1
|
Yang X, He M, Tang Q, Cao J, Wei Z, Li T, Sun M. Metabolomics as a promising technology for investigating external therapy of traditional Chinese medicine: A review. Medicine (Baltimore) 2024; 103:e40719. [PMID: 39612392 DOI: 10.1097/md.0000000000040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2024] Open
Abstract
To demonstrate the potential for connecting metabolomics with traditional Chinese medicine (TCM) external therapies such as acupuncture and moxibustion, we conducted a literature review on metabolomics as a measurement tool for determining the efficacy of various TCM external therapies. Human research and animal models published in the last 10 years were summarized. The investigation can be classified as follows: Using metabolomics to study metabolic profile changes produced by stimulation of a specific acupoint ST36 indicates the perturbation of metabolites produced by stimulation of acupoints by external TCM treatments can be characterized by metabolomics; and Using metabolomics to reveal the molecular mechanism of various TCM external therapy methods to treat specific diseases such as digestive system disease, cardiovascular disease, neurological disorder, bone disease, and muscle fatigue. We conclude that metabolomics has considerable potential for comprehending TCM external treatment interventions, particularly from a systems perspective. Linking TCM external therapy research with metabolomics can further bridge detailed biological mechanisms with the systematic effect of TCM external therapy, hence providing new paths for gaining a deeper knowledge of the importance of TCM in the treatment and maintenance of health.
Collapse
Affiliation(s)
- Xinyue Yang
- School of Medicine, Lishui University, Lishui, China
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Min He
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Qingqing Tang
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Jiazhen Cao
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Zhe Wei
- School of Medicine, Lishui University, Lishui, China
| | - Tie Li
- Department of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, China
| | - Mengmeng Sun
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Aliena-Valero A, Hernández-Jiménez M, López-Morales MA, Tamayo-Torres E, Castelló-Ruiz M, Piñeiro D, Ribó M, Salom JB. Cerebroprotective Effects of the TLR4-Binding DNA Aptamer ApTOLL in a Rat Model of Ischemic Stroke and Thrombectomy Recanalization. Pharmaceutics 2024; 16:741. [PMID: 38931862 PMCID: PMC11206667 DOI: 10.3390/pharmaceutics16060741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
ApTOLL, a TLR4 modulator aptamer, has demonstrated cerebroprotective effects in a permanent ischemic stroke mouse model, as well as safety and efficacy in early phase clinical trials. We carried out reverse translation research according to STAIR recommendations to further characterize the effects and mechanisms of ApTOLL after transient ischemic stroke in rats and to better inform the design of pivotal clinical trials. Adult male rats subjected to transient middle cerebral artery occlusion were treated either with ApTOLL or the vehicle intravenously at different doses and time-points. ApTOLL was compared with TAK-242 (a TLR4 inhibitor). Female rats were also studied. After neurofunctional evaluation, brains were removed for infarct/edema volume, hemorrhagic transformation, and histologic determinations. Peripheral leukocyte populations were assessed via flow cytometry. ApTOLL showed U-shaped dose-dependent cerebroprotective effects. The maximum effective dose (0.45 mg/kg) was cerebroprotective when given both before reperfusion and up to 12 h after reperfusion and reduced the hemorrhagic risk. Similar effects occurred in female rats. Both research and clinical ApTOLL batches induced slightly superior cerebroprotection when compared with TAK-242. Finally, ApTOLL modulated circulating leukocyte levels, reached the brain ischemic tissue to bind resident and infiltrated cell types, and reduced the neutrophil density. These results show the cerebroprotective effects of ApTOLL in ischemic stroke by reducing the infarct/edema volume, neurofunctional impairment, and hemorrhagic risk, as well as the peripheral and local immune response. They provide information about ApTOLL dose effects and its therapeutic time window and target population, as well as its mode of action, which should be considered in the design of pivotal clinical trials.
Collapse
Affiliation(s)
- Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
| | - Macarena Hernández-Jiménez
- AptaTargets S.L., 28035 Madrid, Spain; (D.P.); (M.R.)
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mikahela A. López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
- Departamento de Fisioterapia, Universidad de Valencia, 46010 Valencia, Spain
| | - Eva Tamayo-Torres
- Departamento de Fisiología, Universidad de Valencia, 46010 Valencia, Spain;
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100 Valencia, Spain
| | - David Piñeiro
- AptaTargets S.L., 28035 Madrid, Spain; (D.P.); (M.R.)
| | - Marc Ribó
- AptaTargets S.L., 28035 Madrid, Spain; (D.P.); (M.R.)
- Unidad de Ictus, Departamento de Neurología, Hospital Vall d’Hebron, 08035 Barcelona, Spain
| | - Juan B. Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (A.A.-V.); (M.A.L.-M.); (M.C.-R.)
- Departamento de Fisiología, Universidad de Valencia, 46010 Valencia, Spain;
| |
Collapse
|
3
|
Qiu J, Xu J, Cai Y, Li M, Peng Y, Xu Y, Chen G. Catgut embedding in acupoints combined with repetitive transcranial magnetic stimulation for the treatment of postmenopausal osteoporosis: study protocol for a randomized clinical trial. Front Neurol 2024; 15:1295429. [PMID: 38606276 PMCID: PMC11008468 DOI: 10.3389/fneur.2024.1295429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background To date, the clinical modulation for bone metabolism based on the neuro-bone mass regulation theory is still not popular. The stimulation of nerve systems to explore novel treatments for Postmenopausal osteoporosis (PMOP) is urgent and significant. Preliminary research results suggested that changes brain function and structure may play a crucial role in bone metabolism with PMOP. Thus, we set up a clinical trial to investigate the effect of the combination of repetitive transcranial magnetic stimulation (rTMS) and catgut embedding in acupoints (CEA) for PMOP and to elucidate the central mechanism of this neural stimulation in regulating bone metabolism. Method This trial is a prospective and randomized controlled trial. 96 PMOP participants will be randomized in a 1:1:1 ratio into a CEA group, an rTMS group, or a combined one. Participants will receive CEA, rTMS, or combined therapy for 3 months with 8 weeks of follow-up. The primary outcomes will be the changes in Bone Mineral Density scores, total efficiency of Chinese Medicine Symptoms before and after treatment. Secondary outcomes include the McGill Pain Questionnaire Short-Form, Osteoporosis Symptom Score, Mini-Mental State Examination, and Beck Depression Inventory-II. The leptin, leptin receptor, and norepinephrine levels of peripheral blood must be measured before and after treatment. Adverse events that occur during the trial will be recorded. Discussion CEA achieves brain-bone mass regulation through the bottom-up way of peripheral-central while rTMS achieves it through the top-down stimulation of central-peripheral. CEA combined with rTMS can stimulate the peripheral-central at the same time and promote peripheral bone mass formation. The combination of CEA and rTMS may play a coordinating, synergistic, and side-effect-reducing role, which is of great clinical significance in exploring better treatment options for PMOP.Clinical trial registration: https://www.chictr.org.cn/, identifier ChiCTR2300073863.
