1
|
Xu S, Liu ZL, Zhang TW, Li B, Wang XN, Jiao W. Self-control study of multi-omics in identification of microenvironment characteristics in urine of uric acid stone. Sci Rep 2024; 14:25165. [PMID: 39448683 PMCID: PMC11502694 DOI: 10.1038/s41598-024-76054-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
The aim of this study is to perform proteomic and metabolomic analyses in bilateral renal pelvis urine of patients with unilateral uric acid kidney stones to identify the specific urinary environment associated with uric acid stone formation. Using cystoscopy-guided insertion of ureteral catheters, bilateral renal pelvis urine samples are collected. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is employed to identify differentially expressed proteins and metabolites in the urine environment. Differentially expressed proteins and metabolites are further analyzed for their biological functions and potential metabolic pathways through Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. In the urine from the stone-affected side, eight differential proteins were significantly upregulated, and six metabolites were dysregulated. The uric acid stone urinary environment showed an excess of α-ketoisovaleric acid and 3-methyl-2-oxovaleric acid, which may contribute to the acidification of the urine. Functional and pathway analyses indicate that the dysregulated metabolites are mainly associated with insulin resistance and branched chain amino acid metabolism.
Collapse
Affiliation(s)
- Shang Xu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Zhi-Long Liu
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Tian-Wei Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Bin Li
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Xin-Ning Wang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China.
| | - Wei Jiao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China.
| |
Collapse
|
2
|
Sherkhane B, Kalvala AK, Arruri VK, Khatri DK, Singh SB. Renoprotective potential of myo-inositol on diabetic kidney disease: Focus on the role of the PINK1/Parkin pathway and mitophagy receptors. J Biochem Mol Toxicol 2022; 36:e23032. [PMID: 35243728 DOI: 10.1002/jbt.23032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 01/14/2023]
Abstract
Recent studies have emphasized the role of mitochondria in renal function as well as in renal injury. Poor mitochondrial quality control mechanisms including mitochondrial fusion, fission and mitophagy are major contributors for progression of diabetic renal injury. The current study is aimed to evaluate the protective role of myo-inositol (MI) against diabetic nephropathy (DN) by utilizing high glucose exposed NRK 52E cell and streptozotocin (STZ) induced DN model. MI supplementation (at doses 37.5 and 75 mg/kg) ameliorated albuminuria and enhanced the renal function as indicated significant improvement in urinary creatinine and urea levels. On the other hand, the western blot analysis of both in vitro and in vivo studies has revealed poor mitophagy in renal cells which was reversed upon myo-inositol treatment. Apart from targeting the canonical PINK1/Parkin pathway, we also focused on the role mitophagy receptors prohibitin (PHB) and NIP3-like protein (NIX). A significant reduction in expression of NIX and PHB2 was observed in renal tissue of diabetic control rats and high glucose exposed NRK 52E cells. Myo-inositol treatment resulted in positive modulation of PINK1/Parkin pathway as well as PHB2 and NIX. Myo-inositol also enhanced the mitochondrial biogenesis in renal tissue of diabetic rat by upregulating Nrf2/SIRT1/PGC-1α axis. The current study thus underlines the renoprotective effect myo-inositol, upregulation of mitophagy proteins and mitochondrial biogenesis upon myo-inositol treatment.
Collapse
Affiliation(s)
- Bhoomika Sherkhane
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Anil Kumar Kalvala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Vijay Kumar Arruri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| |
Collapse
|
3
|
Manzoor S, Khan A, Hasan B, Mushtaq S, Ahmed N. Expression Analysis of 4-Hydroxynonenal Modified Proteins in Schizophrenia Brain; Relevance to Involvement in Redox Dysregulation. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164618666210121151004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Oxidative damage contributes to the pathophysiology of schizophrenia (SZ). Redox imbalance may
lead to increased lipid peroxidation, which produces toxic aldehydes like 4-hydroxynonenal (4-HNE) ultimately leading to
oxidative stress. Conversely, implications of oxidative stress points towards an alteration in HNE-protein adducts and
activities of enzymatic and antioxidant systems in schizophrenia.
Objectives:
Present study focuses on identification of HNE-protein adducts and its related molecular consequences in
schizophrenia pathology due to oxidative stress, particularly lipid peroxidation.
Material and Methods:
Oxyblotting was performed on seven autopsied brain samples each from cortex and hippocampus
region of schizophrenia patients and their respective normal healthy controls. Additionally, thiobarbituric acid substances
(TBARS), reduced glutathione (GSH) levels and catalase (CAT) activities associated with oxidative stress, were also
estimated.
Results:
Obtained results indicates substantially higher levels of oxidative stress in schizophrenia patients than healthy
control group represented by elevated expression of HNE-protein adducts. Interestingly, hippocampus region of
schizophrenia brain shows increased HNE protein adducts compared to cortex. An increase in catalase activity (4.8876 ±
1.7123) whereas decrease in antioxidant GSH levels (0.213 ± 0.015µmol/ml) have been observed in SZ brain. Elevated
TBARS level (0.3801 ± 0.0532ug/ml) were obtained in brain regions SZ patients compared with their controls that reflects
an increased lipid peroxidation (LPO).
