1
|
Jonsmoen UL, Malyshev D, Öberg R, Dahlberg T, Aspholm ME, Andersson M. Endospore pili: Flexible, stiff, and sticky nanofibers. Biophys J 2023; 122:2696-2706. [PMID: 37218131 PMCID: PMC10397575 DOI: 10.1016/j.bpj.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/29/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Species belonging to the Bacillus cereus group form endospores (spores) whose surface is decorated with micrometers-long and nanometers-wide endospore appendages (Enas). The Enas have recently been shown to represent a completely novel class of Gram-positive pili. They exhibit remarkable structural properties making them extremely resilient to proteolytic digestion and solubilization. However, little is known about their functional and biophysical properties. In this work, we apply optical tweezers to manipulate and assess how wild-type and Ena-depleted mutant spores immobilize on a glass surface. Furthermore, we utilize optical tweezers to extend S-Ena fibers to measure their flexibility and tensile stiffness. Finally, by oscillating single spores, we examine how the exosporium and Enas affect spores' hydrodynamic properties. Our results show that S-Enas (μm-long pili) are not as effective as L-Enas in immobilizing spores to glass surfaces but are involved in forming spore-to-spore connections, holding the spores together in a gel-like state. The measurements also show that S-Enas are flexible but tensile stiff fibers, which support structural data suggesting that the quaternary structure is composed of subunits arranged in a complex to produce a bendable fiber (helical turns can tilt against each other) with limited axial fiber extensibility. Finally, the results show that the hydrodynamic drag is 1.5 times higher for wild-type spores expressing S- and L-Enas compared with mutant spores expressing only L-Enas or "bald spores" lacking Ena, and 2 times higher compared with spores of the exosporium-deficient strain. This study unveils novel findings on the biophysics of S- and L-Enas, their role in spore aggregation, binding of spores to glass, and their mechanical behavior upon exposure to drag forces.
Collapse
Affiliation(s)
- Unni Lise Jonsmoen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | | | - Rasmus Öberg
- Department of Physics, Umeå University, Umeå, Sweden
| | | | - Marina E Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway.
| | - Magnus Andersson
- Department of Physics, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå, Sweden.
| |
Collapse
|
2
|
Werneburg GT. Catheter-Associated Urinary Tract Infections: Current Challenges and Future Prospects. Res Rep Urol 2022; 14:109-133. [PMID: 35402319 PMCID: PMC8992741 DOI: 10.2147/rru.s273663] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/27/2022] [Indexed: 12/15/2022] Open
Abstract
Catheter-associated urinary tract infection (CAUTI) is the most common healthcare-associated infection and cause of secondary bloodstream infections. Despite many advances in diagnosis, prevention and treatment, CAUTI remains a severe healthcare burden, and antibiotic resistance rates are alarmingly high. In this review, current CAUTI management paradigms and challenges are discussed, followed by future prospects as they relate to the diagnosis, prevention, and treatment. Clinical and translational evidence will be evaluated, as will key basic science studies that underlie preventive and therapeutic approaches. Novel diagnostic strategies and treatment decision aids under development will decrease the time to diagnosis and improve antibiotic accuracy and stewardship. These include several classes of biomarkers often coupled with artificial intelligence algorithms, cell-free DNA, and others. New preventive strategies including catheter coatings and materials, vaccination, and bacterial interference are being developed and investigated. The antibiotic pipeline remains insufficient, and new strategies for the identification of new classes of antibiotics, and rational design of small molecule inhibitor alternatives, are under development for CAUTI treatment.
