1
|
Castelli M, Nardi T, Giovannini M, Sassera D. Addictive manipulation: a perspective on the role of reproductive parasitism in the evolution of bacteria-eukaryote symbioses. Biol Lett 2024; 20:20240310. [PMID: 39288812 PMCID: PMC11496725 DOI: 10.1098/rsbl.2024.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Wolbachia bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable manipulative capabilities. Here, we wonder whether such phenomena are truly restricted to arthropod hosts. We focused on protists, primary models for evolutionary investigations on eukaryotes due to their diversity and antiquity, but still overall under-investigated. After a thorough re-examination of the literature on bacterial-protist interactions with this question in mind, we conclude that such bacterial 'addictive manipulators' of protists do exist, are probably widespread, and have been overlooked until now as a consequence of the fact that investigations are commonly host-centred, thus ineffective to detect such behaviour. Additionally, we posit that toxin-antitoxin systems are crucial in these phenomena of addictive manipulation of protists, as a result of recurrent evolutionary repurposing. This indicates intriguing functional analogy and molecular homology with plasmid-bacterial interplays. Finally, we remark that multiple addictive manipulators are affiliated with specific bacterial lineages with ancient associations with diverse eukaryotes. This suggests a possible role of addictive manipulation of protists in paving the way to the evolution of bacteria associated with multicellular organisms.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Giovannini
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
2
|
Cho A, Lax G, Livingston SJ, Masukagami Y, Naumova M, Millar O, Husnik F, Keeling PJ. Genomic analyses of Symbiomonas scintillans show no evidence for endosymbiotic bacteria but does reveal the presence of giant viruses. PLoS Genet 2024; 20:e1011218. [PMID: 38557755 PMCID: PMC11008856 DOI: 10.1371/journal.pgen.1011218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 μm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samuel J. Livingston
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yumiko Masukagami
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mariia Naumova
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Olivia Millar
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Filip Husnik
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
4
|
Characterization of a Pseudokeronopsis Strain (Ciliophora, Urostylida) and Its Bacterial Endosymbiont “Candidatus Trichorickettsia” (Alphaproteobacteria, Rickettsiales). DIVERSITY 2022. [DOI: 10.3390/d14121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symbiotic associations between bacteria and ciliate protists are rather common. In particular, several cases were reported involving bacteria of the alphaproteobacterial lineage Rickettsiales, but the diversity, features, and interactions in these associations are still poorly understood. In this work, we characterized a novel ciliate protist strain originating from Brazil and its associated Rickettsiales endosymbiont by means of live and ultrastructural observations, as well as molecular phylogeny. Though with few morphological peculiarities, the ciliate was found to be phylogenetically affiliated with Pseudokeronopsis erythrina, a euryhaline species, which is consistent with its origin from a lagoon with significant spatial and seasonal salinity variations. The bacterial symbiont was assigned to “Candidatus Trichorickettsia mobilis subsp. hyperinfectiva”, being the first documented case of a Rickettsiales associated with urostylid ciliates. It resided in the host cytoplasm and bore flagella, similarly to many, but not all, conspecifics in other host species. These findings highlight the ability of “Candidatus Trichorickettsia” to infect multiple distinct host species and underline the importance of further studies on this system, in particular on flagella and their regulation, from a functional and also an evolutionary perspective, considering the phylogenetic proximity with the well-studied and non-flagellated Rickettsia.
Collapse
|
5
|
The 'other' Rickettsiales: an overview of the family ' Candidatus Midichloriaceae'. Appl Environ Microbiol 2022; 88:e0243221. [PMID: 35108076 DOI: 10.1128/aem.02432-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The family 'Candidatus Midichloriaceae' constitutes the most diverse but least studied lineage within the important order of intracellular bacteria Rickettsiales. Midichloriaceae endosymbionts are found in many hosts, including terrestrial arthropods, aquatic invertebrates, and protists. Representatives of the family are not documented to be pathogenic, but some are associated with diseased fish or corals. Different genera display a range of unusual features, such as full sets of flagellar genes without visible flagella, or the ability to invade host mitochondria. Since studies on 'Ca. Midichloriaceae' tend to focus on the host, the family is rarely addressed as a unit and we therefore lack a coherent picture of its diversity. Here we provide four new midichloriaceae genomes and we survey molecular and ecological data from the entire family. Features like genome size, ecological context, and host transitions vary considerably even among closely related midichloriaceae, suggesting a high frequency of such shifts, incomplete sampling, or both. Important functional traits involved in energy metabolism, flagella and secretion systems were independently reduced multiple times with no obvious correspondence to host or habitat, corroborating the idea that many features of these 'professional symbionts' are largely independent of host identity. Finally, despite 'Ca. Midichloriaceae' being predominantly studied in ticks, our analyses show that the clade is mainly aquatic, with a few terrestrial offshoots. This highlights the importance of considering aquatic hosts, and protists in particular, when reconstructing the evolution of these endosymbionts and by extension all Rickettsiales. Importance Among endosymbiotic bacterial lineages, few are as intensely studied as Rickettsiales, which include the causative agents of spotted fever, typhus, and anaplasmosis. And yet, an important subgroup called 'Candidatus Midichloriaceae' receives little attention despite accounting for a third of the diversity of Rickettsiales and harbouring a wide range of bacteria with unique features, like the ability to infect mitochondria. Midichloriaceae are found in many hosts, from ticks to corals to unicellular protozoa, and studies on them tend to focus on the host groups. Here, for the first time since the establishment of this clade, we address the genomics, evolution, and ecology of 'Ca. Midichloriaceae' as a whole, highlighting trends and patterns, the remaining gaps in our knowledge, and its importance for the understanding of symbiotic processes in intracellular bacteria.