Conclusion:
Conclusion: We propose the role of HNE modified proteins possibly associated with the pathology of
schizophrenia. Our data revealed increase lipid peroxidation as a consequence of increased TBARS production.
Furthermore, altered cellular antioxidants pathways related to GSH and CAT also highlight the involvement of oxidative
stress in schizophrenia pathology.
Collapse
Affiliation(s)
- Sobia Manzoor
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Ayesha Khan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Beena Hasan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Shamim Mushtaq
- Department of Biochemistry, Ziauddin University, Karachi, Pakistan
| | - Nikhat Ahmed
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, Pakistan
| |
Collapse
|
4
|
Activation of the Integrated Stress Response and ER Stress Protect from Fluorizoline-Induced Apoptosis in HEK293T and U2OS Cell Lines. Int J Mol Sci 2021; 22:ijms22116117. [PMID: 34204139 PMCID: PMC8201103 DOI: 10.3390/ijms22116117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The prohibitin (PHB)-binding compound fluorizoline as well as PHB-downregulation activate the integrated stress response (ISR) in HEK293T and U2OS human cell lines. This activation is denoted by phosphorylation of eIF2α and increases in ATF4, ATF3, and CHOP protein levels. The blockage of the activation of the ISR by overexpression of GRP78, as well as an increase in IRE1 activity, indicate the presence of ER stress after fluorizoline treatment. The inhibition of the ER stress response in HEK293T and U2OS led to increased sensitivity to fluorizoline-induced apoptosis, indicating a pro-survival role of this pathway after fluorizoline treatment in these cell lines. Fluorizoline induced an increase in calcium concentration in the cytosol and the mitochondria. Finally, two different calcium chelators reduced fluorizoline-induced apoptosis in U2OS cells. Thus, we have found that fluorizoline causes increased ER stress and activation of the integrated stress response, which in HEK293T and U2OS cells are protective against fluorizoline-induced apoptosis.
Collapse
|
5
|
Núñez-Vázquez S, Sánchez-Vera I, Saura-Esteller J, Cosialls AM, Noisier AFM, Albericio F, Lavilla R, Pons G, Iglesias-Serret D, Gil J. NOXA upregulation by the prohibitin-binding compound fluorizoline is transcriptionally regulated by integrated stress response-induced ATF3 and ATF4. FEBS J 2020; 288:1271-1285. [PMID: 32648994 DOI: 10.1111/febs.15480] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 02/06/2023]
Abstract
Fluorizoline is a new synthetic molecule that induces p53-independent apoptosis, in several tumor cell lines and in primary leukemia cells, by selectively targeting prohibitins (PHBs). In this study, we describe how fluorizoline induces BCL-2 homology 3-only protein NOXA, without modulating the protein levels of anti-apoptotic B-cell lymphoma-2 (BCL-2) family members prior to caspase activation, as well as how it synergizes with the BCL-2 and BCL-XL inhibitor ABT-737 to induce apoptosis. Interestingly, fluorizolinetreatment triggers the activation of the integrated stress response (ISR) in HeLa and HAP1 cells, with increased eukaryotic translation initiation factor 2α phosphorylation, and induction of ATF3, ATF4, and CHOP. Moreover, PHB downregulation induces similar ISR activation and apoptosis as with fluorizoline treatment. In addition, we studied the essential role of the pro-apoptotic protein NOXA in fluorizoline-induced apoptosis and we describe its mechanism of induction in HeLa and HAP1 cells. Moreover, we identified ATF3 and ATF4 as the transcription factors that bind to NOXA promoter upon fluorizoline treatment. Furthermore, using ATF3 and ATF4 CRISPR HeLa and HAP1 cells, we confirmed that both factors mediate the induction of NOXA and apoptosis by fluorizoline. In conclusion, fluorizoline treatment triggers the activation of the ISR that results in the induction of ATF3 and ATF4, important regulators of NOXA transcription in fluorizoline-induced apoptosis.
