1
|
Lei Y, Yu L, Yang Z, Quan K, Qing Z. Biotemplated Platinum Nanozymes: Synthesis, Catalytic Regulation and Biomedical Applications. Chembiochem 2024:e202400548. [PMID: 39166345 DOI: 10.1002/cbic.202400548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
Platinum (Pt) nanozymes with multiple intrinsic enzyme-mimicking activities have attracted extensive attention in biomedical fields due to their high catalytic activity, ease of modification, and convenient storage. However, the Pt nanozymes synthesized by the traditional method often suffer from uncontrollable morphology and poor stability under physicochemical conditions, resulting in unsatisfactory catalytic behavior in practical applications. To optimize the catalytic ability, biological templates have been introduced recently, which can guide the deposition of platinum ions on their surface to form specific morphologies and then stabilize the resulting Pt nanozymes. Given the promising potential of biotemplated Pt nanozymes in practical applications, it is essential to conduct a systematic and comprehensive review to summarize their recent research progress. In this review, we first categorize the biological templates and discuss the mechanisms as well as characteristics of each type of biotemplate in directing the growth of Pt nanozyme. Factors that impact the growth of biotemplated Pt nanozymes are then analyzed, followed by summarizing their biomedical applications. Finally, the challenges and opportunities in this field are outlined. This review article aims to provide theoretical guidance for developing Pt nanozymes with robust functionalities in biomedical applications.
Collapse
Affiliation(s)
- Yanli Lei
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Lihong Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zeyang Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Ke Quan
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| |
Collapse
|
2
|
Kour A, Panda HS, Singh IR, Kumar A, Panda JJ. Peptide-metal nanohybrids (PMN): Promising entities for combating neurological maladies. Adv Colloid Interface Sci 2023; 318:102954. [PMID: 37487364 DOI: 10.1016/j.cis.2023.102954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Nanotherapeutics are gaining traction in the modern scenario because of their unique and distinct properties which separate them from macro materials. Among the nanoparticles, metal NPs (MNPs) have gained importance due to their distinct physicochemical and biological characteristics. Peptides also exhibit several important functions in humans. Different peptides have received approval as pharmaceuticals, and clinical trials have been commenced for several peptides. Peptides are also used as targeting ligands. Considering all the advantages offered by these two entities, the conjugation of MNPs with peptides has emerged as a potential strategy for achieving successful targeting, diagnosis, and therapy of various neurological pathologies.
Collapse
Affiliation(s)
- Avneet Kour
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh 160014, India
| | | | | | - Ashwani Kumar
- University Institute of Pharmaceutical Sciences, Punjab University, Chandigarh 160014, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Mohali, Punjab 140306, India.
| |
Collapse
|
3
|
Wang Y, Geng Q, Zhang Y, Adler-Abramovich L, Fan X, Mei D, Gazit E, Tao K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J Colloid Interface Sci 2023; 636:113-133. [PMID: 36623365 DOI: 10.1016/j.jcis.2022.12.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
9-fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF), has been has been extensively explored due to its ultrafast self-assembly kinetics, inherent biocompatibility, tunable physicochemical properties, and especially, the capability of forming self-sustained gels under physiological conditions. Consequently, various methodologies to develop Fmoc-FF gels and their corresponding applications in biomedical and industrial fields have been extensively studied. Herein, we systemically summarize the mechanisms underlying Fmoc-FF self-assembly, discuss the preparation methodologies of Fmoc-FF hydrogels, and then deliberate the properties as well as the diverse applications of Fmoc-FF self-assemblies. Finally, the contemporary shortcomings which limit the development of Fmoc-FF self-assembly are raised and the alternative solutions are proposed, along with future research perspectives.
Collapse
Affiliation(s)
- Yunxiao Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Qiang Geng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Yan Zhang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 6997801, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Xinyuan Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel; Department of Materials Science and Engineering, Iby and Aladar Fleischman, Tel Aviv University, 6997801 Tel Aviv, Israel; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China; Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China.
