1
|
Evans KE, Brummett L, Combrink L, Holden K, Catalina G, Farrar S, Rodriguez C, Sparkman AM. Embryonic heart rate correlates with maternal temperature and developmental stage in viviparous snakes. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110874. [PMID: 33348020 DOI: 10.1016/j.cbpa.2020.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Interactions between the environment and maternal and embryonic physiology can have critical ramifications for early-life phenotypes and survival in a range of species. A major component of the environment-maternal-embryonic nexus is the regulation of embryonic heart rate, which can have important ramifications for developmental phenology, but remains relatively unexplored in viviparous reptiles. The goal of this study was to test for a relationship between embryonic heart rate and maternal body temperature in two species of viviparous garter snakes. The embryonic heart rates of Thamnophis elegans and T. sirtalis were assessed using a field-portable ultrasound. For both T. elegans and T. sirtalis, embryonic heart rate was strongly correlated to maternal temperature. Interestingly, there was also a strong correlation between embryonic and maternal heart rate that was most likely mediated by a common response to maternal body temperature, in spite of the effects of handling during ultrasound on maternal heart rate. Furthermore, embryos at earlier developmental stages had lower heart rates. To our knowledge, this study is the first to explore embryonic heart rate in viviparous reptiles, providing a foundation for future work using ultrasonography to test ecological and evolutionary hypotheses related to developmental dynamics in free-ranging viviparous species.
Collapse
Affiliation(s)
- Kelly E Evans
- Westmont College, 955 La Paz Rd, Santa Barbara, CA 93108, USA
| | - Lilly Brummett
- Westmont College, 955 La Paz Rd, Santa Barbara, CA 93108, USA
| | - Lucia Combrink
- Westmont College, 955 La Paz Rd, Santa Barbara, CA 93108, USA
| | | | | | - Sierra Farrar
- Westmont College, 955 La Paz Rd, Santa Barbara, CA 93108, USA
| | - Caleb Rodriguez
- Westmont College, 955 La Paz Rd, Santa Barbara, CA 93108, USA
| | | |
Collapse
|
2
|
Souchet J, Bossu C, Darnet E, Le Chevalier H, Poignet M, Trochet A, Bertrand R, Calvez O, Martinez-Silvestre A, Mossoll-Torres M, Guillaume O, Clobert J, Barthe L, Pottier G, Philippe H, Gangloff EJ, Aubret F. High temperatures limit developmental resilience to high-elevation hypoxia in the snake Natrix maura (Squamata: Colubridae). Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Climate change is generating range shifts in many organisms, notably along the altitudinal gradient. However, moving up in altitude exposes organisms to lower oxygen availability, which may negatively affect development and fitness, especially at high temperatures. To test this possibility in a potentially upward-colonizing species, we artificially incubated developing embryos of the viperine snake Natrix maura Linnaeus 1758, using a split-clutch design, in conditions of extreme high elevation or low elevation at two ecologically-relevant incubation temperatures (24 and 32 °C). Embryos at low and extreme high elevations incubated at cool temperatures did not differ in development time, hatchling phenotype or locomotor performance. However, at the warmer incubation temperature and at extreme high elevation, hatching success was reduced. Further, embryonic heart rates were lower, incubation duration longer and juveniles born smaller. Nonetheless, snakes in this treatment were faster swimmers than siblings in other treatment groups, suggesting a developmental trade-off between size and performance. Constraints on development may be offset by the maintenance of important performance metrics, thus suggesting that early life-history stages will not prevent the successful colonization of high-elevation habitat even under the dual limitations of reduced oxygen and increased temperature.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Coralie Bossu
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Elodie Darnet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Hugo Le Chevalier
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Manon Poignet
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d’Histoire Naturelle, CP41, 57 rue Cuvier, Paris, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique, UMR 5174 Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, France
| | - Olivier Calvez
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | | | - Marc Mossoll-Torres
- Bomosa, Pl. Parc de la Mola, 10 Torre Caldea 7º, Les Escaldes, Andorra
- Pirenalia, c/ de la rectoria, 2 Casa Cintet, Encamp, Andorra
| | - Olivier Guillaume
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Jean Clobert
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
| | - Laurent Barthe
- Société Herpétologique de France, Muséum National d’Histoire Naturelle, CP41, 57 rue Cuvier, Paris, France
- Nature En Occitanie, 14 rue de Tivoli, Toulouse, France
| | | | - Hervé Philippe
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, QC, Canada
| | - Eric J Gangloff
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- Department of Zoology, Ohio Wesleyan University, 61 Sandusky Street, Delaware, Ohio, USA
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, UMR 5321 CNRS—Université Paul Sabatier, Moulis, France
