1
|
Zhang Y, Wong CH, Hui CWC, Tse T, Yeung V, Cheung K, Tao Q, Loong HH. Synergistic activities of Panobinostat and doxorubicin in soft tissue sarcomas. Biomed Pharmacother 2024; 176:116895. [PMID: 38876055 DOI: 10.1016/j.biopha.2024.116895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Soft tissue sarcomas (STS) are rare diseases typically arising from connective tissues in children and adults. However, chemotherapies involved in the treatment of STS may cause toxic side effects and multi-drug chemoresistance, making the treatment even more challenging. Histone deacetylase inhibitors (HDACi) are epigenetic agents which have shown anti-tumor effects as single agent as well as combination use with other drugs. Our project intends to prove the same effects in STS. METHODS Panobinostat (LBH589) plus doxorubicin was selected for investigations based on our previous research. Tumor xenografts were tried in an epithelioid sarcoma model to validate good synergy effects in vivo and a leiomyosarcoma model was used as a negative comparison group. Gene profile changes were studied afterwards. The possible pathway changes caused by HDACi were explored and validated by several assays. RESULTS Synergy effect of LBH589 plus doxorubicin was successfully validated in STS cell lines and an epithelioid sarcoma mice model. We tried to reduce the dose of doxorubicin to a lower level and found the drug combination can still inhibit tumor size in mice. Furthermore, gene profile changes caused by LBH589 was studied by RNA-Sequencing analysis. Results showed LBH589 can exert effects on a group of target genes which can regulate potential biological functions especially in the cell cycle pathway.
Collapse
Affiliation(s)
- Yingjun Zhang
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - C H Wong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory in Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Cancer Drug Testing Unit, Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Connie W C Hui
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory in Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Cancer Drug Testing Unit, Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Teresa Tse
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Vanessa Yeung
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Kingsley Cheung
- Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Qian Tao
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory in Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Herbert H Loong
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; State Key Laboratory in Translational Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Cancer Drug Testing Unit, Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China; Department of Clinical Oncology, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| |
Collapse
|
2
|
Senotherapeutics in Cancer and HIV. Cells 2022; 11:cells11071222. [PMID: 35406785 PMCID: PMC8997781 DOI: 10.3390/cells11071222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a stress-response mechanism that contributes to homeostasis maintenance, playing a beneficial role during embryogenesis and in normal adult organisms. In contrast, chronic senescence activation may be responsible for other events such as age-related disorders, HIV and cancer development. Cellular senescence activation can be triggered by different insults. Regardless of the inducer, there are several phenotypes generally shared among senescent cells: cell division arrest, an aberrant shape, increased size, high granularity because of increased numbers of lysosomes and vacuoles, apoptosis resistance, defective metabolism and some chromatin alterations. Senescent cells constitute an important area for research due to their contributions to the pathogenesis of different diseases such as frailty, sarcopenia and aging-related diseases, including cancer and HIV infection, which show an accelerated aging. Hence, a new pharmacological category of treatments called senotherapeutics is under development. This group includes senolytic drugs that selectively attack senescent cells and senostatic drugs that suppress SASP factor delivery, inhibiting senescent cell development. These new drugs can have positive therapeutic effects on aging-related disorders and act in cancer as antitumor drugs, avoiding the undesired effects of senescent cells such as those from SASP. Here, we review senotherapeutics and how they might affect cancer and HIV disease, two very different aging-related diseases, and review some compounds acting as senolytics in clinical trials.
Collapse
|
3
|
Quaas CE, Long DT. Targeting (de)acetylation: A Diversity of Mechanism and Disease. COMPREHENSIVE PHARMACOLOGY 2022:469-492. [DOI: 10.1016/b978-0-12-820472-6.00076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Mock A, Plath M, Moratin J, Tapken MJ, Jäger D, Krauss J, Fröhling S, Hess J, Zaoui K. EGFR and PI3K Pathway Activities Might Guide Drug Repurposing in HPV-Negative Head and Neck Cancers. Front Oncol 2021; 11:678966. [PMID: 34178665 PMCID: PMC8226088 DOI: 10.3389/fonc.2021.678966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
While genetic alterations in Epidermal growth factor receptor (EGFR) and PI3K are common in head and neck squamous cell carcinomas (HNSCC), their impact on oncogenic signaling and cancer drug sensitivities remains elusive. To determine their consequences on the transcriptional network, pathway activities of EGFR, PI3K, and 12 additional oncogenic pathways were inferred in 498 HNSCC samples of The Cancer Genome Atlas using PROGENy. More than half of HPV-negative HNSCC showed a pathway activation in EGFR or PI3K. An amplification in EGFR and a mutation in PI3KCA resulted in a significantly higher activity of the respective pathway (p = 0.017 and p = 0.007). Interestingly, both pathway activations could only be explained by genetic alterations in less than 25% of cases indicating additional molecular events involved in the downstream signaling. Suitable in vitro pathway models could be identified in a published drug screen of 45 HPV-negative HNSCC cell lines. An active EGFR pathway was predictive for the response to the PI3K inhibitor buparlisib (p = 6.36E-03) and an inactive EGFR and PI3K pathway was associated with efficacy of the B-cell lymphoma (BCL) inhibitor navitoclax (p = 9.26E-03). In addition, an inactive PI3K pathway correlated with a response to multiple Histone deacetylase inhibitor (HDAC) inhibitors. These findings require validation in preclinical models and clinical studies.