Collapse
Affiliation(s)
- Glenn T Werneburg
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
3
|
Ramezanalizadeh F, Owlia P, Rasooli I. Type I pili, CsuA/B and FimA induce a protective immune response against Acinetobacter baumannii. Vaccine 2020; 38:5436-5446. [DOI: 10.1016/j.vaccine.2020.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
|
4
|
Zheng W, Andersson M, Mortezaei N, Bullitt E, Egelman E. Cryo-EM structure of the CFA/I pilus rod. IUCRJ 2019; 6:815-821. [PMID: 31576215 PMCID: PMC6760452 DOI: 10.1107/s2052252519007966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
Enterotoxigenic Escherichia coli (ETEC) are common agents of diarrhea for travelers and a major cause of mortality in children in developing countries. To attach to intestinal cells ETEC express colonization factors, among them CFA/I, which are the most prevalent factors and are the archetypical representative of class 5 pili. The helical quaternary structure of CFA/I can be unwound under tensile force and it has been shown that this mechanical property helps bacteria to withstand shear forces from fluid motion. We report in this work the CFA/I pilus structure at 4.3 Å resolution from electron cryomicroscopy (cryo-EM) data, and report details of the donor strand complementation. The CfaB pilins modeled into the cryo-EM map allow us to identify the buried surface area between subunits, and these regions are correlated to quaternary structural stability in class 5 and chaperone-usher pili. In addition, from the model built using the EM structure we also predicted that residue 13 (proline) of the N-terminal β-strand could have a major impact on the filament's structural stability. Therefore, we used optical tweezers to measure and compare the stability of the quaternary structure of wild type CFA/I and a point-mutated CFA/I with a propensity for unwinding. We found that pili with this mutated CFA/I require a lower force to unwind, supporting our hypothesis that Pro13 is important for structural stability. The high-resolution CFA/I pilus structure presented in this work and the analysis of structural stability will be useful for the development of novel antimicrobial drugs that target adhesion pili needed for initial attachment and sustained adhesion of ETEC.
Collapse
Affiliation(s)
- Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | | | | | - Esther Bullitt
- Physiology and Biophysics, Boston University School of Medicine, 700 Albany Street, Boston, MA 02118, USA
| | - Edward Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Abstract
The chaperone-usher (CU) pathway is a conserved secretion system dedicated to the assembly of a superfamily of virulence-associated surface structures by a wide range of Gram-negative bacteria. Pilus biogenesis by the CU pathway requires two specialized assembly components: a dedicated periplasmic chaperone and an integral outer membrane assembly and secretion platform termed the usher. The CU pathway assembles a variety of surface fibers, ranging from thin, flexible filaments to rigid, rod-like organelles. Pili typically act as adhesins and function as virulence factors that mediate contact with host cells and colonization of host tissues. Pilus-mediated adhesion is critical for early stages of infection, allowing bacteria to establish a foothold within the host. Pili are also involved in modulation of host cell signaling pathways, bacterial invasion into host cells, and biofilm formation. Pili are critical for initiating and sustaining infection and thus represent attractive targets for the development of antivirulence therapeutics. Such therapeutics offer a promising alternative to broad-spectrum antibiotics and provide a means to combat antibiotic resistance and treat infection while preserving the beneficial microbiota. A number of strategies have been taken to develop antipilus therapeutics, including vaccines against pilus proteins, competitive inhibitors of pilus-mediated adhesion, and small molecules that disrupt pilus biogenesis. Here we provide an overview of the function and assembly of CU pili and describe current efforts aimed at interfering with these critical virulence structures.
Collapse
|
6
|
Zhang H, Söderholm N, Sandblad L, Wiklund K, Andersson M. DSeg: A Dynamic Image Segmentation Program to Extract Backbone Patterns for Filamentous Bacteria and Hyphae Structures. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2019; 25:711-719. [PMID: 30894244 DOI: 10.1017/s1431927619000308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Analysis of numerous filamentous structures in an image is often limited by the ability of algorithms to accurately segment complex structures or structures within a dense population. It is even more problematic if these structures continuously grow when recording a time-series of images. To overcome these issues we present DSeg; an image analysis program designed to process time-series image data, as well as single images, to segment filamentous structures. The program includes a robust binary level-set algorithm modified to use size constraints, edge intensity, and past information. We verify our algorithms using synthetic data, differential interference contrast images of filamentous prokaryotes, and transmission electron microscopy images of bacterial adhesion fimbriae. DSeg includes automatic segmentation, tools for analysis, and drift correction, and outputs statistical data such as persistence length, growth rate, and growth direction. The program is available at Sourceforge.