| |
Collapse
|
4
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
6
|
Le X, Gao T, Wang L, Wei F, Chen C, Zhao Y. Self-Assembly of Short Amphiphilic Peptides and Their Biomedical Applications. Curr Pharm Des 2022; 28:3546-3562. [PMID: 36424793 DOI: 10.2174/1381612829666221124103526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
A series of functional biomaterials with different sizes and morphologies can be constructed through self-assembly, among which amphiphilic peptide-based materials have received intense attention. One main possible reason is that the short amphiphilic peptides can facilitate the formation of versatile materials and promote their further applications in different fields. Another reason is that the simple structure of amphiphilic peptides can help establish the structure-function relationship. This review highlights the recent advances in the self-assembly of two typical peptide species, surfactant-like peptides (SLPs) and peptides amphiphiles (PAs). These peptides can self-assemble into diverse nanostructures. The formation of these different nanostructures resulted from the delicate balance of varied non-covalent interactions. This review embraced each non-covalent interaction and then listed the typical routes for regulating these non-covalent interactions, then realized the morphologies modulation of the self-assemblies. Finally, their applications in some biomedical fields, such as the stabilization of membrane proteins, templating for nanofabrication and biomineralization, acting as the antibacterial and antitumor agents, hemostasis, and synthesis of melanin have been summarized. Further advances in the self-assembly of SLPs and PAs may focus on the design of functional materials with targeted properties and exploring their improved properties.
Collapse
Affiliation(s)
- Xiaosong Le
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Tianwen Gao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Li Wang
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Feng Wei
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao266580, China
| |
Collapse
|
7
|
Almohammed S, Fularz A, Kanoun MB, Goumri-Said S, Aljaafari A, Rodriguez BJ, Rice JH. Structural Transition-Induced Raman Enhancement in Bioinspired Diphenylalanine Peptide Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12504-12514. [PMID: 35254049 PMCID: PMC8931724 DOI: 10.1021/acsami.1c22770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Semiconducting materials are increasingly proposed as alternatives to noble metal nanomaterials to enhance Raman scattering. We demonstrate that bioinspired semiconducting diphenylalanine peptide nanotubes annealed through a reported structural transition can support Raman detection of 10-7 M concentrations for a range of molecules including mononucleotides. The enhancement is attributed to the introduction of electronic states below the conduction band that facilitate charge transfer to the analyte molecule. These results show that organic semiconductor-based materials can serve as platforms for enhanced Raman scattering for chemical sensing. As the sensor is metal-free, the enhancement is achieved without the introduction of electromagnetic surface-enhanced Raman spectroscopy.
Collapse
Affiliation(s)
- Sawsan Almohammed
- School
of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College,
Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Agata Fularz
- School
of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Mohammed Benali Kanoun
- Department
of Physics, College of Science, King Faisal
University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Souraya Goumri-Said
- Physics
Department, College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Abdullah Aljaafari
- Department
of Physics, College of Science, King Faisal
University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Brian J. Rodriguez
- School
of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
- Conway
Institute of Biomolecular and Biomedical Research, University College,
Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - James H. Rice
- School
of Physics, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| |
Collapse
|
8
|
Hamley IW. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021; 22:1835-1855. [PMID: 33843196 PMCID: PMC8154259 DOI: 10.1021/acs.biomac.1c00240] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Indexed: 12/15/2022]
Abstract
Peptides and their conjugates (to lipids, bulky N-terminals, or other groups) can self-assemble into nanostructures such as fibrils, nanotubes, coiled coil bundles, and micelles, and these can be used as platforms to present functional residues in order to catalyze a diversity of reactions. Peptide structures can be used to template catalytic sites inspired by those present in natural enzymes as well as simpler constructs using individual catalytic amino acids, especially proline and histidine. The literature on the use of peptide (and peptide conjugate) α-helical and β-sheet structures as well as turn or disordered peptides in the biocatalysis of a range of organic reactions including hydrolysis and a variety of coupling reactions (e.g., aldol reactions) is reviewed. The simpler design rules for peptide structures compared to those of folded proteins permit ready ab initio design (minimalist approach) of effective catalytic structures that mimic the binding pockets of natural enzymes or which simply present catalytic motifs at high density on nanostructure scaffolds. Research on these topics is summarized, along with a discussion of metal nanoparticle catalysts templated by peptide nanostructures, especially fibrils. Research showing the high activities of different classes of peptides in catalyzing many reactions is highlighted. Advances in peptide design and synthesis methods mean they hold great potential for future developments of effective bioinspired and biocompatible catalysts.
