1
|
Osterman IA, Dontsova OA, Sergiev PV. rRNA Methylation and Antibiotic Resistance. BIOCHEMISTRY (MOSCOW) 2021; 85:1335-1349. [PMID: 33280577 DOI: 10.1134/s000629792011005x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methylation of nucleotides in rRNA is one of the basic mechanisms of bacterial resistance to protein synthesis inhibitors. The genes for corresponding methyltransferases have been found in producer strains and clinical isolates of pathogenic bacteria. In some cases, rRNA methylation by housekeeping enzymes is, on the contrary, required for the action of antibiotics. The effects of rRNA modifications associated with antibiotic efficacy may be cooperative or mutually exclusive. Evolutionary relationships between the systems of rRNA modification by housekeeping enzymes and antibiotic resistance-related methyltransferases are of particular interest. In this review, we discuss the above topics in detail.
Collapse
Affiliation(s)
- I A Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia.,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia.,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - P V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
2
|
Khan SH, Bijpuria S, Maurya A, Taneja B. Structural and thermodynamic characterization of a highly stable conformation of Rv2966c, a 16S rRNA methyltransferase, at low pH. Int J Biol Macromol 2020; 164:3909-3921. [PMID: 32888991 DOI: 10.1016/j.ijbiomac.2020.08.236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/14/2020] [Accepted: 08/29/2020] [Indexed: 12/01/2022]
Abstract
Rv2966c is a highly specific methyltransferase that methylates G966 at the N2 position in 16S rRNA of mycobacterial ribosome and can be secreted inside the host cell to methylate host DNA. However, how the secreted protein retains its structure and function in the harsh environment of host cell, remains unclear. In this work, we investigate structural features of Rv2966c at pH 4.0 and pH 7.5 by far-UV- and near-UV-circular dichroism (CD) and fluorescence spectroscopy, to gain insights into its folding and stability at the acidic pH, that it is likely to encounter inside the macrophage. We show that Rv2966c exists in a compact, folded state at both pH 7.5 and pH 4.0, a result corroborated by molecular dynamics simulations as a function of pH. In fact, Rv2966c was found to be more stable at pH 4.0 than pH 7.5, as evidenced by thermal-induced CD and nanodifferential scanning fluorimetry, and urea-induced denaturation measurements. Interestingly, unlike pH 7.5 (two-state unfolding), denaturation of Rv2966c at pH 4.0 occurs in a biphasic (N ↔ X ↔ U) manner. Further spectroscopic characterization of 'X' state, identifies characteristics of a molten globule-like intermediate. We finally conclude that Rv2966c maintains a compact folded state at pH 4.0 akin to that at pH 7.5 but with higher stability.
Collapse
Affiliation(s)
- Sabab Hasan Khan
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Shipra Bijpuria
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Anjali Maurya
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi, India; Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
3
|
Pletnev P, Guseva E, Zanina A, Evfratov S, Dzama M, Treshin V, Pogorel'skaya A, Osterman I, Golovina A, Rubtsova M, Serebryakova M, Pobeguts OV, Govorun VM, Bogdanov AA, Dontsova OA, Sergiev PV. Comprehensive Functional Analysis of Escherichia coli Ribosomal RNA Methyltransferases. Front Genet 2020; 11:97. [PMID: 32174967 PMCID: PMC7056703 DOI: 10.3389/fgene.2020.00097] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/29/2020] [Indexed: 11/13/2022] Open
Abstract
Ribosomal RNAs in all organisms are methylated. The functional role of the majority of modified nucleotides is unknown. We systematically questioned the influence of rRNA methylation in Escherichia coli on a number of characteristics of bacterial cells with the help of a set of rRNA methyltransferase (MT) gene knockout strains from the Keio collection. Analysis of ribosomal subunits sedimentation profiles of the knockout strains revealed a surprisingly small number of rRNA MT that significantly affected ribosome assembly. Accumulation of the assembly intermediates was observed only for the rlmE knockout strain whose growth was retarded most significantly among other rRNA MT knockout strains. Accumulation of the 17S rRNA precursor was observed for rsmA(ksgA) knockout cells as well as for cells devoid of functional rsmB and rlmC genes. Significant differences were found among the WT and the majority of rRNA MT knockout strains in their ability to sustain exogenous protein overexpression. While the majority of the rRNA MT knockout strains supported suboptimal reporter gene expression, the strain devoid of the rsmF gene demonstrated a moderate increase in the yield of ectopic gene expression. Comparative 2D protein gel analysis of rRNA MT knockout strains revealed only minor perturbations of the proteome.
Collapse
Affiliation(s)
- Philipp Pletnev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Ekaterina Guseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Zanina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Evfratov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Margarita Dzama
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod Treshin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra Pogorel'skaya
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ilya Osterman
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna Golovina
- Belozersky Institute of Physico-Chemical Biololgy, Lomonosov Moscow State University, Moscow, Russia
| | - Maria Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Marina Serebryakova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biololgy, Lomonosov Moscow State University, Moscow, Russia
| | - Olga V Pobeguts
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Vadim M Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow, Russia
| | - Alexey A Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biololgy, Lomonosov Moscow State University, Moscow, Russia
| | - Olga A Dontsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biololgy, Lomonosov Moscow State University, Moscow, Russia
| | - Petr V Sergiev
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.,Belozersky Institute of Physico-Chemical Biololgy, Lomonosov Moscow State University, Moscow, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
4
|
Kuznetsova SA, Petrukov KS, Pletnev FI, Sergiev PV, Dontsova OA. RNA (C5-cytosine) Methyltransferases. BIOCHEMISTRY (MOSCOW) 2019; 84:851-869. [PMID: 31522668 DOI: 10.1134/s0006297919080029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The review summarizes the data on pro- and eukaryotic RNA (C5-cytosine) methyltransferases. The structure, intracellular location, RNA targets, and catalytic mechanisms of these enzymes, as well as the functional role of methylated cytosine residues in RNA are presented. The functions of RNA (C5-cytosine) methyltransferases unassociated with their methylation activity are discussed. Special attention is given to the similarities and differences in the structures and mechanisms of action of RNA and DNA methyltransferases. The data on the association of mutations in the RNA (C5-cytosine) methyltransferases genes and human diseases are presented.