Collapse
|
6
|
“Candidatus Mystax nordicus” Aggregates with Mitochondria of Its Host, the Ciliate Paramecium nephridiatum. DIVERSITY 2020. [DOI: 10.3390/d12060251] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extensive search for new endosymbiotic systems in ciliates occasionally reverts us to the endosymbiotic bacteria described in the pre-molecular biology era and, hence, lacking molecular characterization. A pool of these endosymbionts has been referred to as a hidden bacterial biodiversity from the past. Here, we provide a description of one of such endosymbionts, retrieved from the ciliate Paramecium nephridiatum. This curve-shaped endosymbiont (CS), which shared the host cytoplasm with recently described “Candidatus Megaira venefica”, was found in the same host and in the same geographic location as one of the formerly reported endosymbiotic bacteria and demonstrated similar morphology. Based on morphological data obtained with DIC, TEM and AFM and molecular characterization by means of sequencing 16S rRNA gene, we propose a novel genus, “Candidatus Mystax”, with a single species “Ca. Mystax nordicus”. Phylogenetic analysis placed this species in Holosporales, among Holospora-like bacteria. Contrary to all Holospora species and many other Holospora-like bacteria, such as “Candidatus Gortzia”, “Candidatus Paraholospora” or “Candidatus Hafkinia”, “Ca. Mystax nordicus” was never observed inside the host nucleus. “Ca. Mystax nordicus” lacked infectivity and killer effect. The striking peculiarity of this endosymbiont was its ability to form aggregates with the host mitochondria, which distinguishes it from Holospora and Holospora-like bacteria inhabiting paramecia.
Collapse
|
7
|
Castelli M, Serra V, Senra MVX, Basuri CK, Soares CAG, Fokin SI, Modeo L, Petroni G. The Hidden World of Rickettsiales Symbionts: "Candidatus Spectririckettsia obscura," a Novel Bacterium Found in Brazilian and Indian Paramecium caudatum. MICROBIAL ECOLOGY 2019; 77:748-758. [PMID: 30105505 DOI: 10.1007/s00248-018-1243-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Symbioses between bacteria and eukaryotes are widespread and may have significant impact on the evolutionary history of symbiotic partners. The order Rickettsiales is a lineage of intracellular Alphaproteobacteria characterized by an obligate association with a wide range of eukaryotic hosts, including several unicellular organisms, such as ciliates and amoebas. In this work, we characterized the Rickettsiales symbionts associated with two different genotypes of the freshwater ciliate Paramecium caudatum originated from freshwater environments in distant geographical areas. Phylogenetic analyses based on 16S rRNA gene showed that the two symbionts are closely related to each other (99.4% identity), belong to the family Rickettsiaceae, but are far-related with respect to previously characterized Rickettsiales. Consequently, they were assigned to a new species of a novel genus, namely "Candidatus Spectririckettsia obscura." Screening on a database of short reads from 16S rRNA gene amplicon-based profiling studies confirmed that bacterial sequences related to the new symbiont are preferentially retrieved from freshwater environments, apparently with extremely scarce occurrence (< 0.1% positive samples). The present work provides new information on the still under-explored biodiversity of Rickettsiales, in particular those associated to ciliate host cells.
Collapse
Affiliation(s)
- Michele Castelli
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biosciences, University of Milan, Milan, Italy.
- Department of Biology, University of Pisa, Pisa, Italy.
| | | | - Marcus V X Senra
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, UFJF, Rio de Janeiro, Brazil
| | - Charan K Basuri
- Department of Zoology, Andhra University, Visakhapatnam, India
| | - Carlos A G Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Sergei I Fokin
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
8
|
Lanzoni O, Sabaneyeva E, Modeo L, Castelli M, Lebedeva N, Verni F, Schrallhammer M, Potekhin A, Petroni G. Diversity and environmental distribution of the cosmopolitan endosymbiont "Candidatus Megaira". Sci Rep 2019; 9:1179. [PMID: 30718604 PMCID: PMC6362216 DOI: 10.1038/s41598-018-37629-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/11/2018] [Indexed: 02/08/2023] Open
Abstract
Members of the order Rickettsiales are often found in association with ciliated protists. An interesting case is the bacterial endosymbiont “Candidatus Megaira”, which is phylogenetically closely related to the pathogen Rickettsia. “Candidatus Megaira” was first described as an intracellular bacterium in several ciliate species. Since then it has been found in association with diverse evolutionary distantly-related hosts, among them other unicellular eukaryotes, and also algae, and metazoa, such as cnidarians. We provide the characterization of several new strains of the type species “Candidatus Megaira polyxenophila”, and the multidisciplinary description of a novel species, “Candidatus Megaira venefica”, presenting peculiar features, which highlight the diversity and variability of these widespread bacterial endosymbionts. Screening of the 16S rRNA gene short amplicon database and phylogenetic analysis of 16S rRNA gene hypervariable regions revealed the presence of further hidden lineages, and provided hints on the possibility that these bacteria may be horizontally transmitted among aquatic protists and metazoa. The phylogenetic reconstruction supports the existence of at least five different separate species-level clades of “Candidatus Megaira”, and we designed a set of specific probes allowing easy recognition of the four major clades of the genus.