Collapse
Affiliation(s)
- Ian W. Hamley
- Department of Chemistry, University of Reading, RG6 6AD Reading, United Kingdom
| |
Collapse
|
9
|
Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213418] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Basavalingappa V, Xue B, Rencus‐Lazar S, Wang W, Tao K, Cao Y, Gazit E. Self‐Assembled Quadruplex‐Inspired Peptide Nucleic Acid Tetramer for Artificial Photosynthesis. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Vasantha Basavalingappa
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Bin Xue
- Collaborative Innovation Centre of Advanced Microstructures National Laboratory of Solid State Microstructure Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Department of Physics Nanjing University Nanjing 210093 P.R. China
| | - Sigal Rencus‐Lazar
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Wei Wang
- Collaborative Innovation Centre of Advanced Microstructures National Laboratory of Solid State Microstructure Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Department of Physics Nanjing University Nanjing 210093 P.R. China
| | - Kai Tao
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
- State Key Lab of Fluid Power Transmission and Control Department of Mechanical Engineering Zhejiang University Hangzhou Zhejiang 310027 China
| | - Yi Cao
- Collaborative Innovation Centre of Advanced Microstructures National Laboratory of Solid State Microstructure Key Laboratory of Intelligent Optical Sensing and Manipulation Ministry of Education Department of Physics Nanjing University Nanjing 210093 P.R. China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|
11
|
Pigliacelli C, Sánchez-Fernández R, García MD, Peinador C, Pazos E. Self-assembled peptide-inorganic nanoparticle superstructures: from component design to applications. Chem Commun (Camb) 2020; 56:8000-8014. [PMID: 32495761 DOI: 10.1039/d0cc02914a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have become excellent platforms for the design of peptide-nanoparticle hybrid superstructures, owing to their self-assembly and binding/recognition capabilities. Morover, peptide sequences can be encoded and modified to finely tune the structure of the hybrid systems and pursue functionalities that hold promise in an array of high-end applications. This feature article summarizes the different methodologies that have been developed to obtain self-assembled peptide-inorganic nanoparticle hybrid architectures, and discusses how the proper encoding of the peptide sequences can be used for tailoring the architecture and/or functionality of the final systems. We also describe the applications of these hybrid superstructures in different fields, with a brief look at future possibilities towards the development of new functional hybrid materials.
Collapse
Affiliation(s)
- Claudia Pigliacelli
- Departamento de Química, Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain.
| | | | | | | | | |
Collapse
|
12
|
Pramounmat N, Loney CN, Kim C, Wiles L, Ayers KE, Kusoglu A, Renner JN. Controlling the Distribution of Perfluorinated Sulfonic Acid Ionomer with Elastin-like Polypeptide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43649-43658. [PMID: 31644259 DOI: 10.1021/acsami.9b11160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Proton-exchange-membrane (PEM)-based devices are promising technologies for hydrogen production and electricity generation. Currently, the amount of expensive platinum catalyst used in these devices must be reduced to be cost-competitive with other technologies. These devices typically contain Nafion ionomer thin films in the catalyst layers, which are responsible for transporting protons and gaseous species to and from electrochemically active sites. The morphology of the Nafion ionomer thin films in the catalyst layers with reduced platinum loading is impacted by interactions with the catalyst and the confinement to nanometer thicknesses, which leads to performance losses in PEM-based devices. In this study, an elastin-like polypeptide (ELP) is designed to modulate the morphology of Nafion ionomer on platinum surfaces. The ELP shows an ability to assemble into a monolayer on platinum and change the ionomer interaction with platinum, thereby modifying its thin-film structure and improving the Nafion ionomer coverage. As a proof of concept, an ELP-modified catalyst ink was prepared and morphological differences were observed. Overall, we discovered an engineered ELP that can modulate the ionomer-catalyst interface in the electrodes of PEM-based devices.
Collapse
Affiliation(s)
- Nuttanit Pramounmat
- Department of Chemical and Biomolecular Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Charles N Loney
- Department of Chemical and Biomolecular Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - ChulOong Kim
- Department of Chemical and Biomolecular Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Luke Wiles
- Nel Hydrogen Inc. , 10 Technology Drive , Wallingford , Connecticut 06492 , United States
| | - Katherine E Ayers
- Nel Hydrogen Inc. , 10 Technology Drive , Wallingford , Connecticut 06492 , United States
| | - Ahmet Kusoglu
- Energy Conversion Group, Energy Technologies Area , Lawrence Berkeley National Laboratory , 1 Cyclotron Road, MS70-108B , Berkeley , California 94720 , United States
| | - Julie N Renner
- Department of Chemical and Biomolecular Engineering , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
13
|
Kojima S, Nakamura H, Lee S, Nagata F, Kato K. Hydroxyapatite Formation on Self-Assembling Peptides with Differing Secondary Structures and Their Selective Adsorption for Proteins. Int J Mol Sci 2019; 20:E4650. [PMID: 31546830 PMCID: PMC6770391 DOI: 10.3390/ijms20184650] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022] Open
Abstract
Self-assembling peptides have been employed as biotemplates for biomineralization, as the morphologies and sizes of the inorganic materials can be easily controlled. We synthesized two types of highly ordered self-assembling peptides with different secondary structures and investigated the effects of secondary structures on hydroxyapatite (HAp) biomineralization of peptide templates. All as-synthesized HAp-peptides have a selective protein adsorption capacity for basic protein (e.g., cytochrome c and lysozyme). Moreover, the selectivity was improved as peptide amounts increased. In particular, peptide-HAp templated on β-sheet peptides adsorbed more cytochrome c than peptide-HAp with α-helix structures, due to the greater than 2-times carboxyl group density at their surfaces. It can be expected that self-assembled peptide-templated HAp may be used as carriers for protein immobilization in biosensing and bioseparation applications and as enzyme-stabilizing agents.