Collapse
Affiliation(s)
- Hanqing Zhang
- Department of Physics,Umeå University,901 87 Umeå,Sweden
| | - Niklas Söderholm
- Department of Molecular Biology,Umeå University,901 87 Umeå,Sweden
| | - Linda Sandblad
- Department of Molecular Biology,Umeå University,901 87 Umeå,Sweden
| | | | | |
Collapse
|
7
|
Spaulding CN, Schreiber HL, Zheng W, Dodson KW, Hazen JE, Conover MS, Wang F, Svenmarker P, Luna-Rico A, Francetic O, Andersson M, Hultgren S, Egelman EH. Functional role of the type 1 pilus rod structure in mediating host-pathogen interactions. eLife 2018; 7:31662. [PMID: 29345620 PMCID: PMC5798934 DOI: 10.7554/elife.31662] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
Uropathogenic E. coli (UPEC), which cause urinary tract infections (UTI), utilize type 1 pili, a chaperone usher pathway (CUP) pilus, to cause UTI and colonize the gut. The pilus rod, comprised of repeating FimA subunits, provides a structural scaffold for displaying the tip adhesin, FimH. We solved the 4.2 Å resolution structure of the type 1 pilus rod using cryo-electron microscopy. Residues forming the interactive surfaces that determine the mechanical properties of the rod were maintained by selection based on a global alignment of fimA sequences. We identified mutations that did not alter pilus production in vitro but reduced the force required to unwind the rod. UPEC expressing these mutant pili were significantly attenuated in bladder infection and intestinal colonization in mice. This study elucidates an unappreciated functional role for the molecular spring-like property of type 1 pilus rods in host-pathogen interactions and carries important implications for other pilus-mediated diseases. Escherichia coli, or E. coli for short, is a type of bacteria commonly found in the guts of people and animals. Certain types of E. coli can cause urinary tract infections (UTIs): they travel from the digestive tract up to the bladder (and sometimes to the kidneys) where they provoke painful symptoms. To cause the infection, the bacteria must become solidly attached to the lining of the bladder; otherwise they will get flushed out whenever urine is expelled. Pili are hair-like structures that cover a bacterium and allow it to attach to surfaces. E. coli has many different types of pili, but one seems particularly important in UTIs: type 1 pili. These pili are formed of subunits that assemble into a long coil-shaped rod, which is tipped by adhesive molecules that can stick to body surfaces. The current hypothesis is that the pili act as shock absorbers: when the bladder empties, the pili’s coil-like structure can unwind into a flexible straight fiber. This would take some of the forces off the adhesive molecules that are attached to the bladder, and help the bacteria to remain in place when urine flows out. However, the exact structure of type 1 pili is still unclear, and the essential role of their coil-like shape unconfirmed. Here, Spaulding, Schreiber, Zheng et al. use a microscopy method called cryo-EM to reveal the structure of the type 1 pili at near atomic-level, and identify the key units necessary for their coiling properties. The experiments show that pili with certain mutations in these units unwind much more easily when the bacteria carrying them are ‘tugged on’ with molecular tweezers. The bacteria with mutant pili are also less able to cause UTIs in mice. The coiling ability of the type 1 pili is therefore essential for E. coli to invade and colonize the bladder. Every year, over 150 million people worldwide experience a UTI; for 25% of women, the infection regularly returns. Antibiotics usually treat the problem but bacteria are becoming resistant to these drugs. New treatments could be designed if scientists understand what roles pili play in the infection mechanisms.