Collapse
Affiliation(s)
- S A Kuznetsova
- Lomonosov Moscow State University, Institute of Functional Genomics, Moscow, 119234, Russia.
| | - K S Petrukov
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia
| | - F I Pletnev
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| | - P V Sergiev
- Lomonosov Moscow State University, Institute of Functional Genomics, Moscow, 119234, Russia.,Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Petrov National Medical Research Center of Oncology, St. Petersburg, 197758, Russia
| | - O A Dontsova
- Lomonosov Moscow State University, Faculty of Chemistry, Moscow, 119991, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, 121205, Moscow Region, Russia.,Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|
5
|
Sergiev PV, Aleksashin NA, Chugunova AA, Polikanov YS, Dontsova OA. Structural and evolutionary insights into ribosomal RNA methylation. Nat Chem Biol 2019; 14:226-235. [PMID: 29443970 DOI: 10.1038/nchembio.2569] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/02/2018] [Indexed: 01/24/2023]
Abstract
Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. Identification of all enzymes responsible for rRNA methylation, as well as mapping of all modified rRNA residues, is now complete for a number of model species, such as Escherichia coli and Saccharomyces cerevisiae. Recent high-resolution structures of bacterial ribosomes provided the first direct visualization of methylated nucleotides. The structures of ribosomes from various organisms and organelles have also lately become available, enabling comparative structure-based analysis of rRNA methylation sites in various taxonomic groups. In addition to the conserved core of modified residues in ribosomes from the majority of studied organisms, structural analysis points to the functional roles of some of the rRNA methylations, which are discussed in this Review in an evolutionary context.
Collapse
Affiliation(s)
- Petr V Sergiev
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay A Aleksashin
- Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Anastasia A Chugunova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Olga A Dontsova
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Polikanov YS, Melnikov SV, Söll D, Steitz TA. Structural insights into the role of rRNA modifications in protein synthesis and ribosome assembly. Nat Struct Mol Biol 2015; 22:342-344. [PMID: 25775268 PMCID: PMC4401423 DOI: 10.1038/nsmb.2992] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/17/2015] [Indexed: 11/23/2022]
Abstract
We report crystal structures of the Thermus thermophilus ribosome at 2.3- to 2.5-Å resolution, which have enabled modeling of rRNA modifications. The structures reveal contacts of modified nucleotides with mRNA and tRNAs or protein pY, and contacts within the ribosome interior stabilizing the functional fold of rRNA. Our work provides a resource to explore the roles of rRNA modifications and yields a more comprehensive atomic model of a bacterial ribosome.
Collapse
Affiliation(s)
- Yury S Polikanov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute at Yale University, New Haven, CT, USA
| | - Sergey V Melnikov
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Thomas A Steitz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute at Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
7
|
Santulli G. A Fleeting Glimpse Inside microRNA, Epigenetics, and Micropeptidomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:1-14. [PMID: 26662983 PMCID: PMC4871246 DOI: 10.1007/978-3-319-22380-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRs) are important regulators of gene expression in numerous biological processes. Their maturation process is herein described, including the most updated insights from the current literature. Circa 2000 miR sequences have been identified in the human genome, with over 50,000 miR-target interactions, including enzymes involved in epigenetic modulation of gene expression. Moreover, some "pieces of RNA" previously annotated as noncoding have been recently found to encode micropeptides that carry out critical mechanistic functions in the cell. Advanced techniques now available will certainly allow a precise scanning of the genome looking for micropeptides hidden within the "noncoding" RNA.
Collapse
|
8
|
Sergeeva OV, Bogdanov AA, Sergiev PV. What do we know about ribosomal RNA methylation in Escherichia coli? Biochimie 2014; 117:110-8. [PMID: 25511423 DOI: 10.1016/j.biochi.2014.11.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022]
Abstract
A ribosome is a ribonucleoprotein that performs the synthesis of proteins. Ribosomal RNA of all organisms includes a number of modified nucleotides, such as base or ribose methylated and pseudouridines. Methylated nucleotides are highly conserved in bacteria and some even universally. In this review we discuss available data on a set of modification sites in the most studied bacteria, Escherichia coli. While most rRNA modification enzymes are known for this organism, the function of the modified nucleotides is rarely identified.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/metabolism
- Methylation
- Methyltransferases/chemistry
- Methyltransferases/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Binding
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomes/genetics
- Ribosomes/metabolism
Collapse
Affiliation(s)
- O V Sergeeva
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Skolkovo Institute of Science and Technology, Skolkovo, Moscow 143025, Russia.
| | - A A Bogdanov
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - P V Sergiev
- Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|