Collapse
Affiliation(s)
- Jingjing Qiu
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - JiaZi Xu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingyue Cai
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minghong Li
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingsin Peng
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guizhen Chen
- Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
4
|
Zhang Z, Yang P, Zhao J. Ferulic acid mediates prebiotic responses of cereal-derived arabinoxylans on host health. ANIMAL NUTRITION 2022; 9:31-38. [PMID: 35949987 PMCID: PMC9344318 DOI: 10.1016/j.aninu.2021.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 10/25/2022]
|
5
|
The Efficacy and Safety of Traditional Chinese Medicine Tonifying-Shen (Kidney) Principle for Primary Osteoporosis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5687421. [PMID: 33082825 PMCID: PMC7559232 DOI: 10.1155/2020/5687421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/30/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Objective This study aimed to appraise the efficacy and safety of the tonifying-Shen (kidney) principle (TS (TK) principle) for primary osteoporosis (POP). Methods Randomized controlled clinical trials (RCTs) using the TS (TK) principle for POP were searched from eight electronic databases to search for relevant literature that was published from the initiation to September 2019. Two reviewers performed study selection, data extraction, data synthesis, and quality assessment independently. Review Manager 5.3 software was used to assess the risk of bias and conduct the data synthesis. We assessed the quality of evidence for outcomes by using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. Results Thirty-six studies with 3617 participants were included. Meta-analysis showed a consistently superior effect of the TS (TK) principle combined with conventional Western medicine (CWM) in terms of total effectiveness rates (RR = 1.28; 95% CI (1.23, 1.33); P < 0.00001), BMD of the lumbar spine (SMD = 0.71; 95% CI (0.47, 0.95); P < 0.00001) and proximal femur (SMD = 0.94; 95% CI (0.49, 1.38); P < 0.00001), TCM symptom integral (SMD = −1.23; 95% CI (−1.43, −1.02); P < 0.00001), and VAS scores (SMD = −3.88; 95% CI (−5.29, −2.46); P < 0.00001), when compared to using CWM alone and with significant differences. Besides, in respect of adverse effects, it showed no significant statistical difference between the experimental and control groups, RR = 0.99 and 95% CI (0.65, 1.51), P=0.97. Conclusion Our meta-analysis provides promising evidence to suggest that using the TS (TK) principle combined with CWM for POP is more effective than using CWM alone. Also, both of them are safe and reliable for POP.
Collapse
|
6
|
Cabrera D, Kruger M, Wolber FM, Roy NC, Fraser K. Effects of short- and long-term glucocorticoid-induced osteoporosis on plasma metabolome and lipidome of ovariectomized sheep. BMC Musculoskelet Disord 2020; 21:349. [PMID: 32503480 PMCID: PMC7275480 DOI: 10.1186/s12891-020-03362-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/25/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Understanding the metabolic and lipidomic changes that accompany bone loss in osteoporosis might provide insights about the mechanisms behind molecular changes and facilitate developing new drugs or nutritional strategies for osteoporosis prevention. This study aimed to examine the effects of short- or long-term glucocorticoid-induced osteoporosis on plasma metabolites and lipids of ovariectomized (OVX) sheep. METHODS Twenty-eight aged ewes were divided randomly into four groups: an OVX group, OVX in combination with glucocorticoids for two months (OVXG2), and OVX in combination with five doses of glucocorticoids (OVXG5) to induce bone loss, and a control group. Liquid chromatography-mass spectrometry untargeted metabolomic analysis was applied to monthly plasma samples to follow the progression of osteoporosis over five months. RESULTS The metabolite profiles revealed significant differences in the plasma metabolome of OVX sheep and OVXG when compared with the control group by univariate analysis. Nine metabolites were altered, namely 5-methoxytryptophan, valine, methionine, tryptophan, glutaric acid, 2-pyrrolidone-5-carboxylic acid, indole-3-carboxaldehyde, 5-hydroxylysine and malic acid. Similarly, fifteen lipids were perturbed from multiple lipid classes such as lysophoslipids, phospholipids and ceramides. CONCLUSION This study showed that OVX and glucocorticoid interventions altered the metabolite and lipid profiles of sheep, suggesting that amino acid and lipid metabolisms are potentially the main perturbed metabolic pathways regulating bone loss in OVX sheep.
Collapse
Affiliation(s)
- Diana Cabrera
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Marlena Kruger
- School of Health Sciences, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
| | - Frances M. Wolber
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- School of Food Advanced technology, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
- Centre for Metabolic Health Research, Massey University, Tennent Drive, Palmerston North, 4442 New Zealand
| | - Nicole C. Roy
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- High-Value Nutrition National Science Challenge, Auckland, 1142 New Zealand
| | - Karl Fraser
- Food Nutrition & Health Team, AgResearch Grasslands, Tennent Drive, Palmerston North, 4442 New Zealand
- Riddet Institute, Massey University, Palmerston North, 4442 New Zealand
- High-Value Nutrition National Science Challenge, Auckland, 1142 New Zealand
| |
Collapse
|
7
|
Chen G, Wang X, Zhang S, Xu X, Liang J, Xu Y. In vivo investigation on bio-markers of perimenopausal panic disorder and catgut embedding acupoints mechanism. Medicine (Baltimore) 2020; 99:e19909. [PMID: 32384434 PMCID: PMC7220090 DOI: 10.1097/md.0000000000019909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Panic disorder (PD), defined by repeated and unexpected panic attacks, severely affects patients' living quality and social function. Perimenopausal women are high-risk group of PD and suffer greatly from it. Modern medicine therapies for this disorder have many side reactions and poor effects, so nonpharmacological modality is an urgent need. Although acupoint catgut embedding is widely used in clinical practice, there is no persuasive evidence of its effect for perimenopausal PD. The aim of this study is to investigate the effectiveness and safety of acupoint catgut embedding for perimenopausal PD and to elucidate the correlations among brain neural activation, bio-markers (amino acids) and clinical outcomes with radiographic evidence, thus to explore its neural mechanism. METHODS The parallel designed, exploratory randomized controlled trial will include 70 outpatients with perimenopausal PD recruited from two hospitals of Chinese Medicine. These subjects will be randomly allocated to an intervention group (Group Embedding) and a control group (Group Medication) in a 1:1 ratio. The subjects in the intervention group will receive acupoint catgut embedding treatment two weeks a time in the following predefined acupuncture points: Shenshu (BL23), Sanyinjiao (SP6), Guanyuan (RN4), Ganshu (BL18), Zusanli (ST36) and Pishu (BL20). The included women of the control group will take 0.4 mg Alprazolam tablet orally, 1 tablet a time, 3 times a day. There is a study period of 3 months and a follow-up period of 1 month for each group. The primary outcomes will be the following therapeutic indexes: the frequency of panic attack, Panic Disorder Severity Score (PDSS), and Panic-associated Symptoms Score (PASS) during the observation period and follow-up period. The changes in Hamilton Anxiety Scale (HAMA) Score and Symptom Checklist 90 (SCL-90) Score will also be compared between these two groups. Additionally, functional magnetic resonance imaging (fMRI) and proton magnetic resonance spectroscopy (1H-MRS) scans will be done before and after the observation period to show cranial neuroimaging changes. DISCUSSION We present a study design and rationale to explore the effectiveness and neural mechanism of acupoint catgut embedding for perimenopausal PD. There are still several factors restrict our research such as no unified standard of diagnostic criteria and curative effect evaluation. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR-INR-16009724, registered in November 2016.