Collapse
Affiliation(s)
- Caitlin N Spaulding
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Henry Louis Schreiber
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| | - Karen W Dodson
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Jennie E Hazen
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Matt S Conover
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| | | | - Areli Luna-Rico
- Department of Structural Biology and Chemistry, Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | - Olivera Francetic
- Department of Structural Biology and Chemistry, Institut Pasteur, Biochemistry of Macromolecular Interactions Unit, Paris, France
| | | | - Scott Hultgren
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, United States
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, United States
| |
Collapse
|
8
|
Antibodies Damage the Resilience of Fimbriae, Causing Them To Be Stiff and Tangled. J Bacteriol 2016; 199:JB.00665-16. [PMID: 27795330 DOI: 10.1128/jb.00665-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/12/2016] [Indexed: 01/23/2023] Open
Abstract
As adhesion fimbriae are a major virulence factor for many pathogenic Gram-negative bacteria, they are also potential targets for antibodies. Fimbriae are commonly required for initiating the colonization that leads to disease, and their success as adhesion organelles lies in their ability to both initiate and sustain bacterial attachment to epithelial cells. The ability of fimbriae to unwind and rewind their helical filaments presumably reduces their detachment from tissue surfaces with the shear forces that accompany significant fluid flow. Therefore, the disruption of functional fimbriae by inhibiting this resilience should have high potential for use as a vaccine to prevent disease. In this study, we show that two characteristic biomechanical features of fimbrial resilience, namely, the extension force and the extension length, are significantly altered by the binding of antibodies to fimbriae. The fimbriae that were studied are normally expressed on enterotoxigenic Escherichia coli, which are a major cause of diarrheal disease. This alteration in biomechanical properties was observed with bivalent polyclonal antifimbrial antibodies that recognize major pilin subunits but not with the Fab fragments of these antibodies. Thus, we propose that the mechanism by which bound antibodies disrupt the uncoiling of natural fimbria under force is by clamping together layers of the helical filament, thereby increasing their stiffness and reducing their resilience during fluid flow. In addition, we propose that antibodies tangle fimbriae via bivalent binding, i.e., by binding to two individual fimbriae and linking them together. Use of antibodies to disrupt physical properties of fimbriae may be generally applicable to the large number of Gram-negative bacteria that rely on these surface-adhesion molecules as an essential virulence factor. IMPORTANCE Our study shows that the resiliency of colonization factor antigen I (CFA/I) and coli surface antigen 2 (CS2) fimbriae, which are current targets for vaccine development, can be compromised significantly in the presence of antifimbrial antibodies. It is unclear how the humoral immune system specifically interrupts infection after the attachment of enterotoxigenic Escherichia coli (ETEC) to the epithelial surface. Our study indicates that immunoglobulins, in addition to their well-documented role in adaptive immunity, can mechanically damage the resilience of fimbriae of surface-attached ETEC, thereby revealing a new mode of action. Our data suggest a mechanism whereby antibodies coat adherent and free-floating bacteria to impede fimbrial resilience. Further elucidation of this possible mechanism is likely to inform the development and refinement of preventive vaccines against ETEC diarrhea.
Collapse
|
9
|
Zakrisson J, Singh B, Svenmarker P, Wiklund K, Zhang H, Hakobyan S, Ramstedt M, Andersson M. Detecting Bacterial Surface Organelles on Single Cells Using Optical Tweezers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4521-9. [PMID: 27088225 DOI: 10.1021/acs.langmuir.5b03845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bacterial cells display a diverse array of surface organelles that are important for a range of processes such as intercellular communication, motility and adhesion leading to biofilm formation, infections, and bacterial spread. More specifically, attachment to host cells by Gram-negative bacteria are mediated by adhesion pili, which are nanometers wide and micrometers long fibrous organelles. Since these pili are significantly thinner than the wavelength of visible light, they cannot be detected using standard light microscopy techniques. At present, there is no fast and simple method available to investigate if a single cell expresses pili while keeping the cell alive for further studies. In this study, we present a method to determine the presence of pili on a single bacterium. The protocol involves imaging the bacterium to measure its size, followed by predicting the fluid drag based on its size using an analytical model, and thereafter oscillating the sample while a single bacterium is trapped by an optical tweezer to measure its effective fluid drag. Comparison between the predicted and the measured fluid drag thereby indicate the presence of pili. Herein, we verify the method using polymer coated silica microspheres and Escherichia coli bacteria expressing adhesion pili. Our protocol can in real time and within seconds assist single cell studies by distinguishing between piliated and nonpiliated bacteria.