Collapse
Affiliation(s)
| | - Elena Sabaneyeva
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| | - Michele Castelli
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Natalia Lebedeva
- Core Facilities Centre "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | - Franco Verni
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Alexey Potekhin
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | | |
Collapse
|
9
|
Schrallhammer M, Castelli M, Petroni G. Phylogenetic relationships among endosymbiotic R-body producer: Bacteria providing their host the killer trait. Syst Appl Microbiol 2018; 41:213-220. [PMID: 29426636 DOI: 10.1016/j.syapm.2018.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 11/28/2022]
Abstract
R-body producing bacterial endosymbionts of Paramecium spp. transform their hosts into "killer" paramecia and provide them a selective advantage. This killer trait is connected to the presence of R-bodies, which are peculiar, tightly coiled protein ribbons capable of rapid unrolling. Based mainly on those two characteristics the respective obligate intracellular bacteria have been comprised in the genus Caedibacter and additional traits such as host species, subcellular localization, and R-body dimensions and mode of unrolling were used for species discrimination. Previous studies applying the full-cycle rRNA approach demonstrated the polyphyly of this assemblage. Following this approach, we obtained new sequences and in situ hybridizations for five strains of Caedibacter taeniospiralis and four strains associated to Caedibacter varicaedens and Caedibacter caryophilus. Detailed phylogenetic reconstructions confirm the association of C. taeniospiralis to Fastidiosibacteraceae and to Holosporales in case of the others. Therefore, we critically revise the taxonomy of the latter group. The high 16S rRNA gene sequence similarity among the type strains of Caedibacter varicaedens and C. caryophilus indicate that they should be classified within a single species for which we propose Caedimonas varicaedens comb. nov. owing to the priority of Caedibacter varicaedens. Moreover, we propose to establish the new family Caedimonadaceae fam. nov. to encompass Caedimonas varicaedens, "Ca. Paracaedimonas acanthamoebae" comb. nov. and "Ca. Nucleicultrix amoebiphila" within the order Holosporales.
Collapse
Affiliation(s)
- Martina Schrallhammer
- Institute of Biology II, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany.
| | - Michele Castelli
- Department of Veterinary Medicine, University of Milan, 20133 Milan, Italy; Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
10
|
Bacterial Flagellins: Does Size Matter? Trends Microbiol 2017; 26:575-581. [PMID: 29258714 DOI: 10.1016/j.tim.2017.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/20/2017] [Accepted: 11/29/2017] [Indexed: 01/31/2023]
Abstract
The bacterial flagellum is the principal organelle of motility in bacteria. Here, we address the question of size when applied to the chief flagellar protein flagellin and the flagellar filament. Surprisingly, nature furnishes multiple examples of 'giant flagellins' greater than a thousand amino acids in length, with large surface-exposed hypervariable domains. We review the contexts in which these giant flagellins occur, speculate as to their functions, and highlight the potential for biotechnology to build on what nature provides.
Collapse
|
11
|
Sabaneyeva E, Castelli M, Szokoli F, Benken K, Lebedeva N, Salvetti A, Schweikert M, Fokin S, Petroni G. Host and symbiont intraspecific variability: The case of Paramecium calkinsi and "Candidatus Trichorickettsia mobilis". Eur J Protistol 2017; 62:79-94. [PMID: 29287245 DOI: 10.1016/j.ejop.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/17/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
Abstract
Newly isolated strains of the ciliate Paramecium calkinsi and their cytoplasmic bacterial endosymbionts were characterized by a multidisciplinary approach, including live observation, ultrastructural investigation, and molecular analysis. Despite morphological resemblance, the characterized P. calkinsi strains showed a significant molecular divergence compared to conspecifics, possibly hinting for a cryptic speciation. The endosymbionts were clearly found to be affiliated to the species "Candidatus Trichorickettsia mobilis" (Rickettsiales, Rickettsiaceae), currently encompassing only bacteria retrieved in an obligate intracellular association with other ciliates. However, a relatively high degree of intraspecific divergence was observed as well, thus it was possible to split "Candidatus Trichorickettsia" into three subspecies, one of which represented so far only by the newly characterized endosymbionts of P. calkinsi. Other features distinguished the members of each different subspecies. In particular, the endosymbionts of P. calkinsi resided in the cytoplasm and possessed numerous peritrichous flagella, although no motility was evidenced, whereas their conspecifics in other hosts were either cytoplasmic and devoid of flagella, or macronuclear, displaying flagellar-driven motility. Moreover, contrarily to previously analyzed "Candidatus Trichorickettsia" hosts, infected P. calkinsi cells frequently became amicronucleate and demonstrated abnormal cell division, eventually leading to decline of the laboratory culture.