Collapse
Affiliation(s)
- Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Ismael Sánchez-Vera
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Ana M Cosialls
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Anaïs F M Noisier
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Medicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Fernando Albericio
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Rodolfo Lavilla
- Laboratory of Medical Chemistry, Faculty of Pharmacy and Food Sciences and Institute of Medicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Daniel Iglesias-Serret
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain.,Facultat de Medicina, Universitat de Vic - Universitat Central de Catalunya (UVic-UCC), Vic, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Oncobell-IDIBELL (Institut d'Investigació Biomèdica de Bellvitge), L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Wu L, Wang Q, Guo F, Ma X, Wang J, Zhao Y, Yan Y, Qin G. Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic reticulum stress. J Cell Physiol 2020; 236:1454-1468. [PMID: 32691413 DOI: 10.1002/jcp.29951] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/19/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022]
Abstract
Diabetic nephropathy (DN) is acknowledged as a serious chronic complication of diabetes mellitus. Nevertheless, its pathogenesis is complicated and unclear. Thus, in this study, the role of miR-27a-3p-prohibitin/TMBIM6 signaling axis in the progression of DN was elucidated. Type 2 diabetic db/db mice and high glucose (HG)-challenged HK-2 cells were used as in vivo and in vitro models. Our results showed that miR-27a-3p was upregulated and prohibitin or transmembrane BAX inhibitor motif containing 6 (TMBIM6) was downregulated in the kidney tissues of db/db mice and HG-treated HK-2 cells. Silencing miR-27a-3p enhanced the expression of prohibitin and TMBIM6 in the kidney tissues and HK-2 cells. Inhibition of miR-27a-3p improved functional injury, as evidenced by decreased blood glucose, urinary albumin, serum creatinine, and blood urea nitrogen levels. MiR-27a-3p silencing ameliorated renal fibrosis, reflected by reduced profibrogenic genes (e.g., transforming growth factor β1, fibronectin, collagen I and III, and α-smooth muscle actin). Furthermore, inhibition of miR-27a-3p relieved mitochondrial dysfunction in the kidney of db/db mice, including upregulation of mitochondrial membrane potential, complex I and III activities, adenosine triphosphate, and mitochondrial cytochrome C, as well as suppressing reactive oxygen species production. In addition, miR-27a-3p silencing attenuated endoplasmic reticulum (ER) stress, reflected by reduced expression of p-IRE1α, p-eIF2α, XBP1s, and CHOP. Mechanically, we identified prohibitin and TMBIM6 as direct targets of miR-27a-3p. Inhibition of miR-27a-3p protected HG-treated HK-2 cells from apoptosis, extracellular matrix accumulation, mitochondrial dysfunction, and ER stress by regulating prohibitin or TMBIM6. Taken together, we reveal that miR-27a-3p-prohibitin/TMBIM6 signaling axis regulates the progression of DN, which can be a potential therapeutic target.
Collapse
Affiliation(s)
- Lina Wu
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingzhu Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Guo
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojun Ma
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiao Wang
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yushan Yan
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guijun Qin
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Hamon MP, Gergondey R, L'honoré A, Friguet B. Mitochondrial Lon protease - depleted HeLa cells exhibit proteome modifications related to protein quality control, stress response and energy metabolism. Free Radic Biol Med 2020; 148:83-95. [PMID: 31904544 DOI: 10.1016/j.freeradbiomed.2019.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022]
Abstract
The ATP-dependent Lon protease is located in the mitochondrial matrix and oxidized proteins are among its primary targets for their degradation. Impairment of mitochondrial morphology and function together with apoptosis were observed in lung fibroblasts depleted for Lon expression while accumulation of carbonylated mitochondrial proteins has been reported for yeast and HeLa Lon deficient cells. In addition, age-related mitochondrial dysfunction has been associated with an impairment of Lon expression. Using a HeLa cell line stably transfected with an inducible shRNA directed against Lon, we have previously observed that Lon depletion results in a mild phenotype characterized by an increase of both production of reactive oxygen species and level of oxidized proteins (Bayot et al., 2014, Biochimie, 100: 38-47). In this study using the same cell line, we now show that Lon knockdown leads to modifications of the expression of a number of specific proteins involved in protein quality control, stress response and energy metabolism, as evidenced using a 2D gel-based proteomic approach, and to alteration of the mitochondrial network morphology. We also show that these effects are associated with decreased proliferation and can be modulated by culture conditions in galactose versus glucose containing medium.
Collapse
Affiliation(s)
- Marie-Paule Hamon
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005, Paris, France
| | - Rachel Gergondey
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005, Paris, France
| | - Aurore L'honoré
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005, Paris, France
| | - Bertrand Friguet
- Sorbonne Université, CNRS, INSERM, Institut de Biologie Paris-Seine, Biological Adaptation and Aging, B2A-IBPS, F-75005, Paris, France.