Collapse
Affiliation(s)
- Johan Zakrisson
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Bhupender Singh
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Pontus Svenmarker
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Krister Wiklund
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Hanqing Zhang
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Shoghik Hakobyan
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Madeleine Ramstedt
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| | - Magnus Andersson
- Department of Physics, and ‡Department of Chemistry, Umeå University , 901 87 Umeå, Sweden
| |
Collapse
|
10
|
Paixão AC, Ferreira AC, Fontes M, Themudo P, Albuquerque T, Soares MC, Fevereiro M, Martins L, de Sá MIC. Detection of virulence-associated genes in pathogenic and commensal avian Escherichia coli isolates. Poult Sci 2016; 95:1646-1652. [PMID: 26976911 DOI: 10.3382/ps/pew087] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 11/20/2022] Open
Abstract
Poultry colibacillosis due to Avian Pathogenic Escherichia coli (APEC) is responsible for several extra-intestinal pathological conditions, leading to serious economic damage in poultry production. The most commonly associated pathologies are airsacculitis, colisepticemia, and cellulitis in broiler chickens, and salpingitis and peritonitis in broiler breeders. In this work a total of 66 strains isolated from dead broiler breeders affected with colibacillosis and 61 strains from healthy broilers were studied. Strains from broiler breeders were typified with serogroups O2, O18, and O78, which are mainly associated with disease. The serogroup O78 was the most prevalent (58%). All the strains were checked for the presence of 11 virulence genes: 1) arginine succinyltransferase A (astA); ii) E.coli hemeutilization protein A (chuA); iii) colicin V A/B (cvaA/B); iv) fimbriae mannose-binding type 1 (fimC); v) ferric yersiniabactin uptake A (fyuA); vi) iron-repressible high-molecular-weight proteins 2 (irp2); vii) increased serum survival (iss); viii) iron-uptake systems of E.coli D (iucD); ix) pielonefritis associated to pili C (papC); x) temperature sensitive haemaglutinin (tsh), and xi) vacuolating autotransporter toxin (vat), by Multiplex-PCR. The results showed that all genes are present in both commensal and pathogenic E. coli strains. The iron uptake-related genes and the serum survival gene were more prevalent among APEC. The adhesin genes, except tsh, and the toxin genes, except astA, were also more prevalent among APEC isolates. Except for astA and tsh, APEC strains harbored the majority of the virulence-associated genes studied and fimC was the most prevalent gene, detected in 96.97 and 88.52% of APEC and AFEC strains, respectively. Possession of more than one iron transport system seems to play an important role on APEC survival.
Collapse
Affiliation(s)
- A C Paixão
- Department of Chemistry, School of Sciences and Technology, University of Évora. 7000-093 Évora, Portugal.
| | - A C Ferreira
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - M Fontes
- Sociedade Agrícola da Quinta da Freiria, Valouro Group. Quinta da Freiria, Roliça, 2540-671 Roliça, Portugal
| | - P Themudo
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - T Albuquerque
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - M C Soares
- Sociedade Agrícola da Quinta da Freiria, Valouro Group. Quinta da Freiria, Roliça, 2540-671 Roliça, Portugal
| | - M Fevereiro
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| | - L Martins
- Department of Veterinary Medicine, School of Sciences and Technology, and Veterinary Hospital - University of Évora. Núcleo da Mitra, 7000-093 Évora, Portugal; Institute of Mediterranean Agricultural and Environmental Science (ICAAM), University of Évora. Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | - M I Corrêa de Sá
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV). Rua General Morais Sarmento, s/n 1500-311 Lisboa, Portugal
| |
Collapse
|
11
|
Antibody-mediated disruption of the mechanics of CS20 fimbriae of enterotoxigenic Escherichia coli. Sci Rep 2015; 5:13678. [PMID: 26411657 PMCID: PMC4585931 DOI: 10.1038/srep13678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/03/2015] [Indexed: 02/07/2023] Open
Abstract
Preventive vaccines against enterotoxigenic Escherichia coli (ETEC) are being developed, many of which target common fimbrial colonization factors as the major constituent, based on empirical evidence that these function as protective antigens. Particularly, passive oral administration of ETEC anti-fimbrial antibodies prevent ETEC diarrhea. Little is, however, known regarding the specific mechanisms by which intestinal antibodies against ETEC fimbriae function to prevent disease. Using coli surface antigen 20 (CS20) fimbriae as a model ETEC colonization factor, we show using force spectroscopy that anti-fimbrial antibodies diminish fimbrial elasticity by inhibiting their natural capacity to unwind and rewind. In the presence of anti-CS20 antibodies the force required to unwind a single fimbria was increased several-fold and the extension length was shortened several-fold. Similar measurements in the presence of anti-CS20 Fab fragments did not show any effect, indicating that bivalent antibody binding is required to reduce fimbrial elasticity. Based on these findings, we propose a model for an in-vivo mechanism whereby antibody-mediated disruption of the biomechanical properties of CS20 fimbriae impedes sustained adhesion of ETEC to the intestinal mucosal surface. Further elucidation of the role played by intestinal antibodies in mechanical disruption of fimbrial function may provide insights relevant to ETEC vaccine development.