- School of Molecular and Life Sciences, Curtin University, Brand Drive, Bentley, WA, Australia
| |
Collapse
|
3
|
Souchet J, Gangloff EJ, Micheli G, Bossu C, Trochet A, Bertrand R, Clobert J, Calvez O, Martinez-Silvestre A, Darnet E, LE Chevalier H, Guillaume O, Mossoll-Torres M, Barthe L, Pottier G, Philippe H, Aubret F. High-elevation hypoxia impacts perinatal physiology and performance in a potential montane colonizer. Integr Zool 2020; 15:544-557. [PMID: 32649806 PMCID: PMC7689776 DOI: 10.1111/1749-4877.12468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Climate change is generating range shifts in many organisms, notably along the elevational gradient in mountainous environments. However, moving up in elevation exposes organisms to lower oxygen availability, which may reduce the successful reproduction and development of oviparous organisms. To test this possibility in an upward‐colonizing species, we artificially incubated developing embryos of the viperine snake (Natrix maura) using a split‐clutch design, in conditions of extreme high elevation (hypoxia at 2877 m above sea level; 72% sea‐level equivalent O2 availability) or low elevation (control group; i.e. normoxia at 436 m above sea level). Hatching success did not differ between the two treatments. Embryos developing at extreme high elevation had higher heart rates and hatched earlier, resulting in hatchlings that were smaller in body size and slower swimmers compared to their siblings incubated at lower elevation. Furthermore, post‐hatching reciprocal transplant of juveniles showed that snakes which developed at extreme high elevation, when transferred back to low elevation, did not recover full performance compared to their siblings from the low elevation incubation treatment. These results suggest that incubation at extreme high elevation, including the effects of hypoxia, will not prevent oviparous ectotherms from producing viable young, but may pose significant physiological challenges on developing offspring in ovo. These early‐life performance limitations imposed by extreme high elevation could have negative consequences on adult phenotypes, including on fitness‐related traits.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France.,Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Gaëlle Micheli
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Coralie Bossu
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Audrey Trochet
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Romain Bertrand
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | | | - Elodie Darnet
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Hugo LE Chevalier
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| | - Marc Mossoll-Torres
- Bomosa, Pl. Parc de la Mola, Les Escaldes, Andorra.,Pirenalia, Encamp, Andorra
| | | | | | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France.,Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Canada
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale du Centre National de la Recherche Scientifique, Moulis, France
| |
Collapse
|
4
|
Hulbert AC, Mitchell TS, Hall JM, Guiffre CM, Douglas DC, Warner DA. The effects of incubation temperature and experimental design on heart rates of lizard embryos. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2017; 327:466-476. [DOI: 10.1002/jez.2135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/15/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Austin C. Hulbert
- Department of Biological Sciences; Auburn University; Auburn Alabama
| | | | - Joshua M. Hall
- Department of Biological Sciences; Auburn University; Auburn Alabama
| | - Cassia M. Guiffre
- Department of Biological Sciences; Auburn University; Auburn Alabama
| | | | - Daniel A. Warner
- Department of Biological Sciences; Auburn University; Auburn Alabama
| |
Collapse
|
5
|
Aubret F, Bignon F, Bouffet-Halle A, Blanvillain G, Kok PJR, Souchet J. Yolk removal generates hatching asynchrony in snake eggs. Sci Rep 2017; 7:3041. [PMID: 28596606 PMCID: PMC5465057 DOI: 10.1038/s41598-017-03355-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/26/2017] [Indexed: 11/09/2022] Open
Abstract
Hatching synchrony is wide-spread amongst egg-laying species and is thought to enhance offspring survival, notably by diluting predation risks. Turtle and snake eggs were shown to achieve synchronous hatching by altering development rates (where less advanced eggs may accelerate development) or by hatching prematurely (where underdeveloped embryos hatch concurrently with full-term embryos). In Natricine snakes, smaller eggs tend to slow down metabolism throughout incubation in order to hatch synchronously with larger eggs. To explore the underlying mechanism of this phenomenon we experimentally manipulated six clutches, where half of the eggs were reduced in mass by removing 7.2% of yolk, and half were used as the control. The former experienced higher heart rates throughout the incubation period, hatched earlier and produced smaller hatchlings than the latter. This study supports the idea that developmental rates are related to egg mass in snake eggs and demonstrates that the relationship can be influenced by removing yolk after egg-laying. The shift in heart rates however occurred in the opposite direction to expected, with higher heart rates in yolk-removed eggs resulting in earlier hatching rather than lower heart rates resulting in synchronous hatching, warranting further research on the topic.