| |
Collapse
|
8
|
Wei L, Qin Y, Jiang L, Yu X, Xi Z. PPARγ and mitophagy are involved in hypoxia/reoxygenation-induced renal tubular epithelial cells injury. J Recept Signal Transduct Res 2019; 39:235-242. [PMID: 31538845 DOI: 10.1080/10799893.2019.1660894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Renal tubular epithelial cell (RTEC) injury is the main cause and common pathological process of various renal diseases. Mitochondrial dysfunction (MtD) is a pathological process after renal injury. Mitophagy is vital for mitochondrial function. Hypoxia is a common cause of RTEC injury. Peroxisome proliferator-activated receptor γ (PPARγ) is involved in cell proliferation, apoptosis, and inflammation. Previous studies have shown that the low expression of PPARγ might be involved in hypoxia-induced RTEC injury. The present study aimed to investigate the correlation between PPARγ and mitophagy in damaged RTEC in the hypoxia/reoxygenation (HR) model. The results showed that HR inhibited the expression of PPARγ, but increased the expression of LC3II, Atg5, SQSTM1/P62, and PINK1 in a time-dependent manner. Moreover, mitochondrial DNA (mt DNA) copy number, mitochondria membrane potential (MMP) levels, ATP content, and cell viability were decreased in hypoxic RTECs, the expression of SQSTM1/P62 and PINK1, the release of cytochrome c (cyt C), and production of reactive oxygen species (ROS) were increased. Mitochondrial-containing autophagosomes (APs) were detected using transmission election microscope (TEM) and laser scanning confocal microscope (LSCM). Furthermore, PPARγ protein expression was negatively correlated with that of LC3II, PINK1, and the positive rate of RTEC-containing mitochondrial-containing APs (all p < .05), but positively correlated with cell viability, MMP level, and ATP content (all p < .05). These data suggested that PPARγ and mitophagy are involved in the RTEC injury process. Thus, a close association could be detected between PPARγ and mitophagy in HR-induced RTEC injury, albeit additional investigation is imperative.
Collapse
Affiliation(s)
- Luming Wei
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Yuanhan Qin
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Ling Jiang
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Xueyun Yu
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| | - Zhiyang Xi
- Department of Pediatrics, Guangxi Medical University First Affiliated Hospital , Nanning 530021 , China
| |
Collapse
|
9
|
Wang Y, Jiao J, Zhang S, Zheng C, Wu M. RIP3 inhibition protects locomotion function through ameliorating mitochondrial antioxidative capacity after spinal cord injury. Biomed Pharmacother 2019; 116:109019. [DOI: 10.1016/j.biopha.2019.109019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/09/2023] Open
|
10
|
Han F, Gao Y, Ding CG, Xia XX, Wang YX, Xue WJ, Ding XM, Zheng J, Tian PX. Knockdown of NLRC5 attenuates renal I/R injury in vitro through the activation of PI3K/Akt signaling pathway. Biomed Pharmacother 2018; 103:222-227. [PMID: 29655162 DOI: 10.1016/j.biopha.2018.04.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023] Open
Abstract
NLRC5, as the largest member of nucleotide-binding domain and leucine-rich repeat (NLR) family, was involved in various physiological processes, such as inflammation, fibrosis, innate immunity and diabetic nephropathy. However, the role of NLRC5 in acute kidney injury remains unclear. The aim of this study was to investigate the role of NLRC5 in human renal proximal tubular epithelial cells (HK-2) exposed to hypoxia/reoxygenation (H/R). Our results demonstrated that the expression of NLRC5 was significantly up-regulated in HK-2 cells exposed to H/R. Knockdown of NLRC5 significantly improved the viability of HK-2 cells exposed to H/R. In addition, knockdown of NLRC5 efficiently inhibited H/R-induced oxidative stress and apoptosis in HK-2 cells. Mechanistically, knockdown of NLRC5 markedly enhanced the activation of PIK3/Akt signaling pathway in H/R-stimulated HK-2 cells. In summary, our findings indicate that knockdown of NLRC5 attenuates renal I/R injury in vitro through the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Feng Han
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yi Gao
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of nephrology, Xi'an Third Hospital, Xi'an, Shaanxi Province, China
| | - Chen-Guang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xin-Xin Xia
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Department of traditional Chinese medicine, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yu-Xiang Wang
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wu-Jun Xue
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiao-Ming Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Pu-Xun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
11
|
Prohibitin: a potential therapeutic target in tyrosine kinase signaling. Signal Transduct Target Ther 2017; 2:17059. [PMID: 29263933 PMCID: PMC5730683 DOI: 10.1038/sigtrans.2017.59] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/03/2017] [Accepted: 09/07/2017] [Indexed: 11/10/2022] Open
Abstract
Prohibitin is a pleiotropic protein that has roles in fundamental cellular processes, such as cellular proliferation and mitochondrial housekeeping, and in cell- or tissue-specific functions, such as adipogenesis and immune cell functions. The different functions of prohibitin are mediated by its cell compartment-specific attributes, which include acting as an adaptor molecule in membrane signaling, a scaffolding protein in mitochondria, and a transcriptional co-regulator in the nucleus. However, the precise relationship between its distinct cellular localization and diverse functions remain largely unknown. Accumulating evidence suggests that the phosphorylation of prohibitin plays a role in a number of cell signaling pathways and in intracellular trafficking. Herein, we discuss the known and potential importance of the site-specific phosphorylation of prohibitin in regulating these features. We will discuss this in the context of new evidence from tissue-specific transgenic mouse models of prohibitin, including a mutant prohibitin lacking a crucial tyrosine phosphorylation site. We conclude with the opinion that prohibitin can be used as a potential target for tyrosine kinase signal transduction-targeting therapy, including in insulin, growth factors, and immune signaling pathways.