Collapse
Affiliation(s)
- Suzuka Kojima
- National Institute of Advanced Industrial Science and Technology, 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan.
| | - Hitomi Nakamura
- National Institute of Advanced Industrial Science and Technology, 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan.
| | - Sungho Lee
- National Institute of Advanced Industrial Science and Technology, 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan.
| | - Fukue Nagata
- National Institute of Advanced Industrial Science and Technology, 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan.
| | - Katsuya Kato
- National Institute of Advanced Industrial Science and Technology, 2266-98, Anagahora, Shimo-Shidami, Moriyama-ku, Nagoya, Aichi 463-8560, Japan.
| |
Collapse
|
14
|
|
15
|
Wang J, Zhang L, Yang J, Yan H, Li X, Wang C, Wang D, Sun Y, Xu H. Platinum-Ion-Mediated Self-Assembly of Hairpin Peptides and Synthesis of Platinum Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5617-5625. [PMID: 30942585 DOI: 10.1021/acs.langmuir.9b00265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanostructures and nanomaterials based on peptide self-assembly have attracted tremendous interests due to the functionalities of peptide molecules. Furthermore, the self-assembled peptide nanostructures are also adopted to fabricate nanomaterials and nanodevices. In this work, the intramolecular folding and self-assembly of a β-hairpin peptide CBHH were first studied under the regulation of platinum ion. And then, platinum nanostructures were synthesized through the reduction of platinum ions templated with peptide self-assemblies. The results of circular dichroism spectroscopy, UV-vis spectroscopy, isothermal titration calorimetry, and atomic force microscopy observation showed that platinum ions could promote the conversion of peptide CBHH secondary structure from a random coil to a β-sheet through coordination with histidine residues. Platinum nanostructures including nanorods and one dimensionally aligned nanorods were synthesized through in situ reduction with CBHH self-assembled nanofiber as the templates. And the synthesized platinum nanostructures showed excellent electrocatalytic activities.
Collapse
Affiliation(s)
- Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Liyan Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Jingge Yang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Hongyu Yan
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Xiran Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Chengdong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Yawei Sun
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology , China University of Petroleum (East China) , 66 Changjiang West Road , Qingdao 266580 , China
| |
Collapse
|
16
|
Xie Z, Liu K, Ren X, Zhang H, Xin X, Zou Q, Yan X. Amino-Acid-Mediated Biomimetic Formation of Light-Harvesting Antenna Capable of Hydrogen Evolution. ACS APPLIED BIO MATERIALS 2018; 1:748-755. [DOI: 10.1021/acsabm.8b00214] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Zengchun Xie
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, China
| | - Kai Liu
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaokang Ren
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Han Zhang
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, China
| | - Xia Xin
- National Engineering Technology Research Center for Colloidal Materials, Shandong University, Jinan 250100, China
| | | | - Xuehai Yan
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
17
|
Zhao Y, Yang W, Chen C, Wang J, Zhang L, Xu H. Rational design and self-assembly of short amphiphilic peptides and applications. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.02.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
18
|
Feng Y, Wang H, Zhang J, Song Y, Meng M, Mi J, Yin H, Liu L. Bioinspired Synthesis of Au Nanostructures Templated from Amyloid β Peptide Assembly with Enhanced Catalytic Activity. Biomacromolecules 2018; 19:2432-2442. [DOI: 10.1021/acs.biomac.8b00045] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Yadav P, Singh SP, Rengan AK, Shanavas A, Srivastava R. Gold laced bio-macromolecules for theranostic application. Int J Biol Macromol 2018; 110:39-53. [DOI: 10.1016/j.ijbiomac.2017.10.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 10/18/2017] [Indexed: 02/07/2023]
|
20
|
Tao K, Levin A, Adler-Abramovich L, Gazit E. Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chem Soc Rev 2017; 45:3935-53. [PMID: 27115033 DOI: 10.1039/c5cs00889a] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amino acids and short peptides modified with the 9-fluorenylmethyloxycarbonyl (Fmoc) group possess eminent self-assembly features and show distinct potential for applications due to the inherent hydrophobicity and aromaticity of the Fmoc moiety which can promote the association of building blocks. Given the extensive study and numerous publications in this field, it is necessary to summarize the recent progress concerning these important bio-inspired building blocks. Therefore, in this review, we explore the self-organization of this class of functional molecules from three aspects, i.e., Fmoc-modified individual amino acids, Fmoc-modified di- and tripeptides, and Fmoc-modified tetra- and pentapeptides. The relevant properties and applications related to cell cultivation, bio-templating, optical, drug delivery, catalytic, therapeutic and antibiotic properties are subsequently summarized. Finally, some existing questions impeding the development of Fmoc-modified simple biomolecules are discussed, and corresponding strategies and outlooks are suggested.
