1
|
Shen Y, Lei J, Song X, Ren M. Annual Population Dynamics and Their Influencing Factors for an Endangered Submerged Macrophyte (Ottelia cordata). Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.688304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Due to wetland loss, Ottelia cordata (O. cordata, Wallich) Dandy has been categorized as an endangered species on the List of Key Protected Wild Plants in China. Quantifying the relative importance of demographic (i.e., growth, survival, and reproduction) and habitat preference traits on the population dynamics (abundance) of O. cordata could guide how to develop the best recovery strategies of O. cordata, yet currently, there are no studies that investigate this. By monitoring monthly changes in O. cordata abundance and demographic traits (plant height, leaf area, flower sex ratio, and seed number) that were highly correlated with growth rate, photosynthetic rate, and water depth, we identified several relationships. Linear mixed-effect models and variance partition quantified the specific effects of four demographic traits and water depth on O. cordata abundance in three habitat types (paddyfield, stream, and spring). The linear mixed-effect models indicate that among the four demographic traits, height could be significantly positively correlated to abundance in all three habitat types. In contrast, other three traits (leaf area, sex ratio, and seed numbers) were non-significantly associated with abundance across each habitat. Height was determined by water depth, so water depth rather than photosynthetic rate and reproduction rate may promote the development and recovery of O. cordata populations. Variance partition results showed that water depth mediated the positive influence of growth rate on the abundance of O. cordata in the living habitats (paddyfield and spring). In contrast, water depth but not growth rate determined the abundance of O. cordata in the living habitat (stream). However, water depth had a significantly negative impact on the abundance of O. cordata in stream habitats, likely because all of the streams were shallow. Altogether, in the short term for avoiding the potential harm or even extinction of O. cordata, keeping appropriate water depth or transplanting O. cordata to spring should be an effective strategy because the water is not only deep enough but also clear in spring habitats. Additionally, water turbidity was shown to affect the density of O. cordata growth, wherein O. cordata was sparsely distributed when turbidity was high. Therefore, in the long run, to make the population gradually recovery, it will be necessary to restore the degraded wetland. This could be accomplished by reducing water pollution and removing sludge to reduce turbidity and increase hydrological connectivity.
Collapse
|
2
|
Can Plants Move Like Animals? A Three-Dimensional Stereovision Analysis of Movement in Plants. Animals (Basel) 2021; 11:ani11071854. [PMID: 34206479 PMCID: PMC8300309 DOI: 10.3390/ani11071854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Intrigued by the ability of climbing peas to detect and grasp structures such as garden reeds, we adapted a method classically used to investigate the grasping movement of animals to the study of grasping movements in plants. We used time-lapse photography to document the behavior of pea plants, grown in the vicinity of a support pole. Using this footage, we analyzed the kinematics of tendrils growth and found that their approach and grasp exhibited movement signatures comparable to those characterizing the reach-to-grasp movement of animals. Through our method it may be possible to demonstrate that plants may be more sentient than we give them credit for: namely, they may possess the ability to act intentionally. Abstract In this article we adapt a methodology customarily used to investigate movement in animals to study the movement of plants. The targeted movement is circumnutation, a helical organ movement widespread among plants. It is variable due to a different magnitude of the trajectory (amplitude) exhibited by the organ tip, duration of one cycle (period), circular, elliptical, pendulum-like or irregular shape and the clockwise and counterclockwise direction of rotation. The acquisition setup consists of two cameras used to obtain a stereoscopic vision for each plant. Cameras switch to infrared recording mode for low light level conditions, allowing continuous motion acquisition during the night. A dedicated software enables semi-automatic tracking of key points of the plant and reconstructs the 3D trajectory of each point along the whole movement. Three-dimensional trajectories for different points undergo a specific processing to compute those features suitable to describe circumnutation (e.g., maximum speed, circumnutation center, circumnutation length, etc.). By applying our method to the approach-to-grasp movement exhibited by climbing plants (Pisum sativum L.) it appears clear that the plants scale movement kinematics according to the features of the support in ways that are adaptive, flexible, anticipatory and goal-directed, reminiscent of how animals would act.