Collapse
Affiliation(s)
- E Sabaneyeva
- Department of Cytology and Histology, St. Petersburg State University, Russian Federation.
| | - M Castelli
- Department of Veterinary Medicine, University of Milan, Italy; Department of Biosciences, University of Milan, Italy
| | - F Szokoli
- Dipartimento di Biologia, Università di Pisa, Italy; Institut für Hydrobiologie, Technische Universität Dresden, Germany
| | - K Benken
- Core Facility Center for Microscopy and Microanalysis, St. Petersburg State University, Russian Federation
| | - N Lebedeva
- Core Facility Center for Cultivation of Microorganisms, St. Petersburg State University, Russian Federation
| | - A Salvetti
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Italy
| | - M Schweikert
- Institut of Biomaterials and Biomolecular Systems, Stuttgart University, Germany
| | - S Fokin
- Dipartimento di Biologia, Università di Pisa, Italy; Department of Invertebrate Zoology, St. Petersburg State University, Russian Federation
| | - G Petroni
- Dipartimento di Biologia, Università di Pisa, Italy.
| |
Collapse
|
12
|
Zaila KE, Doak TG, Ellerbrock H, Tung CH, Martins ML, Kolbin D, Yao MC, Cassidy-Hanley DM, Clark TG, Chang WJ. Diversity and Universality of Endosymbiotic Rickettsia in the Fish Parasite Ichthyophthirius multifiliis. Front Microbiol 2017; 8:189. [PMID: 28232825 PMCID: PMC5299013 DOI: 10.3389/fmicb.2017.00189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/25/2017] [Indexed: 01/04/2023] Open
Abstract
Although the presence of endosymbiotic rickettsial bacteria, specifically Candidatus Megaira, has been reported in diverse habitats and a wide range of eukaryotic hosts, it remains unclear how broadly Ca. Megaira are distributed in a single host species. In this study we seek to address whether Ca. Megaira are present in most, if not all isolates, of the parasitic ciliate Ichthyophthirius multifiliis. Conserved regions of bacterial 16S rRNA genes were either PCR amplified, or assembled from deep sequencing data, from 18 isolates/populations of I. multifiliis sampled worldwide (Brazil, Taiwan, and USA). We found that rickettsial rRNA sequences belonging to three out of four Ca. Megaira subclades could be consistently detected in all I. multifiliis samples. I. multifiliis collected from local fish farms tend to be inhabited by the same subclade of Ca. Megaira, whereas those derived from pet fish are often inhabited by more than one subclade of Ca. Megaira. Distributions of Ca. Megaira in I. multifiliis thus better reflect the travel history, but not the phylogeny, of I. multifiliis. In summary, our results suggest that I. multifiliis may be dependent on this endosymbiotic relationship, and the association between Ca. Megaira and I. multifiliis is more diverse than previously thought.
Collapse
Affiliation(s)
| | - Thomas G. Doak
- Department of Biology, Indiana University, BloomingtonIN, USA
- National Center for Genome Analysis Support, Indiana University, BloomingtonIN, USA
| | | | - Che-Huang Tung
- Department of Aquatic Biosciences, National Chyai UniversityChyai City, Taiwan
| | - Mauricio L. Martins
- Departamento de Aquicultura, Centro de Ciências Agrárias, Universidade Federal de Santa CatarinaFlorianópolis, Brazil
| | - Daniel Kolbin
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, IthacaNY, USA
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia SinicaTaipei, Taiwan
| | - Donna M. Cassidy-Hanley
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, IthacaNY, USA
| | - Theodore G. Clark
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, IthacaNY, USA
| | - Wei-Jen Chang
- Department of Biology, Hamilton College, ClintonNY, USA
- Institute of Molecular Biology, Academia SinicaTaipei, Taiwan
| |
Collapse
|
13
|
Disentangling the Taxonomy of Rickettsiales and Description of Two Novel Symbionts ("Candidatus Bealeia paramacronuclearis" and "Candidatus Fokinia cryptica") Sharing the Cytoplasm of the Ciliate Protist Paramecium biaurelia. Appl Environ Microbiol 2016; 82:7236-7247. [PMID: 27742680 PMCID: PMC5118934 DOI: 10.1128/aem.02284-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/06/2016] [Indexed: 11/20/2022] Open
Abstract
In the past 10 years, the number of endosymbionts described within the bacterial order Rickettsiales has constantly grown. Since 2006, 18 novel Rickettsiales genera inhabiting protists, such as ciliates and amoebae, have been described. In this work, we characterize two novel bacterial endosymbionts from Paramecium collected near Bloomington, IN. Both endosymbiotic species inhabit the cytoplasm of the same host. The Gram-negative bacterium “Candidatus Bealeia paramacronuclearis” occurs in clumps and is frequently associated with the host macronucleus. With its electron-dense cytoplasm and a distinct halo surrounding the cell, it is easily distinguishable from the second smaller symbiont, “Candidatus Fokinia cryptica,” whose cytoplasm is electron lucid, lacks a halo, and is always surrounded by a symbiontophorous vacuole. For molecular characterization, the small-subunit rRNA genes were sequenced and used for taxonomic assignment as well as the design of species-specific oligonucleotide probes. Phylogenetic analyses revealed that “Candidatus Bealeia paramacronuclearis” clusters with the so-called “basal” Rickettsiales, and “Candidatus Fokinia cryptica” belongs to “Candidatus Midichloriaceae.” We obtained tree topologies showing a separation of Rickettsiales into at least two groups: one represented by the families Rickettsiaceae, Anaplasmataceae, and “Candidatus Midichloriaceae” (RAM clade), and the other represented by “basal Rickettsiales,” including “Candidatus Bealeia paramacronuclearis.” Therefore, and