Collapse
Affiliation(s)
- Andreas Mock
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany.,Division of Translational Medical Oncology, NCT Heidelberg, German Cancer Center (DKFZ), Heidelberg, Germany
| | - Michaela Plath
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Julius Moratin
- Department of Oral and Cranio-Maxillofacial Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Maria Johanna Tapken
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Krauss
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, NCT Heidelberg, German Cancer Center (DKFZ), Heidelberg, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Molecular Mechanisms of Head and Neck Tumors, DKFZ, Heidelberg, Germany
| | - Karim Zaoui
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
5
|
Nordin N, Yeap SK, Rahman HS, Zamberi NR, Abu N, Mohamad NE, How CW, Masarudin MJ, Abdullah R, Alitheen NB. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci Rep 2019; 9:1614. [PMID: 30733560 PMCID: PMC6367486 DOI: 10.1038/s41598-018-38214-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 11/23/2018] [Indexed: 12/21/2022] Open
Abstract
Very recently, we postulated that the incorporation of citral into nanostructured lipid carrier (NLC-Citral) improves solubility and delivery of the citral without toxic effects in vivo. Thus, the objective of this study is to evaluate anti-cancer effects of NLC-Citral in MDA MB-231 cells in vitro through the Annexin V, cell cycle, JC-1 and fluorometric assays. Additionally, this study is aimed to effects of NLC-Citral in reducing the tumor weight and size in 4T1 induced murine breast cancer model. Results showed that NLC-Citral induced apoptosis and G2/M arrest in MDA MB-231 cells. Furthermore, a prominent anti-metastatic ability of NLC-Citral was demonstrated in vitro using scratch, migration and invasion assays. A significant reduction of migrated and invaded cells was observed in the NLC-Citral treated MDA MB-231 cells. To further evaluate the apoptotic and anti-metastatic mechanism of NLC-Citral at the molecular level, microarray-based gene expression and proteomic profiling were conducted. Based on the result obtained, NLC-Citral was found to regulate several important signaling pathways related to cancer development such as apoptosis, cell cycle, and metastasis signaling pathways. Additionally, gene expression analysis was validated through the targeted RNA sequencing and real-time polymerase chain reaction. In conclusion, the NLC-Citral inhibited the proliferation of breast cancer cells in vitro, majorly through the induction of apoptosis, anti-metastasis, anti-angiogenesis potentials, and reducing the tumor weight and size without altering the therapeutic effects of citral.
Collapse
Affiliation(s)
- Noraini Nordin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia.,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Heshu Sulaiman Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Clinic and Internal Medicine, College of Veterinary Medicine, University of Sulaimani, Sulaimani City, Kurdistan Region, Iraq
| | - Nur Rizi Zamberi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,UKM Medical Centre, UKM Medical Molecular Biology Institute (UMBI), Cheras, Wilayah Persekutuan, Malaysia
| | - Nurul Elyani Mohamad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Chee Wun How
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Pharmacy, MAHSA University, Jenjarom, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rasedee Abdullah
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Samaraweera L, Adomako A, Rodriguez-Gabin A, McDaid HM. A Novel Indication for Panobinostat as a Senolytic Drug in NSCLC and HNSCC. Sci Rep 2017; 7:1900. [PMID: 28507307 PMCID: PMC5432488 DOI: 10.1038/s41598-017-01964-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/07/2017] [Indexed: 01/07/2023] Open
Abstract
Panobinostat (pano) is an FDA-approved histone deacetylase inhibitor. There is interest in evaluating alternate dosing schedules and novel combinations of pano for the treatment of upper aerodigestive and lung malignancies; thus we evaluated it in combination with Taxol, a chemotherapeutic with activity in both diseases. Dose-dependent synergy was observed in Non-Small Cell Lung Cancer (NSCLC) and Head and Neck Squamous Cell Carcinoma (HNSCC) cell lines and was due to senescence rather than potentiation of cell death. Senescence occurred following cisplatin- or Taxol-treatment in cell lines from both cancer types and was associated with decreased histone 3 (H3) acetylation and increased Bcl-xL expression: the latter a biomarker of senescence and target of anti-senescence therapeutics, or senolytics. Since H3 acetylation and Bcl-xL expression were altered in senescence, we subsequently evaluated pano as a senolytic in chemotherapy-treated cancer cells enriched for senescent cells. Pano caused cell death at significantly higher rates compared to repeat dosing with chemotherapy. This was associated with decreased expression of Bcl-xL and increased acetylated H3, reversing the expression patterns observed in senescence. These data support evaluating pano as a post-chemotherapy senolytic with the potential to kill persistent senescent cells that accumulate during standard chemotherapy in NSCLC and HNSCC.
