantly aligns the position of uridine in the catalytic site with the help of Gar1. In addition, conversion of uridine to pseudouridine results in a rigid syn configuration of the target nucleotide in the active site and causes Gar1 to pull out the thumb. Both factors guarantee the efficient release of the product.
Collapse
Affiliation(s)
- Peng Wang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Lijiang Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yi Qin Gao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| | - Xin Sheng Zhao
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, and Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Tillault AS, Fourmann JB, Loegler C, Wieden HJ, Kothe U, Charpentier B. Contribution of two conserved histidines to the dual activity of archaeal RNA guide-dependent and -independent pseudouridine synthase Cbf5. RNA (NEW YORK, N.Y.) 2015; 21:1233-1239. [PMID: 25990001 PMCID: PMC4478342 DOI: 10.1261/rna.051425.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/09/2015] [Indexed: 06/01/2023]
Abstract
In all organisms, several distinct stand-alone pseudouridine synthase (PUS) family enzymes are expressed to isomerize uridine into pseudouridine (Ψ) by specific recognition of RNAs. In addition, Ψs are generated in Archaea and Eukaryotes by PUS enzymes which are organized as ribonucleoprotein particles (RNP)--the box H/ACA s/snoRNPs. For this modification system, a unique TruB-like catalytic PUS subunit is associated with various RNA guides which specifically target and secure substrate RNAs by base-pairing. The archaeal Cbf5 PUS displays the special feature of exhibiting both RNA guide-dependent and -independent activities. Structures of substrate-bound TruB and H/ACA sRNP revealed the importance of histidines in positioning the target uridine in the active site. To analyze the respective role of H60 and H77, we have generated variants carrying alanine substitutions at these positions. The impact of the mutations was analyzed for unguided modifications U(55) in tRNA and U2603 in 23S rRNA, and for activity of the box H/ACA Pab91 sRNP enzyme. H77 (H43 in TruB), but not H60, appeared to be crucial for the RNA guide-independent activity. In contrast to earlier suggestions, H60 was found to be noncritical for the activity of the H/ACA sRNP, but contributes together with H77 to the full activity of H/ACA sRNPs. The data suggest that a similar catalytic process was conserved in the two divergent pseudouridylation systems.
Collapse
Affiliation(s)
- Anne-Sophie Tillault
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| | - Jean-Baptiste Fourmann
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| | - Christine Loegler
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Ute Kothe
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
| | - Bruno Charpentier
- Laboratoire Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS Université de Lorraine, Biopôle de l'Université de Lorraine, Campus Biologie Santé, 54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
20
|
Spenkuch F, Motorin Y, Helm M. Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol 2014; 11:1540-54. [PMID: 25616362 PMCID: PMC4615568 DOI: 10.4161/15476286.2014.992278] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/23/2014] [Accepted: 10/10/2014] [Indexed: 01/15/2023] Open
Abstract
Pseudouridine (Ψ) is the most abundant of >150 nucleoside modifications in RNA. Although Ψ was discovered as the first modified nucleoside more than half a century ago, neither the enzymatic mechanism of its formation, nor the function of this modification are fully elucidated. We present the consistent picture of Ψ synthases, their substrates and their substrate positions in model organisms of all domains of life as it has emerged to date and point out the challenges that remain concerning higher eukaryotes and the elucidation of the enzymatic mechanism.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Humans
- Intramolecular Transferases/genetics
- Intramolecular Transferases/metabolism
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Nucleic Acid Conformation
- Pseudouridine/metabolism
- RNA/genetics
- RNA/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Mitochondrial
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/genetics
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Uridine/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Felix Spenkuch
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz; Mainz, Germany
| | - Yuri Motorin