Collapse
|
12
|
Gault J, Ferber M, Machata S, Imhaus AF, Malosse C, Charles-Orszag A, Millien C, Bouvier G, Bardiaux B, Péhau-Arnaudet G, Klinge K, Podglajen I, Ploy MC, Seifert HS, Nilges M, Chamot-Rooke J, Duménil G. Neisseria meningitidis Type IV Pili Composed of Sequence Invariable Pilins Are Masked by Multisite Glycosylation. PLoS Pathog 2015; 11:e1005162. [PMID: 26367394 PMCID: PMC4569582 DOI: 10.1371/journal.ppat.1005162] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/20/2015] [Indexed: 12/27/2022] Open
Abstract
The ability of pathogens to cause disease depends on their aptitude to escape the immune system. Type IV pili are extracellular filamentous virulence factors composed of pilin monomers and frequently expressed by bacterial pathogens. As such they are major targets for the host immune system. In the human pathogen Neisseria meningitidis, strains expressing class I pilins contain a genetic recombination system that promotes variation of the pilin sequence and is thought to aid immune escape. However, numerous hypervirulent clinical isolates express class II pilins that lack this property. This raises the question of how they evade immunity targeting type IV pili. As glycosylation is a possible source of antigenic variation it was investigated using top-down mass spectrometry to provide the highest molecular precision on the modified proteins. Unlike class I pilins that carry a single glycan, we found that class II pilins display up to 5 glycosylation sites per monomer on the pilus surface. Swapping of pilin class and genetic background shows that the pilin primary structure determines multisite glycosylation while the genetic background determines the nature of the glycans. Absence of glycosylation in class II pilins affects pilus biogenesis or enhances pilus-dependent aggregation in a strain specific fashion highlighting the extensive functional impact of multisite glycosylation. Finally, molecular modeling shows that glycans cover the surface of class II pilins and strongly decrease antibody access to the polypeptide chain. This strongly supports a model where strains expressing class II pilins evade the immune system by changing their sugar structure rather than pilin primary structure. Overall these results show that sequence invariable class II pilins are cloaked in glycans with extensive functional and immunological consequences. During infection pathogens and their host engage in a series of measures and counter-measures to promote their own survival: pathogens express virulence factors, the immune system targets these surface structures and pathogens modify them to evade detection. Like numerous bacterial pathogens, Neisseria meningitidis express type IV pili, long filamentous adhesive structures composed of pilins. Intriguingly the amino acid sequences of pilins from most hypervirulent strains do not vary, raising the question of how they evade the immune system. This study shows that the pilus structure is completely coated with sugars thus limiting access of antibodies to the pilin polypeptide chain. We propose that multisite glycosylation and thus variation in the type of sugar mediates immune evasion in these strains.