Collapse
Affiliation(s)
- Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale, Oula-Lab, CNRS, UMR 5321, 09200, Moulis, France.
| | - Florent Bignon
- Station d'Ecologie Théorique et Expérimentale, Oula-Lab, CNRS, UMR 5321, 09200, Moulis, France
| | - Alix Bouffet-Halle
- Station d'Ecologie Théorique et Expérimentale, Oula-Lab, CNRS, UMR 5321, 09200, Moulis, France
| | - Gaëlle Blanvillain
- Station d'Ecologie Théorique et Expérimentale, Oula-Lab, CNRS, UMR 5321, 09200, Moulis, France
| | - Philippe J R Kok
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, 2 Pleinlaan, B-1050, Brussels, Belgium
| | - Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale, Oula-Lab, CNRS, UMR 5321, 09200, Moulis, France
| |
Collapse
|
6
|
Sartori MR, Abe AS, Crossley DA, Taylor EW. Rates of oxygen uptake increase independently of changes in heart rate in late stages of development and at hatching in the green iguana, Iguana iguana. Comp Biochem Physiol A Mol Integr Physiol 2017; 205:28-34. [DOI: 10.1016/j.cbpa.2016.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
7
|
Aubret F, Bignon F, Kok PJR, Blanvillain G. Only child syndrome in snakes: Eggs incubated alone produce asocial individuals. Sci Rep 2016; 6:35752. [PMID: 27761007 PMCID: PMC5071763 DOI: 10.1038/srep35752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/30/2016] [Indexed: 11/09/2022] Open
Abstract
Egg-clustering and communal nesting behaviours provide advantages to offspring. Advantages range from anti-predatory benefits, maintenance of moisture and temperature levels within the nest, preventing the eggs from rolling, to enabling hatching synchrony through embryo communication. It was recently suggested that embryo communication may extend beyond development fine-tuning, and potentially convey information about the quality of the natal environment as well as provide an indication of forthcoming competition amongst siblings, conspecifics or even heterospecifics. Here we show that preventing embryos from communicating not only altered development rates but also strongly influenced post-natal social behaviour in snakes. Clutches of water snakes, Natrix maura, were split evenly into half-clutches and incubated as (1) clusters (i.e. eggs in physical contact with each other) or (2) as single eggs placed in individual goblets (i.e. no physical contact amongst sibling eggs). Single incubated eggs produced less-sociable young snakes than their siblings that were incubated in a cluster: the former were more active, less aggregated and physically contacted each other less often than the latter. Potential long-term effects and evolutionary drivers for this new example of informed dispersal are discussed.
Collapse
Affiliation(s)
- Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale, CNRS, UMR 5321, 09200 Moulis, France
| | - Florent Bignon
- Station d'Ecologie Théorique et Expérimentale, CNRS, UMR 5321, 09200 Moulis, France
| | - Philippe J R Kok
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, 2 Pleinlaan, B-1050 Brussels, Belgium
| | - Gaëlle Blanvillain
- Station d'Ecologie Théorique et Expérimentale, CNRS, UMR 5321, 09200 Moulis, France
| |
Collapse
|
8
|
Catenazzi A. Ecological implications of metabolic compensation at low temperatures in salamanders. PeerJ 2016; 4:e2072. [PMID: 27257549 PMCID: PMC4888306 DOI: 10.7717/peerj.2072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 05/03/2016] [Indexed: 11/20/2022] Open
Abstract
Global warming is influencing the biology of the world's biota. Temperature increases are occurring at a faster pace than that experienced by organisms in their evolutionary histories, limiting the organisms' response to new conditions. Mechanistic models that include physiological traits can help predict species' responses to warming. Changes in metabolism at high temperatures are often examined; yet many species are behaviorally shielded from high temperatures. Salamanders generally favor cold temperatures and are one of few groups of metazoans to be most species-rich in temperate regions. I examined variation in body temperature, behavioral activity, and temperature dependence of resting heart rate, used as a proxy for standard metabolic rate, in fire salamanders (Salamandra salamandra). Over 26 years, I found that salamanders are behaviorally active at temperatures as low as 1 °C, and aestivate at temperatures above 16 °C. Infrared thermography indicates limited thermoregulation opportunities for these nocturnal amphibians. Temperature affects resting heart rate, causing metabolic depression above 11 °C, and metabolic compensation below 8 °C: heart rate at 3 °C is 224% the expected heart rate. Thus, salamanders operating at low temperatures during periods of peak behavioral activity are able to maintain a higher metabolic rate than the rate expected in absence of compensation. This compensatory mechanism has important ecological implications, because it increases estimated seasonal heart rates. Increased heart rate, and thus metabolism, will require higher caloric intake for field-active salamanders. Thus, it is important to consider a species performance breadth over the entire temperature range, and particularly low temperatures that are ecologically relevant for cold tolerant species such as salamanders.