Collapse
Affiliation(s)
- Guizhen Chen
- The Bao’an District TCM Hospital, The Affiliated Hospital of Guangzhou University of Chinese Medicine, Shenzhen
| | - Xue Wang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuo Zhang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaokang Xu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junquan Liang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Fu S, Yang D, Zhang P, Sun G. Antibacterial Polylactic- co-glycolic Acid Braided Threads Using Plasma and Coating Modifications for Acupoint Catgut Embedding Therapy Applications. ACS APPLIED BIO MATERIALS 2020; 3:1902-1912. [PMID: 35025313 DOI: 10.1021/acsabm.9b01071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Polylactic-co-glycolic acid (PLGA) thread is frequently used for acupoint catgut embedding therapy (ACET), but the poor hydrophilicity and biocompatibility largely limited its wider applications. The aim of this study is to functionalize the PLGA braided thread and improve its cell adhesion property. The PLGA strands are first processed into threads on a circular braiding machine, and then, antibacterial treatment was introduced with and without oxygen plasma treatments. Afterward, functional characterizations such as antibacterial activity (Staphylococcus aureus and Escherichia coli), cytotoxicity, cell attachment and cell morphology, histological observation, and biodegradation experiments of threads were measured. Moreover, tensile properties and flexibility of the threads were determined to evaluate their mechanical properties. The modified threads showed rougher surfaces than those of the unmodified ones from SEM observations, and the weights and fiber diameters of the threads increased correspondingly, together with the improved surface hydrophilicity. All coated sutures showed durable antimicrobial function and slow drug releasing features for more than 5 days and good cell viability (more than 75%), according to the standard of ISO 10993-5:2009. Besides, cell attachment, tissue growth, and collagen regeneration of plasma-treated samples were greatly improved compared to those of without the plasma treatment. The threads presented slow degradation behavior after the antibacterial treatment. The threads with only plasma-treated revealed a promising prospect for clinical applications.
Collapse
Affiliation(s)
- Shaoju Fu
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Dongchao Yang
- Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200011, China
| | - Peihua Zhang
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Gang Sun
- Department of Biological and Agricultural Engineering, University of California, Davis, Davis, California 95616, United States
| |
Collapse
|
9
|
Zhang C, Abdulaziz Abbod Abdo A, Kaddour B, Wu Q, Xin L, Li X, Fan G, Teng C. Xylan-oligosaccharides ameliorate high fat diet induced obesity and glucose intolerance and modulate plasma lipid profile and gut microbiota in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103622] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Dynamic observation and analysis of metabolic response to moxibustion stimulation on ethanol-induced gastric mucosal lesions (GML) rats. Chin Med 2019; 14:44. [PMID: 31636695 PMCID: PMC6794790 DOI: 10.1186/s13020-019-0266-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Gastric mucosal lesion (GML) is the initiating pathological process in many refractory gastric diseases. And moxibustion is an increasingly popular alternative therapy that prevents and treats diseases. However, there are few published reports about developing pathology of GML and therapeutic mechanism of moxibustion treatment on GML. In this study, we investigated pathology of GML and therapeutic mechanism of moxibustion treatment on GML. Methods The male Sprague-Dawley (SD) rats were induced by intragastric administration of 75% ethanol after fasting for 24 h and treated by moxibustion at Zusanli (ST36) and Liangmen (ST21) for 1 day, 4 days or 7 days. Then we applied 1H NMR-based metabolomics to dynamic analysis of metabolic profiles in biological samples (stomach, cerebral cortex and medulla). And the conventional histopathological examinations as well as metabolic pathways assays were also performed. Results Moxibustion intervention showed a beneficial effect on GML by modulating comprehensive metabolic alterations caused by GML, including energy metabolism, membrane metabolism, cellular active and neurotransmitters function. Conclusions Moxibustion can effectively treat gastric mucosal damage and effectively regulate the concentration of some related differential metabolites to maintain the stability of the metabolic pathway.
Collapse
|
11
|
The Effectiveness and Safety of Acupoint Catgut Embedding for the Treatment of Postmenopausal Osteoporosis: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2673763. [PMID: 31485243 PMCID: PMC6710781 DOI: 10.1155/2019/2673763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
Purpose To evaluate the effectiveness and safety of acupoint catgut embedding therapy (ACET) in postmenopausal osteoporosis (PMOP). Methods Review of some databases from their inception to June 2018 and randomized controlled trials (RCTs) in which ACET with PMOP were included. Two researchers extracted and evaluated the information independently. Cochrane Collaboration's tool and Jadad scale were used to evaluate the quality of the studies. RevMan V.5.3.3 software was used to carry out the meta-analysis while trial sequential analysis (TSA) performed with TSA 0.9 software. Results 12 RCTs with 876 participants were included in this review. Meta-analysis showed that ACET alone was not superior to medication in effectiveness rate (RR= 1.11; 95% CI (0.89, 1.40); P=0.35) and E2 (SMD= 0.20; 95% CI (-0.17, 0.57); P=0.28; I 2 =20%) while ACET combining medication was more effective on the effectiveness rate (RR= 1.32; 95% CI (1.20, 1.46); P<0.000 01) and E2 (SMD= 1.24; 95% CI (0.63, 1.84); P<0.0001). Additionally, ACET combining calcium could increase the bone mineral density (BMD) of the L2~4 vertebrae and femur-neck [WMDL2~4 = 0.03; 95% CI (0.01, 0.05); P=0.003; and WMDFemur-neck = 0.07; 95% CI (0.03, 0.10); P = 0.0006], reduce TCM syndrome score [WMD = -1.85; 95% CI (-2.13, -1.57); P<0.000 01], improve patient's quality of life [WMDthree months = 6.90; 95% CI (3.90, 9.89); P<0.000 01; and WMDsix months = 12.34; 95% CI (5.09, 19.60); P=0.0009], and relieve pain [WMDVAS = -1.26; 95% CI (-1.66, -0.85); P<0.000 01; and WMDPain score = -2.59; 95% CI (-4.76, -0.43); P= 0.02]. The TSA showed that the effectiveness of ACET for PMOP was demonstrated accurately. Conclusions ACET combining medication but not ACET alone is more effective than medication as comparison in the treatment of PMOP. As a novel treatment, ACET shows the potential of effectiveness and deserves further high quality of well-designed study.