- Laboratoire IMoPA; Ingénierie Moléculaire et Physiopathologie Articulaire; BioPôle de l'Université de Lorraine; Campus Biologie-Santé; Faculté de Médecine; Vandoeuvre-les-Nancy Cedex, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry; Johannes Gutenberg-University of Mainz; Mainz, Germany
| |
Collapse
|
21
|
Joardar A, Jana S, Fitzek E, Gurha P, Majumder M, Chatterjee K, Geisler M, Gupta R. Role of forefinger and thumb loops in production of Ψ54 and Ψ55 in tRNAs by archaeal Pus10. RNA (NEW YORK, N.Y.) 2013; 19:1279-94. [PMID: 23898217 PMCID: PMC3753934 DOI: 10.1261/rna.039230.113] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/25/2013] [Indexed: 05/25/2023]
Abstract
Pseudouridines (Ψ) are found in structurally and functionally important regions of RNAs. Six families of Ψ synthases, TruA, TruB, TruD, RsuA, RluA, and Pus10 have been identified. Pus10 is present in Archaea and Eukarya. While most archaeal Pus10 produce both tRNA Ψ54 and Ψ55, some produce only Ψ55. Interestingly, human PUS10 has been implicated in apoptosis and Crohn's and Celiac diseases. Homology models of archaeal Pus10 proteins based on the crystal structure of human PUS10 reveal that there are subtle structural differences in all of these Pus10 proteins. These observations suggest that structural changes in homologous proteins may lead to loss, gain, or change of their functions, warranting the need to study the structure-function relationship of these proteins. Using comparison of structural models and a series of mutations, we identified forefinger loop (reminiscent of that of RluA) and an Arg and a Tyr residue of archaeal Pus10 as critical determinants for its Ψ54, but not for its Ψ55 activity. We also found that a Leu residue, in addition to the catalytic Asp, is essential for both activities. Since forefinger loop is needed for both rRNA and tRNA Ψ synthase activities of RluA, but only for tRNA Ψ54 activity of Pus10, archaeal Pus10 proteins must use a different mechanism of recognition for Ψ55 activity. We propose that archaeal Pus10 uses two distinct mechanisms for substrate uridine recognition and binding. However, since we did not observe any mutation that affected only Ψ55 activity, both mechanisms for archaeal Pus10 activities must share some common features.
Collapse
Affiliation(s)
- Archi Joardar
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Sujata Jana
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Elisabeth Fitzek
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509, USA
| | - Priyatansh Gurha
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Mrinmoyee Majumder
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Kunal Chatterjee
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| | - Matt Geisler
- Department of Plant Biology, Southern Illinois University, Carbondale, Illinois 62901-6509, USA
| | - Ramesh Gupta
- Department of Biochemistry and Molecular Biology, Southern Illinois University, Carbondale, Illinois 62901-4413, USA
| |
Collapse
|
22
|
3S: Shotgun secondary structure determination of long non-coding RNAs. Methods 2013; 63:170-7. [DOI: 10.1016/j.ymeth.2013.07.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 07/20/2013] [Indexed: 11/22/2022] Open
|
23
|
Kamalampeta R, Keffer-Wilkes LC, Kothe U. tRNA binding, positioning, and modification by the pseudouridine synthase Pus10. J Mol Biol 2013; 425:3863-74. [PMID: 23743107 DOI: 10.1016/j.jmb.2013.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/17/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
Pus10 is the most recently identified pseudouridine synthase found in archaea and higher eukaryotes. It modifies uridine 55 in the TΨC arm of tRNAs. Here, we report the first quantitative biochemical analysis of tRNA binding and pseudouridine formation by Pyrococcus furiosus Pus10. The affinity of Pus10 for both substrate and product tRNA is high (Kd of 30nM), and product formation occurs with a Km of 400nM and a kcat of 0.9s(-1). Site-directed mutagenesis was used to demonstrate that the thumb loop in the catalytic domain is important for efficient catalysis; we propose that the thumb loop positions the tRNA within the active site. Furthermore, a new catalytic arginine residue was identified (arginine 208), which is likely responsible for triggering flipping of the target uridine into the active site of Pus10. Lastly, our data support the proposal that the THUMP-containing domain, found in the N-terminus of Pus10, contributes to binding of tRNA. Together, our findings are consistent with the hypothesis that tRNA binding by Pus10 occurs through an induced-fit mechanism, which is a prerequisite for efficient pseudouridine formation.
Collapse
Affiliation(s)
- Rajashekhar Kamalampeta
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada.
| | | | | |
Collapse
|