Collapse
|
12
|
Satheesh Kumar MK, Nair S, Mony U, Kalingavarman S, Venkat R, Sivanarayanan TB, Unni AKK, Rajeshkannan R, Anandakuttan A, Radhakrishnan S, Menon KN. Significance of elevated Prohibitin 1 levels in Multiple Sclerosis patients lymphocytes towards the assessment of subclinical disease activity and its role in the central nervous system pathology of disease. Int J Biol Macromol 2017; 110:573-581. [PMID: 29242126 DOI: 10.1016/j.ijbiomac.2017.12.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/26/2017] [Accepted: 12/10/2017] [Indexed: 12/18/2022]
Abstract
Multiple Sclerosis (MS) is an autoimmune-neurodegenerative disorder managed therapeutically by modulating lymphocytes activity which has potential in disease management. Prohibitin 1(PHB) that controls the reactive oxygen species (ROS) and present on the activated lymphocytes have significance in the therapy of MS as esters of fumaric acid that regulates ROS is in phase II/III clinical trials. Thus, we evaluated the expression levels of PHB1 in experimental autoimmune encephalomyelitis (EAE), the animal model of MS and on MS patient's lymphocytes. PHB levels in brain tissue of EAE animals were determined by immunoblotting and on blood lymphocytes from MS relapse, Remission, Optic Neuritis, Neurological controls and Healthy volunteers by FACS using anti-PHB and anti-CD45 antibodies. We observed significant elevation of PHB in EAE brains (91.0 ± 17.59%) vs controls (29.8 ± 12.9%) (p = 0.01) and on lymphocytes of MS patients in acute (73.5 ± 11.20%) or relapsing (69.3 ± 17.33%) phase compared to remission (45.9 ± 8.08%) [p = 0.034 acute vs remission; p = 0.004 relapse vs remission]. Up regulation of PHB in relapsing vs remission MS patients imply the potential use of PHB to clinically evaluate subclinical disease status towards prognosis of an oncoming relapse. Elevated PHB levels in EAE brains signify the role of PHB in regulating ROS and implies PHB's role in oxidative stress.
Collapse
Affiliation(s)
| | - Sreepriya Nair
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Ullas Mony
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Sugavanan Kalingavarman
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - Ramaswamynathan Venkat
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | | | | | - Ramiah Rajeshkannan
- Department of Radiation Oncology, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | | | | | - Krishnakumar N Menon
- Center for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India.
| |
Collapse
|
13
|
Jiang L, Qin Y, Lei F, Chen X, Zhou Z. Retinoic acid receptors α and γ are involved in antioxidative protection in renal tubular epithelial cells injury induced by hypoxia/reoxygenation. Free Radic Res 2017; 51:873-885. [PMID: 29096559 DOI: 10.1080/10715762.2017.1387655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Renal interstitial fibrosis (RIF) is a common outcome in various chronic kidney diseases. Injury to renal tubular epithelial cell (RTEC) is major link in RIF. Hypoxia is one of the common factors for RTEC damage. Retinoic acid receptors (RARs), RARα, RARβ and RARγ, are evolutionary conserved and pleiotropic proteins that have been involved in various cellular functions, including proliferation, differentiation, apoptosis, and transcription. Recently, we discovered that aberrant expression of RARs was involved in the development of RIF in rats. Here, we investigated the role of RARs in the hypoxia/reoxygenation (HR) damage model in RTEC with virus-based delivery vectors to knockdown or overexpress RARs. Relevant indicators were detected. Our results showed that HR inhibited RARα and RARγ expressions in a time-dependent manner in RTECs; however, the expression of RARβ was not changed obviously. RARα and RARγ overexpression could protect cells from oxidative stress-induced injury by inhibiting HR-induced intracellular superoxide anion (O2-) generation, cell viability and mitochondria membrane potential (MMP) decrease and transforming growth factor β1 (TGF-β1) expression and promoting endogenous antioxidant defense components, superoxide dismutase (SOD) and glutathione (GSH). Meanwhile, inhibition of RARα and RARγ expressions by small interference RNAs (siRNA) resulted in a less resistance of RTEC to HR as shown in increased O2- production and TGF-β1 expression and decreased cell viability, MMP, SOD and GSH levels. These data indicates that RARα and RARγ act as positive regulators to offset oxidative damage and profibrosis cytokine accumulation and therefore has an antioxidative effect.