Collapse
Affiliation(s)
- Kai Tao
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Aviad Levin
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Lihi Adler-Abramovich
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. and Department of Oral Biology, The Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel. and Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
21
|
Surface Decoration of Pt Nanoparticles via ALD with TiO 2 Protective Layer on Polymeric Nanofibers as Flexible and Reusable Heterogeneous Nanocatalysts. Sci Rep 2017; 7:13401. [PMID: 29042622 PMCID: PMC5645354 DOI: 10.1038/s41598-017-13805-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/03/2017] [Indexed: 12/02/2022] Open
Abstract
Coupling the functional nanoheterostructures over the flexible polymeric nanofibrous membranes through electrospinning followed by the atomic layer deposition (ALD), here we presented a high surface area platform as flexible and reusable heterogeneous nanocatalysts. Here, we show the ALD of titanium dioxide (TiO2) protective nanolayer onto the electrospun polyacrylonitrile (PAN) nanofibrous web and then platinum nanoparticles (Pt-NP) decoration was performed by ALD onto TiO2 coated PAN nanofibers. The free-standing and flexible Pt-NP/TiO2-PAN nanofibrous web showed the enhancive reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) within 45 seconds though the hydrogenation process with the degradation rate of 0.1102 s−1. The TiO2 protective layer on the PAN polymeric nanofibers was presented as an effective route to enhance the attachment of Pt-NP and to improve the structure stability of polymeric nanofibrous substrate. Commendable enhancement in the catalytic activity with the catalytic dosage and the durability after the reusing cycles were investigated over the reduction of 4-NP. Even after multiple usage, the Pt-NP/TiO2-PAN nanofibrous webs were stable with the flexible nature with the presence of Pt and TiO2 on its surface.
Collapse
|
22
|
Qiang L, Li H, Dong X, Lv M, Lu K. Effect of Alanine and Glycine on the Assembly of Surfactant-like Peptides with Tyrosine as Hydrophilic Head in Basic Solution. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liming Qiang
- Department of Material and Chemical Engineering; Henan Institute of Engineering; Zhengzhou 450007 China
| | - Hong Li
- Department of Food and Biological Engineering; Zhengzhou Institute of Light Industry; Zhengzhou 450002 China
| | - Xueru Dong
- Department of Material and Chemical Engineering; Henan Institute of Engineering; Zhengzhou 450007 China
| | - Mingxiu Lv
- Department of Material and Chemical Engineering; Henan Institute of Engineering; Zhengzhou 450007 China
| | - Kui Lu
- Department of Material and Chemical Engineering; Henan Institute of Engineering; Zhengzhou 450007 China
| |
Collapse
|
23
|
Tao K, Xue B, Frere S, Slutsky I, Cao Y, Wang W, Gazit E. Multiporous Supramolecular Microspheres for Artificial Photosynthesis. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2017; 29:4454-4460. [PMID: 28572704 PMCID: PMC5447819 DOI: 10.1021/acs.chemmater.7b00966] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Artificial photosynthesis shows a promising potential for sustainable supply of nutritional ingredients. While most studies focus on the assembly of the light-sensitive chromophores to 1-D architectures in an artificial photosynthesis system, other supramolecular morphologies, especially bioinspired ones, which may have more efficient light-harvesting properties, have been far less studied. Here, MCpP-FF, a bioinspired building block fabricated by conjugating porphyrin and diphenylalanine, was designed to self-assemble into nanofibers-based multiporous microspheres. The highly organized aromatic moieties result in extensive excitation red-shifts and notable electron transfer, thus leading to a remarkable attenuated fluorescence decay and broad-spectrum light sensitivity of the microspheres. Moreover, the enhanced photoelectron production and transfer capability of the microspheres are demonstrated, making them ideal candidates for sunlight-sensitive antennas in artificial photosynthesis. These properties induce a high turnover frequency of NADH, which can be used to produce bioproducts in biocatalytic reactions. In addition, the direct electron transfer makes external mediators unnecessary, and the insolubility of the microspheres in water allows their easy retrieval for sustainable applications. Our findings demonstrate an alternative to design new platforms for artificial photosynthesis, as well as a new type of bioinspired, supramolecular multiporous materials.