Collapse
|
3
|
Iida M, Takano T, Matsuura T, Mori IC, Takagi S. Circumnutation and distribution of phytohormones in Vigna angularis epicotyls. JOURNAL OF PLANT RESEARCH 2018; 131:165-178. [PMID: 28785824 DOI: 10.1007/s10265-017-0972-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Circumnutation is a plant growth movement in which the tips of axial organs draw a circular orbit. Although it has been studied since the nineteenth century, its mechanism and significance are still unclear. Greened adzuki bean (Vigna angularis) epicotyls exhibited a clockwise circumnutation in the top view with a constant period of 60 min under continuous white light. The bending zone of circumnutation on the epicotyls was always located in the region 1-3 cm below the tip, and its basal end was almost identical to the apical end of the region where the epicotyl had completely elongated. Therefore, epidermal cells that construct the bending zone are constantly turning over with their elongation growth. Since exogenously applied auxin transport inhibitors and indole-3-acetic acid (IAA) impaired circumnutation without any effect on the elongation rate of epicotyls, we attempted to identify the distribution pattern of endogenous auxin. Taking advantage of its large size, we separated the bending zone of epicotyls into two halves along the longitudinal axis, either convex/concave pairs in the plane of curvature of circumnutation or pre-convex/pre-concave pairs perpendicular to the plane. By liquid chromatography-mass spectrometry, we found, for the first time, that IAA and gibberellin A1 were asymmetrically distributed in the pre-convex part in the region 1-2 cm below the tip. This region of epicotyl sections exhibited the highest responsiveness to exogenously applied hormones, and the latent period between the hormone application and the detection of a significant enhancement in elongation was 15 min. Our results suggest that circumnutation in adzuki bean epicotyls with a 60 min period is maintained by differential growth in the bending zone, which reflects the hormonal status 15 min before and which is shifting sequentially in a circumferential direction. Cortical microtubules do not seem to be involved in this regulation.
Collapse
Affiliation(s)
- Motoyuki Iida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan.
| | - Toshihiko Takano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Shingo Takagi
- Department of Biological Sciences, Graduate School of Science, Osaka University, Machikaneyama-cho 1-1, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
4
|
Water depth affects reproductive allocation and reproductive allometry in the submerged macrophyte Vallisneria natans. Sci Rep 2017; 7:16842. [PMID: 29203795 PMCID: PMC5715065 DOI: 10.1038/s41598-017-16719-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/16/2017] [Indexed: 11/08/2022] Open
Abstract
In freshwater ecosystems, shifts in hydrological regimes have profound effects on reproductive output (R), along with vegetative biomass (V) and survival of plants. Because reproductive allocation (RA) is allometric, it remains unclear whether the observed variation of RA in response to water level variability is due to fixed patterns of development or plasticity in the developmental trajectories. Here, we investigated shifts in RA of a submerged macrophyte Vallisneria natans in response to water depth to test the hypothesis that allometric trajectories of RA are highly plastic. Plants were grown at three water depths (50, 100 and 150 cm) and measured after 26 weeks of growth. The relationships between R and V among treatments were compared. Deep water affected both biomass and number of fruits produced per plant, leading to less sexual reproduction. Plants in deep water started flowering at a smaller size and despite their small mature size, had a relatively high RA. Furthermore, these plants had a much lower log R-log V relationship than shallow- or intermediate-water plants. In conclusion, reproduction of V. natans is highly variable across water depth treatments, and variations in reproductive allometry represent different strategies under an important stress gradient for these freshwater angiosperms.
Collapse
|
5
|
Yang Y, Zhang J, Zou W, Wu S, Wu F, Xie A, Wei Z. Self-Assembled 3D Helical Hollow Superstructures with Enhanced Microwave Absorption Properties. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700591] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/25/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Wenjun Zou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Sai Wu
- Beijing Institute of Aeronautical Materials Aero Engine Corporation of China; Beijing 100095 China
| | - Fan Wu
- State Key Laboratory for Disaster Prevention and Mitigation of Explosion and Impact; PLA University of Science and Technology; Nanjing 210007 China
| | - Aming Xie
- State Key Laboratory for Disaster Prevention and Mitigation of Explosion and Impact; PLA University of Science and Technology; Nanjing 210007 China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
6
|
Stolarz M, Dziubinska H. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1766. [PMID: 29093722 PMCID: PMC5651625 DOI: 10.3389/fpls.2017.01766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/27/2017] [Indexed: 05/04/2023]
Abstract
Action potentials (APs), i.e., long-distance electrical signals, and circumnutations (CN), i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0-500 mOsm) were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min) and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs) propagating basipetally and acropetally with a velocity of 12-20 cm min-1 were observed. The number of SAPs increased 2-3 times (7-10 SAPs 24 h-1plant-1) in the mild salt stress (160 mOsm NaCl and KCl), compared to the control and strong salt stress (3-4 SAPs 24 h-1 plant-1 in the control and 300 mOsm KCl and NaCl). Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3-24 APs) transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.