Collapse
|
12
|
Dynamic Analysis of Metabolic Response in Gastric Ulcer (GU) Rats with Electroacupuncture Treatment Using 1H NMR-Based Metabolomics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1291427. [PMID: 31143240 PMCID: PMC6501414 DOI: 10.1155/2019/1291427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 02/09/2019] [Accepted: 03/10/2019] [Indexed: 12/15/2022]
Abstract
Gastric ulcer (GU), a common digestive disease, has a high incidence and seriously endangers health of human. According to the previous studies, it has been proved that electroacupuncture at acupoints of stomach meridian had a good effect on GU. However, there are few published studies on metabolic response in gastric ulcer (GU) rats with electroacupuncture treatment. Herein, we observed the metabolic profiles in biological samples (stomach, liver, and kidney) of GU rats with electroacupuncture treatment by 1H NMR metabolomics combined with pathological examination. The male SD rats were induced by intragastric administration of 70% ethanol after fasting for 24 hours and treated by electroacupuncture at Zusanli (ST36) and Liangmen (ST21) for 1 day, 4 days, or 7 days, respectively. And the conventional histopathological examinations as well as metabolic pathways assays were also performed. We found that GU rats were basically cured after electroacupuncture treatment for 4 days and had a complete recovery after electroacupuncture treatment for 7 days by being modulated comprehensive metabolic changes, involved in the function of neurotransmitters, energy metabolism, cells metabolism, antioxidation, tissue repairing, and other metabolic pathways. These findings may be helpful to facilitate the mechanism elucidating of electroacupuncture treatment on GU.
Collapse
|
13
|
Metabolic Response in Rats following Electroacupuncture or Moxibustion Stimulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6947471. [PMID: 31186665 PMCID: PMC6521395 DOI: 10.1155/2019/6947471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
Electroacupuncture and moxibustion are traditional Chinese medicine practices that exert therapeutic effects through stimulation of specific meridian acupoints. However, the biological basis of the therapies has been difficult to establish; thus the current practices still rely on ancient TCM references. Here, we used a rat model to study perturbations in cortex, liver, and stomach metabolome and plasma hormones following electroacupuncture or moxibustion treatment on either stomach meridian or gallbladder meridian acupoints. All treatment groups, regardless of meridian and mode of treatment, showed perturbation in cortex metabolome and increased phenylalanine, tyrosine, and branched-chain amino acids in liver. In addition, electroacupuncture was found to increase ATP in cortex, creatine, and dimethylglycine in stomach and GABA in liver. On the other hand, moxibustion increased plasma enkephalin concentration, as well as betaine and fumarate concentrations in stomach. Furthermore, we had observed meridian-specific changes including increased N-acetyl-aspartate in liver and 3-hydroxybutyrate in stomach for gallbladder meridian stimulation and increased noradrenaline concentration in blood plasma following stimulation on stomach meridian. In summary, the current findings may provide insight into the metabolic basis of electroacupuncture and moxibustion, which may contribute towards new application of acupoint stimulation.
Collapse
|
14
|
Long T, Yao JK, Li J, Kirshner ZZ, Nelson D, Dougherty GG, Gibbs RB. Comparison of transitional vs surgical menopause on monoamine and amino acid levels in the rat brain. Mol Cell Endocrinol 2018; 476:139-147. [PMID: 29738870 PMCID: PMC6120792 DOI: 10.1016/j.mce.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023]
Abstract
Loss of ovarian function has important effects on neurotransmitter production and release with corresponding effects on cognitive performance. To date, there has been little direct comparison of the effects of surgical and transitional menopause on neurotransmitter pathways in the brain. In this study, effects on monoamines, monoamine metabolites, and the amino acids tryptophan (TRP) and tyrosine (TYR) were evaluated in adult ovariectomized (OVX) rats and in rats that underwent selective and gradual ovarian follicle depletion by daily injection of 4-vinylcyclohexene-diepoxide (VCD). Tissues from the hippocampus (HPC), frontal cortex (FCX), and striatum (STR) were dissected and analyzed at 1- and 6-weeks following OVX or VCD treatments. Tissues from gonadally intact rats were collected at proestrus and diestrus to represent neurochemical levels during natural states of high and low estrogens. In gonadally intact rats, higher levels of serotonin (5-HT) were detected at proestrus than at diestrus in the FCX. In addition, the ratio of 5-hydroxyindoleacetic acid (5-HIAA)/5HT in the FCX and HPC was lower at proestrus than at diestrus, suggesting an effect on 5-HT turnover in these regions. No other significant differences between proestrus and diestrus were observed. In OVX- and VCD-treated rats, changes were observed which were both brain region- and time point-dependent. In the HPC levels of norepinephrine, 5-HIAA, TRP and TYR were significantly reduced at 1 week, but not 6 weeks, in both OVX and VCD-treated rats relative to proestrus and diestrus. In the FCX, dopamine levels were elevated at 6 weeks after OVX relative to diestrus. A similar trend was observed at 1 week (but not 6 weeks) following VCD treatment. In the STR, norepinephrine levels were elevated at 1 week following OVX, and HVA levels were elevated at 1 week, but not 6 weeks, following VCD treatment, relative to proestrus and diestrus. Collectively, these data provide the first comprehensive analysis comparing the effects of two models of menopause on multiple neuroendocrine endpoints in the brain. These effects likely contribute to effects of surgical and transitional menopause on brain function and cognitive performance that have been reported.