Collapse
Affiliation(s)
- Alessandro Catenazzi
- Department of Zoology, Southern Illinois University Carbondale , Carbondale, IL , USA
| |
Collapse
|
9
|
Heartbeat, embryo communication and hatching synchrony in snake eggs. Sci Rep 2016; 6:23519. [PMID: 26988725 PMCID: PMC4796811 DOI: 10.1038/srep23519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/08/2016] [Indexed: 11/08/2022] Open
Abstract
Communication is central to life at all levels of complexity, from cells to organs, through to organisms and communities. Turtle eggs were recently shown to communicate with each other in order to synchronise their development and generate beneficial hatching synchrony. Yet the mechanism underlying embryo to embryo communication remains unknown. Here we show that within a clutch, developing snake embryos use heart beats emanating from neighbouring eggs as a clue for their metabolic level, in order to synchronise development and ultimately hatching. Eggs of the water snake Natrix maura increased heart rates and hatched earlier than control eggs in response to being incubated in physical contact with more advanced eggs. The former produced shorter and slower swimming young than their control siblings. Our results suggest potential fitness consequences of embryo to embryo communication and describe a novel driver for the evolution of egg-clustering behaviour in animals.
Collapse
|
10
|
An appraisal of the use of an infrared digital monitoring system for long-term measurement of heart rate in reptilian embryos. Comp Biochem Physiol A Mol Integr Physiol 2015; 188:17-21. [DOI: 10.1016/j.cbpa.2015.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 11/15/2022]
|
11
|
Aubret F, Blanvillain G, Kok PJR. Myth busting? Effects of embryo positioning and egg turning on hatching success in the water snake Natrix maura. Sci Rep 2015; 5:13385. [PMID: 26294250 PMCID: PMC4543940 DOI: 10.1038/srep13385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/21/2015] [Indexed: 12/01/2022] Open
Abstract
It is a common belief that reptile eggs should not be turned after oviposition once the embryo has attached itself to the inner membrane of the shell as it might kill developing embryos. Here, we used 338 eggs from 32 clutches of the water snake Natrix maura to (1) thoroughly describe natural clutch arrangement, (2) experimentally assess the effects of natural embryo positioning and (3) egg turning on embryo metabolism, hatching success, and hatchling phenotype. Clutches contained, on average, 59% of embryos located at the top, 28% at the bottom, and 14% on a side of the egg. Larger females laid larger clutches with higher proportion of top located embryos. Top embryos displayed higher metabolic rates (heart rates), shorter incubation time, and produced lighter and shorter snakes than bottom embryos. Egg turning did not significantly influence egg development, hatching success or hatchling phenotypes. However, post-birth mortality was significantly higher in turned (37.5%) compared to unturned (4.5%) embryos, providing support to the common belief that eggs should not be moved from their natural position.
Collapse
Affiliation(s)
- Fabien Aubret
- Station d'Ecologie Expérimentale de Moulis, CNRS, 09200 Moulis, France
| | | | - Philippe J R Kok
- Biology Department, Amphibian Evolution Lab, Vrije Universiteit Brussel, 2 Pleinlaan, B-1050 Brussels, Belgium
| |
Collapse
|
12
|
Ho DH. Transgenerational epigenetics: the role of maternal effects in cardiovascular development. Integr Comp Biol 2014; 54:43-51. [PMID: 24813463 DOI: 10.1093/icb/icu031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transgenerational epigenetics, the study of non-genetic transfer of information from one generation to the next, has gained much attention in the past few decades due to the fact that, in many instances, epigenetic processes outweigh direct genetic processes in the manifestation of aberrant phenotypes across several generations. Maternal effects, or the influences of maternal environment, phenotype, and/or genotype on offsprings' phenotypes, independently of the offsprings' genotypes, are a subcategory of transgenerational epigenetics. Due to the intimate role of the mother during early development in animals, there is much interest in investigating the means by which maternal effects can shape the individual. Maternal effects are responsible for cellular organization, determination of the body axis, initiation and maturation of organ systems, and physiological performance of a wide variety of species and biological systems. The cardiovascular system is the first to become functional and can significantly influence the development of other organ systems. Thus, it is important to elucidate the role of maternal effects in cardiovascular development, and to understand its impact on adult cardiovascular health. Topics to be addressed include: (1) how and when do maternal effects change the developmental trajectory of the cardiovascular system to permanently alter the adult's cardiovascular phenotype, (2) what molecular mechanisms have been associated with maternally induced cardiovascular phenotypes, and (3) what are the evolutionary implications of maternally mediated changes in cardiovascular phenotype?
Collapse
Affiliation(s)
- Dao H Ho
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Birmingham, University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|