Collapse
Affiliation(s)
- Kai Tao
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Bin Xue
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
| | - Samuel Frere
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yi Cao
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
- Corresponding Authors (Y.C.) ., (W.W.) ., (E.G.)
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, 22 Hankou Road, Nanjing 210093, Jiangsu, China
- Corresponding Authors (Y.C.) ., (W.W.) ., (E.G.)
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
- Corresponding Authors (Y.C.) ., (W.W.) ., (E.G.)
| |
Collapse
|
24
|
Wang W, Anderson CF, Wang Z, Wu W, Cui H, Liu CJ. Peptide-templated noble metal catalysts: syntheses and applications. Chem Sci 2017; 8:3310-3324. [PMID: 28507701 PMCID: PMC5416928 DOI: 10.1039/c7sc00069c] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/11/2017] [Indexed: 01/10/2023] Open
Abstract
Noble metal catalysts have been widely used in many applications because of their high activity and selectivity. However, a controllable preparation of noble metal catalysts still remains as a significant challenge. To overcome this challenge, peptide templates can play a critical role in the controllable syntheses of catalysts owing to their flexible binding with specific metallic surfaces and self-assembly characteristics. By employing peptide templates, the size, shape, facet, structure, and composition of obtained catalysts can all be specifically controlled under the mild synthesis conditions. In addition, catalysts with spherical, nanofiber, and nanofilm structures can all be produced by associating with the self-assembly characteristics of peptide templates. Furthermore, the peptide-templated noble metal catalysts also reveal significantly enhanced catalytic behaviours compared with conventional catalysts because the electron conductivity, metal dispersion, and reactive site exposure can all be improved. In this review, we summarize the research progresses in the syntheses of peptide-templated noble metal catalysts. The applications of the peptide-templated catalysts in organic reactions, photocatalysis, and electrocatalysis are discussed, and the relationship between structure and activity of these catalysts are addressed. Future opportunities, including new catalytic materials designed by using biological principles, are indicated to achieve selective, eco-friendly, and energy neutral synthesis approaches.
Collapse
Affiliation(s)
- Wei Wang
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
- International Joint Research Centre for Catalytic Technology , Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion , School of Chemistry and Material Science , Heilongjiang University , Harbin 150080 , China
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering , Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Zongyuan Wang
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
| | - Wei Wu
- International Joint Research Centre for Catalytic Technology , Key Laboratory of Chemical Engineering Process & Technology for High-Efficiency Conversion , School of Chemistry and Material Science , Heilongjiang University , Harbin 150080 , China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering , Institute for NanoBioTechnology , Johns Hopkins University , Baltimore , MD 21218 , USA
| | - Chang-Jun Liu
- Tianjin Co-Innovation Center of Chemical Science & Engineering , School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , China .
| |
Collapse
|
25
|
Li G, Wang Y, Wang L, Song A, Hao J. Hydrogels of Superlong Helices to Synthesize Hybrid Ag-Helical Nanomaterials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12100-12109. [PMID: 27800683 DOI: 10.1021/acs.langmuir.6b03052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The gelation behavior of mixtures of sodium deoxycholate (NaDC) and glutathione (GSH) in water is investigated. The system exhibits a structural transition of self-assembled hydrogels from nanofibers to nanohelix structures, and then to helical ribbons with increasing GSH concentration. Superlong helical nanofibers with left- and right-handed orientations are produced by tuning the concentration of GSH at a fixed concentration of NaDC. Random coil and β-sheet structures are significant for the formation of the helical structures, and are indicated by circular dichroism (CD) and Fourier transform infrared (FT-IR) spectra. The mechanical strength of the "weak" hydrogels is enhanced by the introduction of appropriate suitable amount of AgNO3. Furthermore, the controlled growth of Ag nanoparticles at spatially arranged locations along the nanohelices (hybrid Ag-helical nanomaterial) is readily achieved by UV reduction of Ag (I) ions on the supramolecular helical templates.