Collapse
Affiliation(s)
- Tao Long
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Jeffrey K Yao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Junyi Li
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ziv Z Kirshner
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Doug Nelson
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - George G Dougherty
- Veterans Affairs Pittsburgh Healthcare System, Medical Research Service, Pittsburgh, PA, 15240, USA
| | - Robert B Gibbs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
15
|
Comparative metabolomics study on therapeutic mechanism of electro-acupuncture and moxibustion on rats with chronic atrophic gastritis (CAG). Sci Rep 2017; 7:14362. [PMID: 29084954 PMCID: PMC5662682 DOI: 10.1038/s41598-017-13195-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Some studies have proved that both acupuncture and moxibustion are very effective for the treatment of CAG. However, little is known about therapeutic mechanism of electro-acupuncture and moxibustion on CAG as well as the difference between them. On the other hand, metabolomics is a 'top-down' approach to understand metabolic changes of organisms caused by disease or interventions in holistic context, which consists with the holistic thinking of electro-acupuncture and moxibustion treatment. In this study, the difference of therapeutic mechanism between electro-acupuncture and moxibustion on CAG rats was investigated by a 1H NMR-based metabolomics analysis of multiple biological samples (serum, stomach, cerebral cortex and medulla) coupled with pathological examination and molecular biological assay. For all sample types, both electro-acupuncture and moxibustion intervention showed beneficial effects by restoring many CAG-induced metabolic changes involved in membrane metabolism, energy metabolism and function of neurotransmitters. Notably, the moxibustion played an important role in CAG treatment mainly by regulating energy metabolism in serum, while main acting site of electro-acupuncture treatment was nervous system in stomach and brain. These findings are helpful to facilitate the therapeutic mechanism elucidating of electro-acupuncture and moxibustion on CAG rats. Metabolomics is promising in mechanisms study for traditional Chinese medicine (TCM).
Collapse
|
16
|
Deng D, Jian C, Lei L, Zhou Y, McSweeney C, Dong F, Shen Y, Zou D, Wang Y, Wu Y, Zhang L, Mao Y. A prenatal interruption of DISC1 function in the brain exhibits a lasting impact on adult behaviors, brain metabolism, and interneuron development. Oncotarget 2017; 8:84798-84817. [PMID: 29156684 PMCID: PMC5689574 DOI: 10.18632/oncotarget.21381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/03/2017] [Indexed: 02/03/2023] Open
Abstract
Mental illnesses like schizophrenia (SCZ) and major depression disorder (MDD) are devastating brain disorders. The SCZ risk gene, disrupted in schizophrenia 1 (DISC1), has been associated with neuropsychiatric conditions. However, little is known regarding the long-lasting impacts on brain metabolism and behavioral outcomes from genetic insults on fetal NPCs during early life. We have established a new mouse model that specifically interrupts DISC1 functions in NPCs in vivo by a dominant-negative DISC1 (DN-DISC1) with a precise temporal and spatial regulation. Interestingly, prenatal interruption of mouse Disc1 function in NPCs leads to abnormal depression-like deficit in adult mice. Here we took a novel unbiased metabonomics approach to identify brain-specific metabolites that are significantly changed in DN-DISC1 mice. Surprisingly, the inhibitory neurotransmitter, GABA, is augmented. Consistently, parvalbumin (PV) interneurons are increased in the cingulate cortex, retrosplenial granular cortex, and motor cortex. Interestingly, somatostatin (SST) positive and neuropeptide Y (NPY) interneurons are decreased in some brain regions, suggesting that DN-DISC1 expression affects the localization of interneuron subtypes. To further explore the cellular mechanisms that cause this change, DN-DISC1 suppresses proliferation and promotes the cell cycle exit of progenitors in the medial ganglionic eminence (MGE), whereas it stimulates ectopic proliferation of neighboring cells through cell non-autonomous effect. Mechanistically, it modulates GSK3 activity and interrupts Dlx2 activity in the Wnt activation. In sum, our results provide evidence that specific genetic insults on NSCs at a short period of time could lead to prolonged changes of brain metabolism and development, eventually behavioral defects.
Collapse
Affiliation(s)
- Dazhi Deng
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.,Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Chongdong Jian
- Department of Biology, Pennsylvania State University, University Park, PA, USA.,Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Ling Lei
- Department of Biology, Pennsylvania State University, University Park, PA, USA.,Health Examination Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Yijing Zhou
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Colleen McSweeney
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Yilun Shen
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Donghua Zou
- Department of Neurology, The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Yonggang Wang
- Department of Neurology, School of Medicine, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yuan Wu
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
17
|
Zhang P, Zhu W, Wang D, Yan J, Wang Y, Zhou Z, He L. A combined NMR- and HPLC-MS/MS-based metabolomics to evaluate the metabolic perturbations and subacute toxic effects of endosulfan on mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:18870-18880. [PMID: 28653198 DOI: 10.1007/s11356-017-9534-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 06/13/2017] [Indexed: 06/07/2023]
Abstract
Endosulfan is the newly persistent organic pollutants (POPs) added to the Stockholm Convention as its widespread use, persistence, bioaccumulation, long-range transport, endocrine disruption, and toxicity related to various adverse effects. In the present study, male mice were administrated endosulfan at 0, 0.5, and 3.5 mg/kg by gavage for 2 weeks. 1H-NMR-based urinary metabolomics, HPLC-MS/MS-based targeted serum metabolomics, clinical analysis, and histopathology techniques were employed to evaluate the metabolic perturbations of subacute endosulfan exposure. Endosulfan exposures resulted in weight loss, liver inflammation and necrosis, and alterations in serum amino acids and urine metabolomics. Based on altered metabolites, several significantly perturbed pathways were identified including glycine, serine, and threonine metabolism; TCA cycle; pyruvate metabolism; glycolysis or gluconeogenesis; glycerophospholipid metabolism; and glyoxylate and dicarboxylate metabolism. Such pathways were highly related to amino acid metabolism, energy metabolism, and lipid metabolism. In addition, metabolomic results also demonstrated that gut microbiota was remarkably altered after endosulfan exposure. These observations may provide novel insight into revealing the potential toxic mechanism and evaluating the health risk of endosulfan exposure at metabolomic level.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Yao Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Lin He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
18
|
1H NMR-based Investigation of Metabolic Response to Electro-Acupuncture Stimulation. Sci Rep 2017; 7:6820. [PMID: 28754994 PMCID: PMC5533752 DOI: 10.1038/s41598-017-07306-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/20/2017] [Indexed: 02/08/2023] Open
Abstract
Acupuncture is a traditional Chinese medicine therapy that has been found useful for treating various diseases. The treatments involve the insertion of fine needles at acupoints along specific meridians (meridian specificity). This study aims to investigate the metabolic basis of meridian specificity using proton nuclear magnetic resonance (1H NMR)-based metabolomics. Electro-acupuncture (EA) stimulations were performed at acupoints of either Stomach Meridian of Foot-Yangming (SMFY) or Gallbladder Meridian of Foot-Shaoyang (GMFS) in healthy male Sprague Dawley (SD) rats. 1H-NMR spectra datasets of serum, urine, cortex, and stomach tissue extracts from the rats were analysed by multivariate statistical analysis to investigate metabolic perturbations due to EA treatments at different meridians. EA treatment on either the SMFY or GMFS acupoints induced significant variations in 31 metabolites, e.g., amino acids, organic acids, choline esters and glucose. Moreover, a few meridian-specific metabolic changes were found for EA stimulations on the SMFY or GMFS acupoints. Our study demonstrated significant metabolic differences in response to EA stimulations on acupoints of SMFY and GMFS meridians. These results validate the hypothesis that meridian specificity in acupuncture is detectable in the metabolome and demonstrate the feasibility and effectiveness of a metabolomics approach in understanding the mechanism of acupuncture.