Collapse
Affiliation(s)
- Ling Jiang
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Yuanhan Qin
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Fengying Lei
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Xiuping Chen
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| | - Zhiqiang Zhou
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , PR China
| |
Collapse
|
14
|
Yuan XP, Liu LS, Chen CB, Zhou J, Zheng YT, Wang XP, Han M, Wang CX. MicroRNA-423-5p facilitates hypoxia/reoxygenation-induced apoptosis in renal proximal tubular epithelial cells by targeting GSTM1 via endoplasmic reticulum stress. Oncotarget 2017; 8:82064-82077. [PMID: 29137244 PMCID: PMC5669870 DOI: 10.18632/oncotarget.18289] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/06/2017] [Indexed: 01/29/2023] Open
Abstract
It has been reported that microRNAs (miRs) can regulate renal response to acute injury and members of them are believed to be important in maintenance of renal function and development of renal injury. We investigated the actions of microRNA-423-5p (miR-423-5p) and glutathione-S-transferase (GST) M1 after acute kidney injury. MiR-423-5p was up-regulated and GSTM1 was down-regulated in human kidney (HK-2) cells subjected to hypoxia/reoxygenation (H/R) and in rat kidneys subjected to ischemia/reperfusion (I/R) injury. Dual luciferase assays revealed miR-423-5p binding to the 3′ untranslated region of GSTM1. Proliferation was lower and apoptosis, ER stress and oxidative stress were all higher in H/R-treated HK-2 cells transfected with or without miR-423-5p mimics and GSTM1 siRNA than in the same cells transfected with miR-423-5p inhibitors and a GSTM1 expression vector. Increased miR-423-5p and decreased GSTM1 mRNA and protein levels were observed in rat kidneys on days 1, 2 and 7 after I/R. Levels had normalized by days 14 and 21. On day 3 after treatment, rats receiving I/R or I/R plus miR-423-5p mimics exhibited higher serum creatinine and urea nitrogen levels than rats receiving I/R plus a miR-423-5p inhibitor. MiR-423-5p and lower GSTM1 mRNA and protein levels were higher in the I/R and I/R plus miR-423-5p mimic groups than in the I/R plus miR-423-5p inhibitors group. These findings demonstrate that after acute kidney injury, miR-423-5p induces ER stress and oxidative stress by inhibiting GSTM1and suppresses repair.
Collapse
Affiliation(s)
- Xiao-Peng Yuan
- 3rd Division of Organ Transplant Center, Eastern Campus of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P.R. China
| | - Long-Shan Liu
- 2nd Division of Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | - Chuan-Bao Chen
- 3rd Division of Organ Transplant Center, Eastern Campus of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P.R. China
| | - Jian Zhou
- 3rd Division of Organ Transplant Center, Eastern Campus of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P.R. China
| | - Yi-Tao Zheng
- 3rd Division of Organ Transplant Center, Eastern Campus of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P.R. China
| | - Xiao-Ping Wang
- 3rd Division of Organ Transplant Center, Eastern Campus of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P.R. China
| | - Ming Han
- 3rd Division of Organ Transplant Center, Eastern Campus of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510700, P.R. China
| | - Chang-Xi Wang
- 2nd Division of Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, P.R. China
| |
Collapse
|
15
|
Prohibitin overexpression improves myocardial function in diabetic cardiomyopathy. Oncotarget 2016; 7:66-80. [PMID: 26623724 PMCID: PMC4807983 DOI: 10.18632/oncotarget.6384] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/16/2015] [Indexed: 01/07/2023] Open
Abstract
Prohibitin (PHB) is a highly conserved protein implicated in various cellular functions including proliferation, apoptosis, tumor suppression, transcription, and mitochondrial protein folding. However, its function in diabetic cardiomyopathy (DCM) is still unclear. In vivo, type 2 diabetic rat model was induced by using a high-fat diet and low-dose streptozotocin. Overexpression of the PHB protein in the model rats was achieved by injecting lentivirus carrying PHB cDNA via the jugular vein. Characteristics of type 2 DCM were evaluated by metabolic tests, echocardiography and histopathology. Rats with DCM showed severe insulin resistance, left ventricular dysfunction, fibrosis and apoptosis. PHB overexpression ameliorated the disease. Cardiofibroblasts (CFs) and H9c2 cardiomyoblasts were used in vitro to investigate the mechanism of PHB in altered function. In CFs treated with HG, PHB overexpression decreased expression of collagen, matrix metalloproteinase activity, and proliferation. In H9c2 cardiomyoblasts, PHB overexpression inhibited apoptosis induced by HG. Furthermore, the increased phosphorylation of extracellular signal–regulated kinase (ERK) 1/2 was significantly decreased and the inhibited phosphorylation of Akt was restored in DCM. Therefore, PHB may be a new therapeutic target for human DCM.