in accordance with recent publications, we propose to limit the order Rickettsiales to the RAM clade and to raise “basal Rickettsiales” to an independent order, Holosporales ord. nov., inside Alphaproteobacteria, which presently includes four family-level clades. Additionally, we define the family “Candidatus Hepatincolaceae” and redefine the family Holosporaceae. IMPORTANCE In this paper, we provide the characterization of two novel bacterial symbionts inhabiting the same Paramecium host (Ciliophora, Alveolata). Both symbionts belong to “traditional” Rickettsiales, one representing a new species of the genus “Candidatus Fokinia” (“Candidatus Midichloriaceae”), and the other representing a new genus of a “basal” Rickettsiales. According to newly characterized sequences and to a critical revision of recent literature, we propose a taxonomic reorganization of “traditional” Rickettsiales that we split into two orders: Rickettsiales sensu stricto and Holosporales ord. nov. This work represents a critical revision, including new records of a group of symbionts frequently occurring in protists and whose biodiversity is still largely underestimated.
Collapse
|
14
|
Serra V, Fokin SI, Castelli M, Basuri CK, Nitla V, Verni F, Sandeep BV, Kalavati C, Petroni G. " Candidatus Gortzia shahrazadis", a Novel Endosymbiont of Paramecium multimicronucleatum and a Revision of the Biogeographical Distribution of Holospora-Like Bacteria. Front Microbiol 2016; 7:1704. [PMID: 27867371 PMCID: PMC5095128 DOI: 10.3389/fmicb.2016.01704] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/12/2016] [Indexed: 11/13/2022] Open
Abstract
Holospora spp. and "Candidatus Gortzia infectiva", known as Holospora-like bacteria (HLB), are commonly found as nuclear endosymbionts of ciliates, especially the Paramecium genus. HLB are related by phylogenetic relationships, morphological features, and life-cycles, which involve two alternating morphotypes: reproductive and infectious forms (RF, IF). In this paper we describe a novel species belonging to the "Ca. Gortzia" genus, detected in P. multimicronucleatum, a ciliate for which infection by an HLB has not been reported, discovered in India. This novel endosymbiont shows unusual and surprising features with respect to other HLB, such as large variations in IF morphology and the occasional ability to reproduce in the host cytoplasm. We propose the name of "Candidatus Gortzia shahrazadis" for this novel HLB. Moreover, we report two additional species of HLB from Indian Paramecium populations: "Ca. Gortzia infectiva" (from P. jenningsi), and H. obtusa (from P. caudatum); the latter is the first record of Holospora from a tropical country. Although tropical, we retrieved H. obtusa at an elevation of 706 m corresponding to a moderate climate not unlike conditions where Holospora are normally found, suggesting the genus Holospora does exist in tropical countries, but restricted to higher elevations.
Collapse
Affiliation(s)
| | - Sergei I Fokin
- Department of Biology, University of PisaPisa, Italy; Department of Invertebrate Zoology, Saint Petersburg State UniversitySaint Petersburg, Russia
| | - Michele Castelli
- Department of Biology, University of PisaPisa, Italy; Department of Veterinary Medicine, University of MilanMilan, Italy
| | - Charan K Basuri
- Department of Zoology, Andhra University Visakhapatnam, India
| | | | - Franco Verni
- Department of Biology, University of Pisa Pisa, Italy
| | - Bhagavatula V Sandeep
- Department of Zoology, Andhra UniversityVisakhapatnam, India; Department of Biotechnology, Andhra UniversityVisakhapatnam, India
| | | | | |
Collapse
|
15
|
Senra MVX, Dias RJP, Castelli M, Silva-Neto ID, Verni F, Soares CAG, Petroni G. A House for Two--Double Bacterial Infection in Euplotes woodruffi Sq1 (Ciliophora, Euplotia) Sampled in Southeastern Brazil. MICROBIAL ECOLOGY 2016; 71:505-517. [PMID: 26381539 DOI: 10.1007/s00248-015-0668-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Several ciliated protists form symbiotic associations with a diversity of microorganisms, leading to drastic impact on their ecology and evolution. In this work, two Euplotes spp. sampled in Rio de Janeiro, Brazil, were identified based on morphological and molecular features as Euplotes woodruffi strain Sq1 and E. encysticus strain Sq2 and investigated for the presence of endosymbionts. While E. woodruffi Sq1 stably hosts two bacterial populations, namely Polynucleobacter necessarius (Betaproteobacteria) and a new member of the family "Candidatus Midichloriaceae" (Alphaproteobacteria, Rickettsiales), here described as "Candidatus Bandiella woodruffii," branching with a broad host range bacterial group found in association with cnidarians, sponges, euglenoids, and some arthropods; in E. encysticus Sq2 no symbiotic bacterium could be detected. The dispersion ability of this novel bacterium was tested by co-incubating E. woodruffi Sq1 with three different ciliate species. Among the tested strains "Ca. B. woodruffii" could only be detected in association with E. encysticus Sq2 with a prevalence of 20 % after 1 week and 40 % after 2 weeks, maintaining this level for up to 6 months. Nevertheless, this apparent in vitro association was abolished when E. woodruffi Sq1 donor was removed from the microcosm, suggesting that this bacterium has the capacity for at least a short-term survival outside its natural host and the aptitude to ephemerally interact with other organisms. Together, these findings strongly suggest the need for more detailed investigations to evaluate the host range for "Ca. B. woodruffii" and any possible pathogenic effect of this bacterium on other organisms including humans.