Collapse
Affiliation(s)
- Maria Stolarz
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | |
Collapse
|
7
|
Stolarz M, Dziubinska H. Osmotic and Salt Stresses Modulate Spontaneous and Glutamate-Induced Action Potentials and Distinguish between Growth and Circumnutation in Helianthus annuus Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:1766. [PMID: 29093722 DOI: 10.1007/s11738-017-2528-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/27/2017] [Indexed: 05/21/2023]
Abstract
Action potentials (APs), i.e., long-distance electrical signals, and circumnutations (CN), i.e., endogenous plant organ movements, are shaped by ion fluxes and content in excitable and motor tissues. The appearance of APs and CN as well as growth parameters in seedlings and 3-week old plants of Helianthus annuus treated with osmotic and salt stress (0-500 mOsm) were studied. Time-lapse photography and extracellular measurements of electrical potential changes were performed. The hypocotyl length was strongly reduced by the osmotic and salt stress. CN intensity declined due to the osmotic but not salt stress. The period of CN in mild salt stress was similar to the control (~164 min) and increased to more than 200 min in osmotic stress. In sunflower seedlings growing in a hydroponic medium, spontaneous APs (SAPs) propagating basipetally and acropetally with a velocity of 12-20 cm min-1 were observed. The number of SAPs increased 2-3 times (7-10 SAPs 24 h-1plant-1) in the mild salt stress (160 mOsm NaCl and KCl), compared to the control and strong salt stress (3-4 SAPs 24 h-1 plant-1 in the control and 300 mOsm KCl and NaCl). Glutamate-induced series of APs were inhibited in the strong salt stress-treated seedlings but not at the mild salt stress and osmotic stress. Additionally, in 3-week old plants, the injection of the hypo- or hyperosmotic solution at the base of the sunflower stem evoked series of APs (3-24 APs) transmitted along the stem. It has been shown that osmotic and salt stresses modulate differently hypocotyl growth and CN and have an effect on spontaneous and evoked APs in sunflower seedlings. We suggested that potassium, sodium, and chloride ions at stress concentrations in the nutrient medium modulate sunflower excitability and CN.
Collapse
Affiliation(s)
- Maria Stolarz
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | - Halina Dziubinska
- Department of Biophysics, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
8
|
Kam MYY, Chai LC, Chin CF. The biology and in vitro propagation of the ornamental aquatic plant, Aponogeton ulvaceus. SPRINGERPLUS 2016; 5:1657. [PMID: 27730019 PMCID: PMC5037101 DOI: 10.1186/s40064-016-3041-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/11/2016] [Indexed: 11/13/2022]
Abstract
Aponogeton ulvaceus Baker (Aponogetonaceae) is a commercially important ornamental aquatic plant species with traditional medicinal uses. Due to the low survival rate of seedlings, propagation by conventional means has been met with many difficulties. In this study, botanical aspects of A. ulvaceus were examined with regards to the morphology, anatomy and physiology of the plant and an efficient protocol for its in vitro propagation using immature tuber explants has been established. The existence of glandular trichomes on the leaves was discovered and the occurrence of circumnutation in A. ulvaceus has been demonstrated. Immature tuber segments with meristems were cultured on MS medium supplemented with various combinations (0, 1, 2, and 3 mg/L) of BAP and NAA for callus induction. The highest percentage of callus production (100 %) was obtained in two different treatments: 1 mg/L BAP and 3 mg/L NAA, and 2 mg/L BAP and 3 mg/L NAA. For shoot and root organogenesis, the combination of 1 mg/L BAP and 1 mg/L NAA was shown to be significant for A. ulvaceus regeneration when compared to control, which yields a mean shoot and root number of 22.50 and 29.50 respectively. The current protocol is the first reported successful establishment of in vitro clonal propagation of A. ulvaceus.
Collapse
Affiliation(s)
- Melissa Yit Yee Kam
- Faculty of Science, School of Biosciences, The University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia
| | - Li Chin Chai
- Faculty of Science, School of Biosciences, The University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia
| | - Chiew Foan Chin
- Faculty of Science, School of Biosciences, The University of Nottingham Malaysia Campus, Selangor Darul Ehsan, Malaysia
| |
Collapse
|