Collapse
|
16
|
Ramani K, Mavila N, Ko KS, Mato JM, Lu SC. Prohibitin 1 Regulates the H19-Igf2 Axis and Proliferation in Hepatocytes. J Biol Chem 2016; 291:24148-24159. [PMID: 27687727 DOI: 10.1074/jbc.m116.744045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/26/2016] [Indexed: 12/15/2022] Open
Abstract
Prohibitin 1 (PHB1) is a mitochondrial chaperone that regulates cell growth. Phb1 knock-out mice exhibit liver injury and hepatocellular carcinoma (HCC). Phb1 knock-out livers show induction of tumor growth-associated genes, H19 and insulin-like growth factor 2 (Igf2). These genes are controlled by the imprinting control region (ICR) containing CCCTC-binding transcription factor (CTCF)-binding sites. Because Phb1 knock-out mice exhibited induction of H19 and Igf2, we hypothesized that PHB1-mediated regulation of the H19-Igf2 axis might control cell proliferation in normal hepatocytes. H19 and Igf2 were induced (8-20-fold) in 3-week-old Phb1 knock-out livers, in Phb1 siRNA-treated AML12 hepatocytes (2-fold), and HCC cell lines when compared with control. Phb1 knockdown lowered CTCF protein in AML12 by ∼30% when compared with control. CTCF overexpression lowered basal H19 and Igf2 expression by 30% and suppressed Phb1 knockdown-mediated induction of these genes. CTCF and PHB1 co-immunoprecipitated and co-localized on the ICR element, and Phb1 knockdown lowered CTCF ICR binding activity. The results suggest that PHB1 and CTCF cooperation may control the H19-Igf2 axis. Human HCC tissues with high levels of H19 and IGF2 exhibited a 40-50% reduction in PHB1 and CTCF expression and their ICR binding activity. Silencing Phb1 or overexpressing H19 in the mouse HCC cell line, SAMe-D, induced cell growth. Blocking H19 induction prevented Phb1 knockdown-mediated growth, whereas H19 overexpression had the reverse effect. Interestingly H19 silencing induced PHB1 expression. Taken together, our results demonstrate that the H19-Igf2 axis is negatively regulated by CTCF-PHB1 cooperation and that H19 is involved in modulating the growth-suppressive effect of PHB1 in the liver.
Collapse
Affiliation(s)
- Komal Ramani
- From the Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Nirmala Mavila
- From the Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Kwang Suk Ko
- the Department of Nutritional Science and Food Management, the College of Health Science, Ewha Womans University, Seoul 03760, Korea, and
| | - José M Mato
- the CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Technology Park of Bizkaia, 48160 Derio, Bizkaia, Spain
| | - Shelly C Lu
- From the Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, California 90048,
| |
Collapse
|
17
|
Moncunill-Massaguer C, Saura-Esteller J, Pérez-Perarnau A, Palmeri CM, Núñez-Vázquez S, Cosialls AM, González-Gironès DM, Pomares H, Korwitz A, Preciado S, Albericio F, Lavilla R, Pons G, Langer T, Iglesias-Serret D, Gil J. A novel prohibitin-binding compound induces the mitochondrial apoptotic pathway through NOXA and BIM upregulation. Oncotarget 2016; 6:41750-65. [PMID: 26497683 PMCID: PMC4747186 DOI: 10.18632/oncotarget.6154] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/30/2015] [Indexed: 01/08/2023] Open
Abstract
We previously described diaryl trifluorothiazoline compound 1a (hereafter referred to as fluorizoline) as a first-in-class small molecule that induces p53-independent apoptosis in a wide range of tumor cell lines. Fluorizoline directly binds to prohibitin 1 and 2 (PHBs), two proteins involved in the regulation of several cellular processes, including apoptosis. Here we demonstrate that fluorizoline-induced apoptosis is mediated by PHBs, as cells depleted of these proteins are highly resistant to fluorizoline treatment. In addition, BAX and BAK are necessary for fluorizoline-induced cytotoxic effects, thereby proving that apoptosis occurs through the intrinsic pathway. Expression analysis revealed that fluorizoline induced the upregulation of Noxa and Bim mRNA levels, which was not observed in PHB-depleted MEFs. Finally, Noxa−/−/Bim−/− MEFs and NOXA-downregulated HeLa cells were resistant to fluorizoline-induced apoptosis. All together, these findings show that fluorizoline requires PHBs to execute the mitochondrial apoptotic pathway.