Collapse
Affiliation(s)
- Guihua Li
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University , Ministry of Education, Jinan 250100, China
| | - Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University , Ministry of Education, Jinan 250100, China
| | - Ling Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University , Ministry of Education, Jinan 250100, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University , Ministry of Education, Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University , Ministry of Education, Jinan 250100, China
| |
Collapse
|
26
|
Merg AD, Boatz JC, Mandal A, Zhao G, Mokashi-Punekar S, Liu C, Wang X, Zhang P, van der Wel PCA, Rosi NL. Peptide-Directed Assembly of Single-Helical Gold Nanoparticle Superstructures Exhibiting Intense Chiroptical Activity. J Am Chem Soc 2016; 138:13655-13663. [PMID: 27726354 PMCID: PMC5388601 DOI: 10.1021/jacs.6b07322] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chiral nanoparticle assemblies are an interesting class of materials whose chiroptical properties make them attractive for a variety of applications. Here, C18-(PEPAuM-ox)2 (PEPAuM-ox = AYSSGAPPMoxPPF) is shown to direct the assembly of single-helical gold nanoparticle superstructures that exhibit exceptionally strong chiroptical activity at the plasmon frequency with absolute g-factor values up to 0.04. Transmission electron microscopy (TEM) and cryogenic electron tomography (cryo-ET) results indicate that the single helices have a periodic pitch of approximately 100 nm and consist of oblong gold nanoparticles. The morphology and assembled structure of C18-(PEPAuM-ox)2 are studied using TEM, atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, circular dichroism (CD) spectroscopy, X-ray diffraction (XRD), and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. TEM and AFM reveal that C18-(PEPAuM-ox)2 assembles into linear amyloid-like 1D helical ribbons having structural parameters that correlate to those of the single-helical gold nanoparticle superstructures. FTIR, CD, XRD, and ssNMR indicate the presence of cross-β and polyproline II secondary structures. A molecular assembly model is presented that takes into account all experimental observations and that supports the single-helical nanoparticle assembly architecture. This model provides the basis for the design of future nanoparticle assemblies having programmable structures and properties.
Collapse
Affiliation(s)
- Andrea D. Merg
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Jennifer C. Boatz
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Gongpu Zhao
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Soumitra Mokashi-Punekar
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Chong Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Xianting Wang
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Peijun Zhang
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Patrick C. A. van der Wel
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
27
|
Ekiz MS, Cinar G, Khalily MA, Guler MO. Self-assembled peptide nanostructures for functional materials. NANOTECHNOLOGY 2016; 27:402002. [PMID: 27578525 DOI: 10.1088/0957-4484/27/40/402002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.
Collapse
Affiliation(s)
- Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, 06800 Turkey
| | | | | | | |
Collapse
|
28
|
Controlled Synthesis of Pt Nanowires with Ordered Large Mesopores for Methanol Oxidation Reaction. Sci Rep 2016; 6:31440. [PMID: 27550737 PMCID: PMC4994005 DOI: 10.1038/srep31440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/20/2016] [Indexed: 11/09/2022] Open
Abstract
Catalysts for methanol oxidation reaction (MOR) are at the heart of key green-energy fuel cell technology. Nanostructured Pt materials are the most popular and effective catalysts for MOR. Controlling the morphology and structure of Pt nanomaterials can provide opportunities to greatly increase their activity and stability. Ordered nanoporous Pt nanowires with controlled large mesopores (15, 30 and 45 nm) are facilely fabricated by chemical reduction deposition from dual templates using porous anodic aluminum oxide (AAO) membranes with silica nanospheres self-assembled in the channels. The prepared mesoporous Pt nanowires are highly active and stable electrocatalysts for MOR. The mesoporous Pt nanowires with 15 nm mesopores exhibit a large electrochemically active surface area (ECSA, 40.5 m(2) g(-1)), a high mass activity (398 mA mg(-1)) and specific activity (0.98 mA cm(-2)), and a good If/Ib ratio (1.15), better than the other mesoporous Pt nanowires and the commercial Pt black catalyst.
Collapse
|
29
|
Xing R, Jiao T, Ma K, Ma G, Möhwald H, Yan X. Regulating Cell Apoptosis on Layer-by-Layer Assembled Multilayers of Photosensitizer-Coupled Polypeptides and Gold Nanoparticles. Sci Rep 2016; 6:26506. [PMID: 27211344 PMCID: PMC4876451 DOI: 10.1038/srep26506] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/04/2016] [Indexed: 01/20/2023] Open
Abstract
The design of advanced, nanostructured materials by layer-by-layer (LbL) assembly at the molecular level is of great interest because of the broad application of these materials in the biomedical field especially in regulating cell growth, adhesion, movement, differentiation and detachment. Here, we fabricated functional hybrid multilayer films by LbL assembly of biocompatible photosensitizer-coupled polypeptides and collagen-capped gold nanoparticles. The resulting multilayer film can well accommodate cells for adhesion, growth and proliferation. Most significantly, controlled cell apoptosis (detachment) and patterning of the multilayer film is achieved by a photochemical process yielding reactive oxygen species (ROS). Moreover, the site and shape of apoptotic cells can be controlled easily by adjusting the location and shape of the laser beam. The LbL assembled multilayer film with integration of functions provides an efficient platform for regulating cell growth and apoptosis (detachment).