Collapse
Affiliation(s)
- Marcus V X Senra
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Av. Carlos Chagas Filho 373 - CCS A2-120, Rio de Janeiro, 21.944-970, Brazil
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, UFJF, Rio de Janeiro, Brazil
| | - Roberto J P Dias
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, UFJF, Rio de Janeiro, Brazil
| | - Michele Castelli
- Department of Biology, University of Pisa, via A. Volta 4/6, Pisa, 56126, Italy
| | - Inácio D Silva-Neto
- Departamento de Zoologia, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Franco Verni
- Department of Biology, University of Pisa, via A. Volta 4/6, Pisa, 56126, Italy
| | - Carlos A G Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Av. Carlos Chagas Filho 373 - CCS A2-120, Rio de Janeiro, 21.944-970, Brazil.
| | - Giulio Petroni
- Department of Biology, University of Pisa, via A. Volta 4/6, Pisa, 56126, Italy.
| |
Collapse
|
16
|
Szokoli F, Sabaneyeva E, Castelli M, Krenek S, Schrallhammer M, Soares CAG, da Silva-Neto ID, Berendonk TU, Petroni G. "Candidatus Fokinia solitaria", a Novel "Stand-Alone" Symbiotic Lineage of Midichloriaceae (Rickettsiales). PLoS One 2016; 11:e0145743. [PMID: 26731731 PMCID: PMC4701390 DOI: 10.1371/journal.pone.0145743] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/08/2015] [Indexed: 12/26/2022] Open
Abstract
Recently, the family Midichloriaceae has been described within the bacterial order Rickettsiales. It includes a variety of bacterial endosymbionts detected in different metazoan host species belonging to Placozoa, Cnidaria, Arthropoda and Vertebrata. Representatives of Midichloriaceae are also considered possible etiological agents of certain animal diseases. Midichloriaceae have been found also in protists like ciliates and amoebae. The present work describes a new bacterial endosymbiont, "Candidatus Fokinia solitaria", retrieved from three different strains of a novel Paramecium species isolated from a wastewater treatment plant in Rio de Janeiro (Brazil). Symbionts were characterized through the full-cycle rRNA approach: SSU rRNA gene sequencing and fluorescence in situ hybridization (FISH) with three species-specific oligonucleotide probes. In electron micrographs, the tiny rod-shaped endosymbionts (1.2 x 0.25-0.35 μm in size) were not surrounded by a symbiontophorous vacuole and were located in the peripheral host cytoplasm, stratified in the host cortex in between the trichocysts or just below them. Frequently, they occurred inside autolysosomes. Phylogenetic analyses of Midichloriaceae apparently show different evolutionary pathways within the family. Some genera, such as "Ca. Midichloria" and "Ca. Lariskella", have been retrieved frequently and independently in different hosts and environmental surveys. On the contrary, others, such as Lyticum, "Ca. Anadelfobacter", "Ca. Defluviella" and the presently described "Ca. Fokinia solitaria", have been found only occasionally and associated to specific host species. These last are the only representatives in their own branches thus far. Present data do not allow to infer whether these genera, which we named "stand-alone lineages", are an indication of poorly sampled organisms, thus underrepresented in GenBank, or represent fast evolving, highly adapted evolutionary lineages.