Collapse
|
19
|
Wang J, Zhou L, Lei H, Hao F, Liu X, Wang Y, Tang H. Simultaneous Quantification of Amino Metabolites in Multiple Metabolic Pathways Using Ultra-High Performance Liquid Chromatography with Tandem-mass Spectrometry. Sci Rep 2017; 7:1423. [PMID: 28469184 PMCID: PMC5431165 DOI: 10.1038/s41598-017-01435-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/28/2017] [Indexed: 01/09/2023] Open
Abstract
Metabolites containing amino groups cover multiple pathways and play important roles in redox homeostasis and biosyntheses of proteins, nucleotides and neurotransmitters. Here, we report a new method for simultaneous quantification of 124 such metabolites. This is achieved by derivatization-assisted sensitivity enhancement with 5-aminoisoquinolyl-N-hydroxysuccinimidyl carbamate (5-AIQC) followed with comprehensive analysis using ultra-high performance liquid chromatography and electrospray ionization tandem mass spectrometry (UHPLC-MS/MS). In an one-pot manner, this quantification method enables simultaneous coverage of 20 important metabolic pathways including protein biosynthesis/degradation, biosyntheses of catecholamines, arginine and glutathione, metabolisms of homocysteine, taurine-hypotaurine etc. Compared with the reported ones, this method is capable of simultaneously quantifying thiols, disulfides and other oxidation-prone analytes in a single run and suitable for quantifying aromatic amino metabolites. This method is also much more sensitive for all tested metabolites with LODs well below 50 fmol (at sub-fmol for most tested analytes) and shows good precision for retention time and quantitation with inter-day and intra-day relative standard deviations (RSDs) below 15% and good recovery from renal cancer tissue, rat urine and plasma. The method was further applied to quantify the amino metabolites in silkworm hemolymph from multiple developmental stages showing its applicability in metabolomics and perhaps some clinical chemistry studies.
Collapse
Affiliation(s)
- Jin Wang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Shanghai, 200438, China.,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Lihong Zhou
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xin Liu
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, 310058, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Fudan University, Shanghai International Centre for Molecular Phenomics, Collaborative Innovation Center for Genetics and Development, Shanghai, 200438, China.
| |
Collapse
|
20
|
Xu J, Zheng X, Cheng KK, Chang X, Shen G, Liu M, Wang Y, Shen J, Zhang Y, He Q, Dong J, Yang Z. NMR-based metabolomics Reveals Alterations of Electro-acupuncture Stimulations on Chronic Atrophic Gastritis Rats. Sci Rep 2017; 7:45580. [PMID: 28358020 PMCID: PMC5372362 DOI: 10.1038/srep45580] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/28/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic atrophic gastritis (CAG) is a common gastrointestinal disease which has been considered as precancerous lesions of gastric carcinoma. Previously, electro-acupuncture stimulation has been shown to be effective in ameliorating symptoms of CAG. However the underlying mechanism of this beneficial treatment is yet to be established. In the present study, an integrated histopathological examination along with molecular biological assay, as well as 1H NMR analysis of multiple biological samples (urine, serum, stomach, cortex and medulla) were employed to systematically assess the pathology of CAG and therapeutic effect of electro-acupuncture stimulation at Sibai (ST 2), Liangmen (ST 21), and Zusanli (ST 36) acupoints located in the stomach meridian using a rat model of CAG. The current results showed that CAG caused comprehensive metabolic alterations including the TCA cycle, glycolysis, membrane metabolism and catabolism, gut microbiota-related metabolism. On the other hand, electro-acupuncture treatment was found able to normalize a number of CAG-induced metabolomics changes by alleviating membrane catabolism, restoring function of neurotransmitter in brain and partially reverse the CAG-induced perturbation in gut microbiota metabolism. These findings provided new insights into the biochemistry of CAG and mechanism of the therapeutic effect of electro-acupuncture stimulations.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Xujuan Zheng
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Kian-Kai Cheng
- Department of Bioprocess &Polymer Engineering, Innovative Centre in Agritechnology, University Teknologi Malaysia, Johor 81310, Malaysia
| | - Xiaorong Chang
- College of Acupuncture and Moxibustion, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Guiping Shen
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Mi Liu
- College of Acupuncture and Moxibustion, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yadong Wang
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Jiacheng Shen
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Yuan Zhang
- College of Acupuncture and Moxibustion, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Qida He
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Jiyang Dong
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| | - Zongbao Yang
- Department of Electronic Science, and Department of Traditional Chinese Medicine, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Wan XM, Zhang M, Zhang P, Xie ZS, Xu FG, Zhou P, Ma SP, Xu XJ. Jiawei Erzhiwan improves menopausal metabolic syndrome by enhancing insulin secretion in pancreatic β cells. Chin J Nat Med 2017; 14:823-834. [PMID: 27914526 DOI: 10.1016/s1875-5364(16)30099-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Indexed: 10/20/2022]
Abstract
Menopausal metabolic syndrome (MMS) is a series of syndrome caused by ovarian function decline and hormone insufficiency, and is a high risk factor for cardiovascular diseases (CVD) and type II diabetes mellitus (T2DM). Erzhiwan (EZW), composed of Herba Ecliptae and Fructus Ligustri Lucidi, is a traditional Chinese herbal formula that has been used to treat menopausal syndrome for many years. We added Herba Epimedii, Radix Rehmanniae, and Fructus Corni into EZW, to prepare a new formula, termed Jiawei Erzhiwan (JE). The present study was designed to determine the anti-MMS effects of JE using ovariectomized (OVX) adult female rats that were treated with JE for 4 weeks, and β-tc-6 cells and INS cells were used to detected the protect effectiveness of JE. Our results showed JE could increase insulin sensitivity and ameliorated hyperlipidemia. Metabolomics analysis showed that the serum levels of branched and aromatic amino acids were down-regulated in serum by JE administration. Moreover, JE enhanced the function of islet β cells INS-1 and β-tc-6, through increasing the glucose stimulated insulin secretion (GSIS), which was abolished by estrogen receptor (ER) antagonist, indicating that JE functions were mediated by ER signaling. Additionally, JE did not induce tumorigenesis in rat mammary tissue or promoted proliferation of MCF-7 and Hela cells. In conclusion, our work demonstrated that JE ameliorated OVX-induced glucose and lipid metabolism disorder through activating estrogen receptor pathway and promoting GSIS in islet β cells, thus indicating that JE could be a safe and effective medication for MMS therapy.