Collapse
Affiliation(s)
- Ruirui Xing
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P. R. China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Kai Ma
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, P. R. China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanghui Ma
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, D-14476, Potsdam/Golm, Germany
| | - Xuehai Yan
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
30
|
Li G, Hu Y, Sui J, Song A, Hao J. Hydrogelation and Crystallization of Sodium Deoxycholate Controlled by Organic Acids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1502-1509. [PMID: 26783993 DOI: 10.1021/acs.langmuir.6b00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The gelation and crystallization behavior of a biological surfactant, sodium deoxycholate (NaDC), mixed with l-taric acid (L-TA) in water is described in detail. With the variation of molar ratio of L-TA to NaDC (r = n(L-TA)/n(NaDC)) and total concentration of the mixtures, the transition from sol to gel was observed. SEM images showed that the density of nanofibers gradually increases over the sol-gel transition. The microstructures of the hydrogels are three-dimensional networks of densely packed nanofibers with lengths extending to several micrometers. One week after preparation, regular crystallized nanospheres formed along the length of the nanofibers, and it was typical among the transparent hydrogels induced by organic acids with pKa1 value <3.4. Small-angle X-ray diffraction demonstrated differences in the molecular packing between transparent and turbid gels, indicating a variable hydrogen bond mode between NaDC molecules.
Collapse
Affiliation(s)
- Guihua Li
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, China
| | - Yuanyuan Hu
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, China
| | - Jianfei Sui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Ministry of Education, Shandong University , Jinan 250100, China
| |
Collapse
|
31
|
Wang J, Tao K, Yang Y, Zhang L, Wang D, Cao M, Sun Y, Xia D. Short peptide mediated self-assembly of platinum nanocrystals with selective spreading property. RSC Adv 2016. [DOI: 10.1039/c6ra03371g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nanosize spherical assemblies of platinum nanocrystals with core/shell configurations and selective spreading properties are prepared through short peptide mediation.
Collapse
Affiliation(s)
- Jiqian Wang
- Centre for Bioengineering & Biotechnology
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Kai Tao
- Centre for Bioengineering & Biotechnology
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Yazhen Yang
- Centre for Bioengineering & Biotechnology
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Liyan Zhang
- Centre for Bioengineering & Biotechnology
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Dong Wang
- Centre for Bioengineering & Biotechnology
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Meiwen Cao
- Centre for Bioengineering & Biotechnology
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Yawei Sun
- Centre for Bioengineering & Biotechnology
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| | - Daohong Xia
- Centre for Bioengineering & Biotechnology
- State Key Laboratory of Heavy Oil Processing
- China University of Petroleum (East China)
- Qingdao
- China
| |
Collapse
|
32
|
Xing R, Jiao T, Yan L, Ma G, Liu L, Dai L, Li J, Möhwald H, Yan X. Colloidal Gold--Collagen Protein Core--Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2015; 7:24733-24740. [PMID: 26479181 DOI: 10.1021/acsami.5b07453] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The biogenic synthesis of biomolecule-gold nanoconjugates is of key importance for a broad range of biomedical applications. In this work, a one-step, green, and condition-gentle strategy is presented to synthesize stable colloidal gold-collagen core-shell nanoconjugates in an aqueous solution at room temperature, without use of any reducing agents and stabilizing agents. It is discovered that electrostatic binding between gold ions and collagen proteins and concomitant in situ reduction by hydroxyproline residues are critically responsible for the formation of the core-shell nanoconjugates. The film formed by layer-by-layer assembly of such colloidal gold-collagen nanoconjugates can notably improve the mechanical properties and promote cell adhesion, growth, and differentiation. Thus, the colloidal gold-collagen nanoconjugates synthesized by such a straightforward and clean manner, analogous to a biomineralization pathway, provide new alternatives for developing biologically based hybrid biomaterials toward a range of therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Ruirui Xing
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University , Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao 066004, China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University , Qinhuangdao 066004, China
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University , Qinhuangdao 066004, China
| | - Linyin Yan
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Guanghui Ma
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| | - Lei Liu
- Institute of Advanced Materials, Jiangsu University , Zhenjiang 212013, Jiangsu, China
| | - Luru Dai
- National Center for Nanoscience and Technology , Beijing 100190, China
| | - Junbai Li
- National Center for Nanoscience and Technology , Beijing 100190, China
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces , Am Mühlenberg 1, D-14476 Potsdam/Golm, Germany
| | - Xuehai Yan
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
33
|
Kim Y, Kim JG, Noh Y, Kim WB. An Overview of One-Dimensional Metal Nanostructures for Electrocatalysis. CATALYSIS SURVEYS FROM ASIA 2015. [DOI: 10.1007/s10563-015-9187-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
|