Collapse
MESH Headings
- Amino Acid Sequence
- Bacterial Adhesion
- Cell Line
- Cells, Cultured
- Conserved Sequence
- Endothelium, Vascular/cytology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/microbiology
- Endothelium, Vascular/pathology
- Fimbriae Proteins/chemistry
- Fimbriae Proteins/genetics
- Fimbriae Proteins/metabolism
- Fimbriae, Bacterial/immunology
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Gene Deletion
- Glycosylation
- Host-Pathogen Interactions
- Human Umbilical Vein Endothelial Cells/cytology
- Human Umbilical Vein Endothelial Cells/immunology
- Human Umbilical Vein Endothelial Cells/microbiology
- Human Umbilical Vein Endothelial Cells/pathology
- Humans
- Immune Evasion
- Meningococcal Infections/immunology
- Meningococcal Infections/metabolism
- Meningococcal Infections/microbiology
- Meningococcal Infections/pathology
- Microscopy, Electron, Transmission
- Models, Molecular
- Neisseria meningitidis/immunology
- Neisseria meningitidis/metabolism
- Neisseria meningitidis/ultrastructure
- Protein Processing, Post-Translational
- Sequence Homology, Amino Acid
- Species Specificity
- Surface Properties
Collapse
Affiliation(s)
- Joseph Gault
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Mathias Ferber
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Silke Machata
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Anne-Flore Imhaus
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Christian Malosse
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Arthur Charles-Orszag
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Corinne Millien
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
| | - Guillaume Bouvier
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | | | - Kelly Klinge
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Isabelle Podglajen
- Service de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou, Paris, France
| | - Marie Cécile Ploy
- INSERM UMR1092, Faculté de Médecine, Université de Limoges, Limoges, France
| | - H. Steven Seifert
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michael Nilges
- Institut Pasteur, Unité de Bioinformatique Structurale, CNRS UMR 3528, Département de Biologie Structurale et Chimie, Paris, France
| | - Julia Chamot-Rooke
- Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France
| | - Guillaume Duménil
- INSERM, U970, Paris Cardiovascular Research Center, Paris, France
- Université Paris Descartes, Faculté de Médecine Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
13
|
Zakrisson J, Schedin S, Andersson M. Cell shape identification using digital holographic microscopy. APPLIED OPTICS 2015; 54:7442-7448. [PMID: 26368783 DOI: 10.1364/ao.54.007442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a cost-effective, simple, and fast digital holographic microscopy method based upon Rayleigh-Sommerfeld backpropagation for identification of the geometrical shape of a cell. The method was tested using synthetic hologram images generated by ray-tracing software and from experimental images of semitransparent spherical beads and living red blood cells. Our results show that, by only using the real part of the back-reconstructed amplitude, the proposed method can provide information of the geometrical shape of the object and at the same time accurately determine the axial position of the object under study. The proposed method can be used in flow chamber assays for pathophysiological studies where fast morphological changes of cells are studied in high numbers and at different heights.
Collapse
|
14
|
Zakrisson J, Wiklund K, Servin M, Axner O, Lacoursière C, Andersson M. Rigid multibody simulation of a helix-like structure: the dynamics of bacterial adhesion pili. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:291-300. [PMID: 25851543 DOI: 10.1007/s00249-015-1021-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/13/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
We present a coarse-grained rigid multibody model of a subunit assembled helix-like polymer, e.g., adhesion pili expressed by bacteria, that is capable of describing the polymer's force-extension response. With building blocks representing individual subunits, the model appropriately describes the complex behavior of pili expressed by the gram-negative uropathogenic Escherichia coli bacteria under the action of an external force. Numerical simulations show that the dynamics of the model, which include the effects of both unwinding and rewinding, are in good quantitative agreement with the characteristic force-extension response as observed experimentally for type 1 and P pili. By tuning the model, it is also possible to reproduce the force-extension response in the presence of anti-shaft antibodies, which dramatically changes the mechanical properties. Thus, the model and results in this work give enhanced understanding of how a pilus unwinds under the action of external forces and provide a new perspective of the complex bacterial adhesion processes.