Collapse
Affiliation(s)
- Xiao-Meng Wan
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Mu Zhang
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Pei Zhang
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Shen Xie
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Feng-Guo Xu
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Ping Zhou
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
| | - Shi-Ping Ma
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao-Jun Xu
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Nanjing 210009, China.
| |
Collapse
|
22
|
Zhang P, Zhu W, Wang D, Yan J, Wang Y, He L. Enantioselective Effects of Metalaxyl Enantiomers on Breast Cancer Cells Metabolic Profiling Using HPLC-QTOF-Based Metabolomics. Int J Mol Sci 2017; 18:ijms18010142. [PMID: 28085117 PMCID: PMC5297775 DOI: 10.3390/ijms18010142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 12/29/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
In this study, an integrative high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (HPLC-QTOF) based metabolomics approach was performed to evaluate the enantioselective metabolic perturbations in MCF-7 cells after treatment with R-metalaxyl and S-metalaxyl, respectively. Untargeted metabolomics profile, multivariate pattern recognition, metabolites identification, and pathway analysis were determined after metalaxyl enantiomer exposure. Principal component analysis (PCA) and partitial least-squares discriminant analysis (PLS-DA) directly reflected the enantioselective metabolic perturbations induced by metalaxyl enantiomers. On the basis of multivariate statistical results, a total of 49 metabolites including carbohydrates, amino acids, nucleotides, fatty acids, organic acids, phospholipids, indoles, derivatives, etc. were found to be the most significantly changed metabolites and metabolic fluctuations caused by the same concentration of R-metalaxyl and S-metalaxyl were enantioselective. Pathway analysis indicated that R-metalaxyl and S-metalaxyl mainly affected the 7 and 10 pathways in MCF-7 cells, respectively, implying the perturbed pathways induced by metalaxyl enantiomers were also enantioselective. Furthermore, the significantly perturbed metabolic pathways were highly related to energy metabolism, amino acid metabolism, lipid metabolism, and antioxidant defense. Such results provide more specific insights into the enantioselective metabolic effects of chiral pesticides in breast cancer progression, reveal the underlying mechanisms, and provide available data for the health risk assessments of chiral environmental pollutants at the molecular level.
Collapse
Affiliation(s)
- Ping Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| | - Wentao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| | - Dezhen Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| | - Jin Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| | - Yao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Applied Chemistry, China Agricultural University, Beijing 100193, China.
| | - Lin He
- College of Plant Protection, Southwest University, Chongqing 400715, China.
| |
Collapse
|
23
|
Tumor growth affects the metabonomic phenotypes of multiple mouse non-involved organs in an A549 lung cancer xenograft model. Sci Rep 2016; 6:28057. [PMID: 27329570 PMCID: PMC4916411 DOI: 10.1038/srep28057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/31/2016] [Indexed: 02/05/2023] Open
Abstract
The effects of tumorigenesis and tumor growth on the non-involved organs remain poorly understood although many research efforts have already been made for understanding the metabolic phenotypes of various tumors. To better the situation, we systematically analyzed the metabolic phenotypes of multiple non-involved mouse organ tissues (heart, liver, spleen, lung and kidney) in an A549 lung cancer xenograft model at two different tumor-growth stages using the NMR-based metabonomics approaches. We found that tumor growth caused significant metabonomic changes in multiple non-involved organ tissues involving numerous metabolic pathways, including glycolysis, TCA cycle and metabolisms of amino acids, fatty acids, choline and nucleic acids. Amongst these, the common effects are enhanced glycolysis and nucleoside/nucleotide metabolisms. These findings provided essential biochemistry information about the effects of tumor growth on the non-involved organs.
Collapse
|
24
|
Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine. Sci Rep 2016; 6:24099. [PMID: 27076285 PMCID: PMC4831015 DOI: 10.1038/srep24099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/22/2016] [Indexed: 02/06/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) growth in women’s bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the “interactive metabolome”, which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI.
Collapse
|
25
|
Su Q, Guan T, He Y, Lv H. Siderophore Biosynthesis Governs the Virulence of Uropathogenic Escherichia coli by Coordinately Modulating the Differential Metabolism. J Proteome Res 2016; 15:1323-32. [DOI: 10.1021/acs.jproteome.6b00061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiao Su
- The Laboratory
for Functional
Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing 401331, P.R. China
| | - Tianbing Guan
- The Laboratory
for Functional
Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing 401331, P.R. China
| | - Yan He
- The Laboratory
for Functional
Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing 401331, P.R. China
| | - Haitao Lv
- The Laboratory
for Functional
Omics and Innovative Chinese Medicine, Innovative Drug Research Center, Chongqing University, Chongqing 401331, P.R. China
| |
Collapse
|
26
|
Deciphering the biological effects of acupuncture treatment modulating multiple metabolism pathways. Sci Rep 2016; 6:19942. [PMID: 26879284 PMCID: PMC4754631 DOI: 10.1038/srep19942] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 12/16/2015] [Indexed: 01/27/2023] Open
Abstract
Acupuncture is an alternative therapy that is widely used to treat various diseases. However, detailed biological interpretation of the acupuncture stimulations is limited. We here used metabolomics and proteomics technology, thereby identifying the serum small molecular metabolites into the effect and mechanism pathways of standardized acupuncture treatments at ‘Zusanli’ acupoint which was the most often used acupoint in previous reports. Comprehensive overview of serum metabolic profiles during acupuncture stimulation was investigated. Thirty-four differential metabolites were identified in serum metabolome and associated with ten metabolism pathways. Importantly, we have found that high impact glycerophospholipid metabolism, fatty acid metabolism, ether lipid metabolism were acutely perturbed by acupuncture stimulation. As such, these alterations may be useful to clarify the biological mechanism of acupuncture stimulation. A series of differentially expressed proteins were identified and such effects of acupuncture stimulation were found to play a role in transport, enzymatic activity, signaling pathway or receptor interaction. Pathway analysis further revealed that most of these proteins were found to play a pivotal role in the regulation of multiple metabolism pathways. It demonstrated that the metabolomics coupled with proteomics as a powerful approach for potential applications in understanding the biological effects of acupuncture stimulation.