Collapse
Affiliation(s)
- Cristina Moncunill-Massaguer
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - José Saura-Esteller
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Alba Pérez-Perarnau
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Claudia Mariela Palmeri
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Sonia Núñez-Vázquez
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Ana M Cosialls
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Diana M González-Gironès
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Helena Pomares
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Anne Korwitz
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sara Preciado
- Barcelona Science Park and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain
| | - Fernando Albericio
- Barcelona Science Park and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain.,Institute for Research in Biomedicine Barcelona, Barcelona, Spain.,Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
| | - Rodolfo Lavilla
- Barcelona Science Park and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain.,Laboratory of Organic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Gabriel Pons
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Thomas Langer
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Daniel Iglesias-Serret
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| | - Joan Gil
- Departament de Ciències Fisiològiques II, Universitat de Barcelona-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Catalunya, Spain
| |
Collapse
|
18
|
Ye J, Li J, Xia R, Zhou M, Yu L. Prohibitin protects proximal tubule epithelial cells against oxidative injury through mitochondrial pathways. Free Radic Res 2015. [DOI: 10.3109/10715762.2015.1075654] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Zheng H, Lu GM. Reduction of prohibitin expression contributes to left ventricular hypertrophy via enhancement of mitochondrial reactive oxygen species formation in spontaneous hypertensive rats. Free Radic Res 2014; 49:164-74. [PMID: 25465279 DOI: 10.3109/10715762.2014.991724] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Left ventricular hypertrophy (LVH) in hypertension is characterized by thickening of myocardium and decrease in heart chamber volume in response to mechanical or pathological stress, but the underlying molecular mechanisms remain to be defined. In this work, we investigate whether mitochondrial prohibitin (PHB) was involved in the progression of LVH in spontaneous hypertensive rats (SHR). First, it was found that mitochondrial dysfunction occurred in left ventricles of SHR. Through analysis using quantitative reverse transcription polymerase chain reaction and Western blotting, it was found that PHB mRNA and mitochondrial PHB levels in left ventricles of SHR were significantly lower than that in Wistar-Kyoto rats. Furthermore, PHB mRNA levels were negatively correlated to left ventricles weight-to-body weight ratio in SHR. Knockdown of PHB led to increased formation of mitochondrial reactive oxygen species (ROS) and reduced activities of complex I, mitochondrial adenosine triphosphate generation and mitochondrial membrane potential in cultured cardiomyocytes. Knockdown of PHB contributed to the cardiomyocyte hypertrophy, which could be attenuated by treatment with the Tempol. Angiotensin II (AngII) was increased in plasma and left ventricles of SHR. Incubation with AngII reduced mitochondrial PHB expression in cardiomyocytes, which was reversed when pretreated with losartan. In conclusion, reduction of PHB expression in left ventricles in SHR contributed to LVH, at least in part, through promoting mitochondrial ROS formation.
Collapse
Affiliation(s)
- H Zheng
- College of Chemistry and Biology, Donghua University , Shanghai , P. R. China
| | | |
Collapse
|
20
|
Zhao T, Zhu Y, Morinibu A, Kobayashi M, Shinomiya K, Itasaka S, Yoshimura M, Guo G, Hiraoka M, Harada H. HIF-1-mediated metabolic reprogramming reduces ROS levels and facilitates the metastatic colonization of cancers in lungs. Sci Rep 2014; 4:3793. [PMID: 24452734 PMCID: PMC3899644 DOI: 10.1038/srep03793] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/31/2013] [Indexed: 01/09/2023] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) has been associated with distant tumor metastasis; however, its function in multiple metastatic processes has not yet been fully elucidated. In the present study, we demonstrated that cancer cells transiently upregulated HIF-1 activity during their metastatic colonization after extravasation in the lungs in hypoxia-independent and reactive oxygen species (ROS)-dependent manners. Transient activation induced the expression of lactate dehydrogenase A and phosphorylation of the E1α subunit of pyruvate dehydrogenase, which indicated the reprogramming of glucose metabolic pathways from mitochondrial oxidative phosphorylation to anaerobic glycolysis and lactic acid fermentation. The administration of the HIF-1 inhibitor, YC-1, inhibited this reprogramming, increased intratumoral ROS levels, and eventually suppressed the formation of metastatic lung tumors. These results indicate that HIF-1-mediated metabolic reprogramming is responsible for the survival of metastatic cancers during their colonization in lungs by reducing cytotoxic ROS levels; therefore, its blockade by HIF-1-inhibitors is a rational strategy to prevent tumor metastasis.
Collapse
Affiliation(s)
- Tao Zhao
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] Department of Radiation Medicine, Fourth Military Medical University. 17 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Yuxi Zhu
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] Department of Oncology, The First Affiliated Hospital of Chongqing Medical University. No.1 Friendship Road, Yuanjiagang, Yuzhong District, Chongqing 400016, China
| | - Akiyo Morinibu
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazumi Shinomiya
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Satoshi Itasaka
- Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Michio Yoshimura
- Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Guozheng Guo
- Department of Radiation Medicine, Fourth Military Medical University. 17 Changle West Road, Xi'an, Shaanxi 710032, China
| | - Masahiro Hiraoka
- Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hiroshi Harada
- 1] Group of Radiation and Tumor Biology, Department of Radiation Oncology and Image-applied Therapy, Kyoto University Graduate School of Medicine. 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan [2] Group of Radiation and Tumor Biology, Career-Path Promotion Unit for Young Life Scientists, Kyoto University. Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Zhou TB, Xu HL, Qin YH, Lei FY, Huang WF, Drummen GPC. LIM homeobox transcription factor 1B is associated with pro-fibrotic components and apoptosis in hypoxia/reoxygenation renal tubular epithelial cells. Apoptosis 2013; 19:594-602. [PMID: 24310985 DOI: 10.1007/s10495-013-0952-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|