Collapse
Affiliation(s)
- Leleesha Samaraweera
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alfred Adomako
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alicia Rodriguez-Gabin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hayley M McDaid
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
7
|
Yamamoto VN, Thylur DS, Bauschard M, Schmale I, Sinha UK. Overcoming radioresistance in head and neck squamous cell carcinoma. Oral Oncol 2016; 63:44-51. [PMID: 27938999 DOI: 10.1016/j.oraloncology.2016.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 08/29/2016] [Accepted: 11/06/2016] [Indexed: 12/28/2022]
Abstract
Radiation therapy plays an essential role in the treatment of head and neck squamous cell carcinoma (HNSCC), yet therapeutic efficacy is hindered by treatment-associated toxicity and tumor recurrence. In comparison to other cancers, innovation has proved challenging, with the epidermal growth factor receptor (EGFR) antibody cetuximab being the only new radiosensitizing agent approved by the FDA in over half a century. This review examines the physiological mechanisms that contribute to radioresistance in HNSCC as well as preclinical and clinical data regarding novel radiosensitizing agents, with an emphasis on those with highest translational promise.
Collapse
Affiliation(s)
- Vicky N Yamamoto
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - David S Thylur
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Michael Bauschard
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Isaac Schmale
- Department of Otolaryngology-Head & Neck Surgery, University of Rochester Medical Center, Rochester, NY, United States
| | - Uttam K Sinha
- USC Tina and Rick Caruso Department of Otolaryngology-Head & Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Singh A, Patel VK, Jain DK, Patel P, Rajak H. Panobinostat as Pan-deacetylase Inhibitor for the Treatment of Pancreatic Cancer: Recent Progress and Future Prospects. Oncol Ther 2016; 4:73-89. [PMID: 28261641 PMCID: PMC5315073 DOI: 10.1007/s40487-016-0023-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The histone deacetylase (HDAC) inhibitors have been demonstrated as an emerging class of anticancer drugs. HDACs are involved in regulation of gene expression and in chromatin remodeling, thus indicating valid targets for different types of cancer therapeutics. The pan-deacetylase inhibitor panobinostat (Farydac®, LBH589) was developed by Novartis Pharmaceuticals and has been recently approved by the US Food and Drug Administraion (FDA) as a drug to treat multiple myeloma. It is under clinical investigation for a range of haematological and solid tumors worldwide in both oral and intravenous formulations. Panobinostat inhibits tumor cell growth by interacting with acetylation of histones and non-histone proteins as well as various apoptotic, autophagy-mediated targets and various tumorogenesis pathways involved in development of tumors. The optimal combination regimen for pancreatic cancer remains to be fully elucidated with various combination regimens, and should be investigated in clinical trials. This article summarizes the current preclinical and clinical status of panobinostat in pancreatic cancer. Preclinical data suggests that panobinostat has potential inhibitory activity in pancreatic cancer cells by targeting various pathways and factors involved in the development of cancer. Herein, we reviewed the status of mono and combination therapy and the rationale behind the combination therapy undergoing trials, as well as possible future prospective use in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Avineesh Singh
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Vijay K. Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Deepak K. Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Preeti Patel
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| | - Harish Rajak
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009 India
| |
Collapse
|
9
|
Srinivas NR. Clinical pharmacokinetics of panobinostat, a novel histone deacetylase (HDAC) inhibitor: review and perspectives. Xenobiotica 2016; 47:354-368. [PMID: 27226420 DOI: 10.1080/00498254.2016.1184356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
1. Panobinostat is a recently approved histone deacetylase (HDAC) inhibitor. 2. The pharmacokinetic data of panobinostat in patients with hematologic malignancies and advanced solid tumors have been collated and reviewed from the various published clinical studies for over a decade. Further perspectives and anticipated challenges in the clinical therapy with panobinostat are discussed in the review. 3. Regardless of intravenous or oral dosing, panobinostat showed a high degree of inter-patient variability in the pharmacokinetics. After oral administration, most of the administered dose is extensively metabolized and the metabolites are either fecally or renally excreted with trace amount of intact panobinostat. Both cytochrome p450 (CYP) 3A4 and non-CYP mechanisms govern the clearance of panobinostat. CYP3A4-related drug-drug interactions with panobinostat have been documented with ketoconazole (inhibitor) and dexamethasone (inducer). 4. In summary, the clinical pharmacokinetic data of panobinostat, a promising HDAC inhibitor, obtained from various clinical studies do not appear to limit the utility of panobinostat in the clinic.