Collapse
|
27
|
Liu C, Ding F, Hao F, Yu M, Lei H, Wu X, Zhao Z, Guo H, Yin J, Wang Y, Tang H. Reprogramming of Seed Metabolism Facilitates Pre-harvest Sprouting Resistance of Wheat. Sci Rep 2016; 6:20593. [PMID: 26860057 PMCID: PMC4748292 DOI: 10.1038/srep20593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/07/2016] [Indexed: 12/14/2022] Open
Abstract
Pre-harvest sprouting (PHS) is a worldwide problem for wheat production and transgene antisense-thioredoxin-s (anti-trx-s) facilitates outstanding resistance. To understand the molecular details of PHS resistance, we analyzed the metabonomes of the transgenic and wild-type (control) wheat seeds at various stages using NMR and GC-FID/MS. 60 metabolites were dominant in these seeds including sugars, organic acids, amino acids, choline metabolites and fatty acids. At day-20 post-anthesis, only malate level in transgenic wheat differed significantly from that in controls whereas at day-30 post-anthesis, levels of amino acids and sucrose were significantly different between these two groups. For mature seeds, most metabolites in glycolysis, TCA cycle, choline metabolism, biosynthesis of proteins, nucleotides and fatty acids had significantly lower levels in transgenic seeds than in controls. After 30-days post-harvest ripening, most metabolites in transgenic seeds had higher levels than in controls including amino acids, sugars, organic acids, fatty acids, choline metabolites and NAD+. These indicated that anti-trx-s lowered overall metabolic activities of mature seeds eliminating pre-harvest sprouting potential. Post-harvest ripening reactivated the metabolic activities of transgenic seeds to restore their germination vigor. These findings provided essential molecular phenomic information for PHS resistance of anti-trx-s and a credible strategy for future developing PHS resistant crops.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Feng Ding
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Men Yu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,Wuhan Zhongke Metaboss Ltd, 128 Guang-Gu-Qi-Lu, Wuhan 430074, China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiangyu Wu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhengxi Zhao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongxiang Guo
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
| | - Jun Yin
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450002, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan 430071, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Developmental Biology, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
28
|
Zhou L, Li H, Hao F, Li N, Liu X, Wang G, Wang Y, Tang H. Developmental Changes for the Hemolymph Metabolome of Silkworm (Bombyx mori L.). J Proteome Res 2015; 14:2331-47. [PMID: 25825269 DOI: 10.1021/acs.jproteome.5b00159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silkworm (Bombyx mori) is a lepidopteran-holometabolic model organism. To understand its developmental biochemistry, we characterized the larval hemolymph metabonome from the third instar to prepupa stage using (1)H NMR spectroscopy whilst hemolymph fatty acid composition using GC-FID/MS. We unambiguously assigned more than 60 metabolites, among which tyrosine-o-β-glucuronide, mesaconate, homocarnosine, and picolinate were reported for the first time from the silkworm hemolymph. Phosphorylcholine was the most abundant metabolite in all developmental stages with exception for the periods before the third and fourth molting. We also found obvious developmental dependence for the hemolymph metabonome involving multiple pathways including protein biosyntheses, glycolysis, TCA cycle, the metabolisms of choline amino acids, fatty acids, purines, and pyrimidines. Most hemolymph amino acids had two elevations during the feeding period of the fourth instar and prepupa stage. Trehalose was the major blood sugar before day 8 of the fifth instar, whereas glucose became the major blood sugar after spinning. C16:0, C18:0 and its unsaturated forms were dominant fatty acids in hemolymph. The developmental changes of hemolymph metabonome were associated with dietary nutrient intakes, biosyntheses of cell membrane, pigments, proteins, and energy metabolism. These findings offered essential biochemistry information in terms of the dynamic metabolic changes during silkworm development.
Collapse
Affiliation(s)
- Lihong Zhou
- †College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,¶College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Huihui Li
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuhua Hao
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ning Li
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Liu
- †College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoliang Wang
- ¶College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Yulan Wang
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,⊥Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Huiru Tang
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,§State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
29
|
Li D, Zhang L, Dong F, Liu Y, Li N, Li H, Lei H, Hao F, Wang Y, Zhu Y, Tang H. Metabonomic Changes Associated with Atherosclerosis Progression for LDLR(-/-) Mice. J Proteome Res 2015; 14:2237-54. [PMID: 25784267 DOI: 10.1021/acs.jproteome.5b00032] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atherosclerosis resulting from hyperlipidemia causes many serious cardiovascular diseases. To understand the systems changes associated with pathogenesis and progression of atherosclerosis, we comprehensively analyzed the dynamic metabonomic changes in multiple biological matrices of LDLR(-/-) mice using NMR and GC-FID/MS with gene expression, clinical chemistry, and histopathological data as well. We found that 12 week "Western-type" diet (WD) treatment caused obvious aortic lesions, macrophage infiltration, and collagen level elevation in LDLR(-/-) mice accompanied by up-regulation of inflammatory factors including aortic ICAM-1, MCP-1, iNOS, MMP2, and hepatic TNFα and IL-1β. The WD-induced atherosclerosis progression was accompanied by metabonomic changes in multiple matrices including biofluids (plasma, urine) and (liver, kidney, myocardial) tissues involving multiple metabolic pathways. These included disruption of cholesterol homeostasis, disturbance of biosynthesis of amino acids and proteins, altered gut microbiota functions together with metabolisms of vitamin-B3, choline, purines, and pyrimidines. WD treatment caused down-regulation of SCD1 and promoted oxidative stress reflected by urinary allantoin elevation and decreases in hepatic PUFA-to-MUFA ratio. When switching to normal diet, atherosclerotic LDLR(-/-) mice reprogrammed their metabolisms and reversed the atherosclerosis-associated metabonomic changes to a large extent, although aortic lesions, inflammation parameters, macrophage infiltration, and collagen content were only partially alleviated. We concluded that metabolisms of fatty acids and vitamin-B3 together with gut microbiota played crucially important roles in atherosclerosis development. These findings offered essential biochemistry details of the diet-induced atherosclerosis and demonstrated effectiveness of the integrated metabonomic analysis of multiple biological matrices for understanding the molecular aspects of cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Li
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Lulu Zhang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fangcong Dong
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yan Liu
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Ning Li
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huihui Li
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hehua Lei
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuhua Hao
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yulan Wang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China.,∥Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhu
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China.,⊥Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huiru Tang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China.,§State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|