Collapse
Affiliation(s)
- Franziska Szokoli
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Sascha Krenek
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Martina Schrallhammer
- Mikrobiologie, Biologisches Institut II, Albert-Ludwigs Universität Freiburg, Freiburg, Germany
| | - Carlos A. G. Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Thomas U. Berendonk
- Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| |
Collapse
|
17
|
Pucciarelli S, Devaraj RR, Mancini A, Ballarini P, Castelli M, Schrallhammer M, Petroni G, Miceli C. Microbial Consortium Associated with the Antarctic Marine Ciliate Euplotes focardii: An Investigation from Genomic Sequences. MICROBIAL ECOLOGY 2015; 70:484-97. [PMID: 25704316 PMCID: PMC4494151 DOI: 10.1007/s00248-015-0568-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/08/2015] [Indexed: 05/23/2023]
Abstract
We report the characterization of the bacterial consortium associated to Euplotes focardii, a strictly psychrophilic marine ciliate that was maintained in laboratory cultures at 4 °C after its first isolation from Terra Nova Bay, in Antarctica. By Illumina genome analyser, we obtained 11,179 contigs of potential prokaryotic origin and classified them according to the NCBI's prokaryotic attributes table. The majority of these sequences correspond to either Bacteroidetes (16 %) or Proteobacteria (78 %). The latter were dominated by gamma- (39 %, including sequences related to the pathogenic genus Francisella), and alpha-proteobacterial (30 %) sequences. Analysis of the Pfam domain family and Gene Ontology term variation revealed that the most frequent terms that appear unique to this consortium correspond to proteins involved in "transmembrane transporter activity" and "oxidoreductase activity". Furthermore, we identified genes that encode for enzymes involved in the catabolism of complex substance for energy reserves. We also characterized members of the transposase and integrase superfamilies, whose role in bacterial evolution is well documented, as well as putative antifreeze proteins. Antibiotic treatments of E. focardii cultures delayed the cell division of the ciliate. To conclude, our results indicate that this consortium is largely represented by bacteria derived from the original Antarctic sample and may contribute to the survival of E. focardii in laboratory condition. Furthermore, our results suggest that these bacteria may have a more general role in E. focardii survival in its natural cold and oxidative environment.
Collapse
Affiliation(s)
- Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032, Italy,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Schulz F, Martijn J, Wascher F, Lagkouvardos I, Kostanjšek R, Ettema TJG, Horn M. A Rickettsiales symbiont of amoebae with ancient features. Environ Microbiol 2015; 18:2326-42. [PMID: 25908022 DOI: 10.1111/1462-2920.12881] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/03/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
Abstract
The Rickettsiae comprise intracellular bacterial symbionts and pathogens infecting diverse eukaryotes. Here, we provide a detailed characterization of 'Candidatus Jidaibacter acanthamoeba', a rickettsial symbiont of Acanthamoeba. The bacterium establishes the infection in its amoeba host within 2 h where it replicates within vacuoles. Higher bacterial loads and accelerated spread of infection at elevated temperatures were observed. The infection had a negative impact on host growth rate, although no increased levels of host cell lysis were seen. Phylogenomic analysis identified this bacterium as member of the Midichloriaceae. Its 2.4 Mb genome represents the largest among Rickettsiales and is characterized by a moderate degree of pseudogenization and a high coding density. We found an unusually large number of genes encoding proteins with eukaryotic-like domains such as ankyrins, leucine-rich repeats and tetratricopeptide repeats, which likely function in host interaction. There are a total of three divergent, independently acquired type IV secretion systems, and 35 flagellar genes representing the most complete set found in an obligate intracellular Alphaproteobacterium. The deeply branching phylogenetic position of 'Candidatus Jidaibacter acanthamoeba' together with its ancient features place it closely to the rickettsial ancestor and helps to better understand the transition from a free-living to an intracellular lifestyle.
Collapse
Affiliation(s)
- Frederik Schulz
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Joran Martijn
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Florian Wascher
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Ilias Lagkouvardos
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| | - Rok Kostanjšek
- Department of Biology, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Husargatan 3, Uppsala, Sweden
| | - Matthias Horn
- Department of Microbiology and Ecosystem Science, University of Vienna, Althanstraße 14, Vienna, Austria
| |
Collapse
|
19
|
Single-cell genomics of a rare environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution. ISME JOURNAL 2015; 9:2373-85. [PMID: 25848874 DOI: 10.1038/ismej.2015.46] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/18/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
The bacterial family Rickettsiaceae includes a group of well-known etiological agents of many human and vertebrate diseases, including epidemic typhus-causing pathogen Rickettsia prowazekii. Owing to their medical relevance, rickettsiae have attracted a great deal of attention and their host-pathogen interactions have been thoroughly investigated. All known members display obligate intracellular lifestyles, and the best-studied genera, Rickettsia and Orientia, include species that are hosted by terrestrial arthropods. Their obligate intracellular lifestyle and host adaptation is reflected in the small size of their genomes, a general feature shared with all other families of the Rickettsiales. Yet, despite that the Rickettsiaceae and other Rickettsiales families have been extensively studied for decades, many details of the origin and evolution of their obligate host-association remain elusive. Here we report the discovery and single-cell sequencing of 'Candidatus Arcanobacter lacustris', a rare environmental alphaproteobacterium that was sampled from Damariscotta Lake that represents a deeply rooting sister lineage of the Rickettsiaceae. Intriguingly, phylogenomic and comparative analysis of the partial 'Candidatus Arcanobacter lacustris' genome revealed the presence chemotaxis genes and vertically inherited flagellar genes, a novelty in sequenced Rickettsiaceae, as well as several host-associated features. This finding suggests that the ancestor of the Rickettsiaceae might have had a facultative intracellular lifestyle. Our study underlines the efficacy of single-cell genomics for studying microbial diversity and evolution in general, and for rare microbial cells in particular.