Collapse
Affiliation(s)
- Johan Zakrisson
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
15
|
Lillington J, Geibel S, Waksman G. Reprint of "Biogenesis and adhesion of type 1 and P pili". Biochim Biophys Acta Gen Subj 2014; 1850:554-64. [PMID: 25063559 DOI: 10.1016/j.bbagen.2014.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- James Lillington
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Sebastian Geibel
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
16
|
Piasecka M, Fraczek M, Gaczarzewicz D, Gill K, Szumala-Kakol A, Kazienko A, Laszczynska M, Lenart S, Beutin L, Kurpisz M. Novel Morphological Findings of Human Sperm Removal by Leukocytes inIn VivoandIn VitroConditions: Preliminary Study. Am J Reprod Immunol 2014; 72:348-58. [DOI: 10.1111/aji.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/31/2014] [Indexed: 12/25/2022] Open
Affiliation(s)
- Malgorzata Piasecka
- Department of Histology and Developmental Biology; Pomeranian Medical University; Szczecin Poland
| | - Monika Fraczek
- Department of Reproductive Biology and Stem Cells; Institute of Human Genetics; Polish Academy of Sciences; Poznan Poland
| | - Dariusz Gaczarzewicz
- Department of Animal Reproduction, Biotechnology and Environmental Hygiene; West Pomeranian University of Technology; Szczecin Poland
| | - Kamil Gill
- Department of Histology and Developmental Biology; Pomeranian Medical University; Szczecin Poland
| | | | - Anna Kazienko
- Department of Histology and Developmental Biology; Pomeranian Medical University; Szczecin Poland
| | - Maria Laszczynska
- Department of Histology and Developmental Biology; Pomeranian Medical University; Szczecin Poland
| | - Stanislaw Lenart
- Institute of Materials Engineering; West Pomeranian University of Technology; Szczecin Poland
| | - Lothar Beutin
- Department of Biological Safety; Federal Institute for Risk Assessment (BfR); Berlin Germany
| | - Maciej Kurpisz
- Department of Reproductive Biology and Stem Cells; Institute of Human Genetics; Polish Academy of Sciences; Poznan Poland
| |
Collapse
|
17
|
Lillington J, Geibel S, Waksman G. Biogenesis and adhesion of type 1 and P pili. Biochim Biophys Acta Gen Subj 2014; 1840:2783-93. [PMID: 24797039 DOI: 10.1016/j.bbagen.2014.04.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) cause urinary tract infections (UTIs) in approximately 50% of women. These bacteria use type 1 and P pili for host recognition and attachment. These pili are assembled by the chaperone-usher pathway of pilus biogenesis. SCOPE OF REVIEW The review examines the biogenesis and adhesion of the UPEC type 1 and P pili. Particular emphasis is drawn to the role of the outer membrane usher protein. The structural properties of the complete pilus are also examined to highlight the strength and functionality of the final assembly. MAJOR CONCLUSIONS The usher orchestrates the sequential addition of pilus subunits in a defined order. This process follows a subunit-incorporation cycle which consists of four steps: recruitment at the usher N-terminal domain, donor-strand exchange with the previously assembled subunit, transfer to the usher C-terminal domains and translocation of the nascent pilus. Adhesion by the type 1 and P pili is strengthened by the quaternary structure of their rod sections. The rod is endowed with spring-like properties which provide mechanical resistance against urine flow. The distal adhesins operate differently from one another, targeting receptors in a specific manner. The biogenesis and adhesion of type 1 and P pili are being therapeutically targeted, and efforts to prevent pilus growth or adherence are described. GENERAL SIGNIFICANCE The combination of structural and biochemical study has led to the detailed mechanistic understanding of this membrane spanning nano-machine. This can now be exploited to design novel drugs able to inhibit virulence. This is vital in the present era of resurgent antibiotic resistance. This article is part of a Special Issue entitled Structural biochemistry and biophysics of membrane proteins.
Collapse
Affiliation(s)
- James Lillington
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Sebastian Geibel
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK
| | - Gabriel Waksman
- Institute of Structural and Molecular Biology (ISMB), University College London and Birkbeck College, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|