Collapse
|
10
|
A panel of autoantibodies as potential early diagnostic serum biomarkers in patients with cervical cancer. Tumour Biol 2016; 37:8709-14. [DOI: 10.1007/s13277-015-4472-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/18/2015] [Indexed: 01/10/2023] Open
|
11
|
Xia Y, Lei Q, Zhu Y, Ye T, Wang N, Li G, Shi X, Liu Y, Shao B, Yin T, Zhao L, Wu W, Song X, Xiong Y, Wei Y, Yu L. SKLB316, a novel small-molecule inhibitor of cell-cycle progression, induces G2/M phase arrest and apoptosis in vitro and inhibits tumor growth in vivo. Cancer Lett 2014; 355:297-309. [PMID: 25301449 DOI: 10.1016/j.canlet.2014.09.042] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/28/2014] [Accepted: 09/29/2014] [Indexed: 02/05/2023]
Abstract
Benzothiazole derivatives have received considerable attentions for their potencies in cancer therapy. In the present study, we reported that SKLB316, a novel synthesized benzothiazole derivative, exhibits activities to inhibit colorectal and pancreatic cancer in vitro and in vivo by inducing G2/M cell cycle arrest and apoptosis. In vitro, it exhibited significant anti-proliferative activities against human cancer cells derived from different histotypes including the colorectal cancer cell line HCT116 and pancreatic cancer cell line CFPAC-1. We chose these cell lines to study the possible anti-tumor mechanism because they are sensitive to SKLB316 treatment. Flow cytometry assays showed that SKLB316 could induce G2/M cell cycle arrest. Mechanistically, SKLB316 could decrease the activities of cdc2/cyclin B1 complex, including decreasing the synthesis of cyclin B1, cdc2 and cdc25c, while accumulating the levels of phosphorylated cdc2 (Tyr15) and checkpoint kinase 2. SKLB316 could also decrease the level of cyclin E and A2. Moreover, SKLB316 could induce cancer cell apoptosis, which was associated with activation of caspase 9, downregulation of Bcl-2 and upregulation of Bax. SKLB316 could also decrease the mitochondrial membrane potential and induce the generation of reactive oxygen species in cells. The results implied that SKLB316 may induce apoptosis via the mitochondria-mediated apoptotic pathway. Moreover, SKLB316 could suppress the growth of established colorectal and pancreatic cancer tumors in nude mice without causing obvious side effects. TUNEL assays confirmed that SKLB316 could also induce tumor cell apoptosis in vivo. Taken together, these findings demonstrate the potential value of SKLB316 as a novel anti-tumor drug candidate.
Collapse
Affiliation(s)
- Yong Xia
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qian Lei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yongxia Zhu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tinghong Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ningyu Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Guobo Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xuanhong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Yantong Liu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Bin Shao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Tao Yin
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Lifeng Zhao
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xuejiao Song
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Ying Xiong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China; Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
12
|
Safdari Y, Khalili M, Farajnia S, Asgharzadeh M, Yazdani Y, Sadeghi M. Recent advances in head and neck squamous cell carcinoma--a review. Clin Biochem 2014; 47:1195-202. [PMID: 24912050 DOI: 10.1016/j.clinbiochem.2014.05.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/10/2014] [Accepted: 05/27/2014] [Indexed: 12/27/2022]
Abstract
The current review presents the results of the most recent studies performed on different aspects of human head and neck squamous cell carcinoma, including radiosensitivity induction, efficiency improvement of monoclonal antibodies using low-intensity ultrasound, chemical compounds such as toll-like receptor (TLC) agonists, dasatinib, resveratrol and niclosamide, nuclear inhibition of cancer using STAT3 decoy oligonucleotide, efficiency of anti-EGFR monoclonal antibodies in detection of head and neck cancers and other related issues.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Masoumeh Khalili
- Pharmaceutical Science Research Center, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Yaghoub Yazdani
- Faculty of Advanced Medical Science Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahnaz Sadeghi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|