Collapse
|
20
|
Castelli M, Lanzoni O, Fokin SI, Schrallhammer M, Petroni G. Response of the bacterial symbiont Holospora caryophila to different growth conditions of its host. Eur J Protistol 2014; 51:98-108. [PMID: 25635695 DOI: 10.1016/j.ejop.2014.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022]
Abstract
Previous studies on bacterial symbionts of ciliates have shown that some symbionts can be maintained relatively well under standard laboratory conditions whereas others are frequently lost, especially when the host is cultivated at a high division rate. In this study, the variation in infection level by the endosymbiont Holospora caryophila within its host population Paramecium octaurelia was investigated in response to three alimentary treatments and a subsequent starvation phase. The response of the ciliates was determined as a nearly exponential growth rate with different slopes in each treatment, proportional to the amount of food received. The initial infection level was higher than 90%. After 24 days of exponential host's growth, the prevalence remained stable at approximately 90% in all treatments, even after a subsequent starvation phase of 20 days. However, at intermediate time-points in both the feeding and the starvation phase, fluctuations in the presence of the intracellular bacteria were observed. These results show that H. caryophila is able to maintain its infection under the tested range of host growth conditions, also due to the possibility of an effective re-infection in case of partial loss.
Collapse
Affiliation(s)
- Michele Castelli
- Protistology-Zoology Unit, Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Olivia Lanzoni
- Protistology-Zoology Unit, Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Sergei I Fokin
- Protistology-Zoology Unit, Department of Biology, University of Pisa, 56126 Pisa, Italy; Department of Invertebrate Zoology, St Petersburg State University, 199034 St. Petersburg, Russia
| | - Martina Schrallhammer
- Institute of Hydrobiology, Technische Universität Dresden, 01217 Dresden, Germany; Microbiology, Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Giulio Petroni
- Protistology-Zoology Unit, Department of Biology, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
21
|
Wang Z, Wu M. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS One 2014; 9:e110685. [PMID: 25333787 PMCID: PMC4198247 DOI: 10.1371/journal.pone.0110685] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/22/2014] [Indexed: 11/18/2022] Open
Abstract
Reconstruction of mitochondrial ancestor has great impact on our understanding of the origin of mitochondria. Previous studies have largely focused on reconstructing the last common ancestor of all contemporary mitochondria (proto-mitochondria), but not on the more informative pre-mitochondria (the last common ancestor of mitochondria and their alphaproteobacterial sister clade). Using a phylogenomic approach and leveraging on the increased taxonomic sampling of alphaproteobacterial and eukaryotic genomes, we reconstructed the metabolisms of both proto-mitochondria and pre-mitochondria. Our reconstruction depicts a more streamlined proto-mitochondrion than these predicted by previous studies, and revealed several novel insights into the mitochondria-derived eukaryotic metabolisms including the lipid metabolism. Most strikingly, pre-mitochondrion was predicted to possess a plastid/parasite type of ATP/ADP translocase that imports ATP from the host, which posits pre-mitochondrion as an energy parasite that directly contrasts with the current role of mitochondria as the cell's energy producer. In addition, pre-mitochondrion was predicted to encode a large number of flagellar genes and several cytochrome oxidases functioning under low oxygen level, strongly supporting the previous finding that the mitochondrial ancestor was likely motile and capable of oxidative phosphorylation under microoxic condition.
Collapse
Affiliation(s)
- Zhang Wang
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Martin Wu
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Flagellar movement in two bacteria of the family rickettsiaceae: a re-evaluation of motility in an evolutionary perspective. PLoS One 2014; 9:e87718. [PMID: 24505307 PMCID: PMC3914857 DOI: 10.1371/journal.pone.0087718] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/02/2014] [Indexed: 01/22/2023] Open
Abstract
Bacteria of the family Rickettsiaceae have always been largely studied not only for their importance in the medical field, but also as model systems in evolutionary biology. In fact, they share a recent common ancestor with mitochondria. The most studied species, belonging to genera Rickettsia and Orientia, are hosted by terrestrial arthropods and include many human pathogens. Nevertheless, recent findings show that a large part of Rickettsiaceae biodiversity actually resides outside the group of well-known pathogenic bacteria. Collecting data on these recently described non-conventional members of the family is crucial in order to gain information on ancestral features of the whole group. Although bacteria of the family Rickettsiaceae, and of the whole order Rickettsiales, are formally described as non-flagellated prokaryotes, some recent findings renewed the debate about this feature. In this paper we report the first finding of members of the family displaying numerous flagella and active movement inside their host cells. These two new taxa are hosted in aquatic environments by protist ciliates and are described here by means of ultrastructural and molecular characterization. Data here reported suggest that the ancestor of Rickettsiales displayed flagellar movement and re-evaluate the hypothesis that motility played a key-role in the origin of mitochondria. Moreover, our study highlights that the aquatic environment represents a well exploited habitat for bacteria of the family Rickettsiaceae. Our results encourage a deep re-consideration of ecological and morphological traits of the family and of the whole order.
Collapse
|