1
|
Carpenter SCD, Bogdanove AJ, Abbot B, Stajich JE, Uehling JK, Lovett B, Kasson MT, Carter ME. Prevalence and diversity of TAL effector-like proteins in fungal endosymbiotic Mycetohabitans spp. Microb Genom 2024; 10:001261. [PMID: 38860878 PMCID: PMC11261895 DOI: 10.1099/mgen.0.001261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
Endofungal Mycetohabitans (formerly Burkholderia) spp. rely on a type III secretion system to deliver mostly unidentified effector proteins when colonizing their host fungus, Rhizopus microsporus. The one known secreted effector family from Mycetohabitans consists of homologues of transcription activator-like (TAL) effectors, which are used by plant pathogenic Xanthomonas and Ralstonia spp. to activate host genes that promote disease. These 'Burkholderia TAL-like (Btl)' proteins bind corresponding specific DNA sequences in a predictable manner, but their genomic target(s) and impact on transcription in the fungus are unknown. Recent phenotyping of Btl mutants of two Mycetohabitans strains revealed that the single Btl in one Mycetohabitans endofungorum strain enhances fungal membrane stress tolerance, while others in a Mycetohabitans rhizoxinica strain promote bacterial colonization of the fungus. The phenotypic diversity underscores the need to assess the sequence diversity and, given that sequence diversity translates to DNA targeting specificity, the functional diversity of Btl proteins. Using a dual approach to maximize capture of Btl protein sequences for our analysis, we sequenced and assembled nine Mycetohabitans spp. genomes using long-read PacBio technology and also mined available short-read Illumina fungal-bacterial metagenomes. We show that btl genes are present across diverse Mycetohabitans strains from Mucoromycota fungal hosts yet vary in sequences and predicted DNA binding specificity. Phylogenetic analysis revealed distinct clades of Btl proteins and suggested that Mycetohabitans might contain more species than previously recognized. Within our data set, Btl proteins were more conserved across M. rhizoxinica strains than across M. endofungorum, but there was also evidence of greater overall strain diversity within the latter clade. Overall, the results suggest that Btl proteins contribute to bacterial-fungal symbioses in myriad ways.
Collapse
Affiliation(s)
- Sara C. D. Carpenter
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Adam J. Bogdanove
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
| | - Bhuwan Abbot
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Jessie K. Uehling
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97333, USA
| | - Brian Lovett
- Emerging Pests and Pathogens Research Unit, USDA-ARS, Ithaca, NY 14850, USA
| | - Matt T. Kasson
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506, USA
| | - Morgan E. Carter
- Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA
- Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- CIPHER Center, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
2
|
Richter I, Uzum Z, Wein P, Molloy EM, Moebius N, Stinear TP, Pidot SJ, Hertweck C. Transcription activator-like effectors from endosymbiotic bacteria control the reproduction of their fungal host. mBio 2023; 14:e0182423. [PMID: 37971247 PMCID: PMC10746252 DOI: 10.1128/mbio.01824-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Interactions between fungi and bacteria are critically important in ecology, medicine, and biotechnology. In this study, we shed light on factors that promote the persistence of a toxin-producing, phytopathogenic Rhizopus-Mycetohabitans symbiosis that causes severe crop losses in Asia. We present an unprecedented case where bacterially produced transcription activator-like (TAL) effectors are key to maintaining a stable endosymbiosis. In their absence, fungal sporulation is abrogated, leading to collapse of the phytopathogenic alliance. The Mycetohabitans TAL (MTAL)-mediated mechanism of host control illustrates a unique role of bacterial effector molecules that has broader implications, potentially serving as a model to understand how prokaryotic symbionts interact with their eukaryotic hosts.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute, Melbourne, Australia
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
3
|
Richter I, Wein P, Uzum Z, Stanley CE, Krabbe J, Molloy EM, Moebius N, Ferling I, Hillmann F, Hertweck C. Transcription activator-like effector protects bacterial endosymbionts from entrapment within fungal hyphae. Curr Biol 2023:S0960-9822(23)00623-1. [PMID: 37301202 DOI: 10.1016/j.cub.2023.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/30/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
As an endosymbiont of the ecologically and medically relevant fungus Rhizopus microsporus, the toxin-producing bacterium Mycetohabitans rhizoxinica faces myriad challenges, such as evading the host's defense mechanisms. However, the bacterial effector(s) that facilitate the remarkable ability of M. rhizoxinica to freely migrate within fungal hyphae have thus far remained unknown. Here, we show that a transcription activator-like (TAL) effector released by endobacteria is an essential symbiosis factor. By combining microfluidics with fluorescence microscopy, we observed enrichment of TAL-deficient M. rhizoxinica in side hyphae. High-resolution live imaging showed the formation of septa at the base of infected hyphae, leading to the entrapment of endobacteria. Using a LIVE/DEAD stain, we demonstrate that the intracellular survival of trapped TAL-deficient bacteria is significantly reduced compared with wild-type M. rhizoxinica, indicative of a protective host response in the absence of TAL proteins. Subversion of host defense in TAL-competent endobacteria represents an unprecedented function of TAL effectors. Our data illustrate an unusual survival strategy of endosymbionts in the host and provide deeper insights into the dynamic interactions between bacteria and eukaryotes.
Collapse
Affiliation(s)
- Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Zerrin Uzum
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Claire E Stanley
- Department of Bioengineering, Imperial College, South Kensington, London SW7 2AZ, UK
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Evelyn M Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Nadine Moebius
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Iuliia Ferling
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology, Beutenbergstr. 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, HKI, Beutenbergstr. 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
4
|
Arnesen JA, Hoof JB, Kildegaard HF, Borodina I. Genome Editing of Eukarya. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Aksel T, Yu Z, Cheng Y, Douglas SM. Molecular goniometers for single-particle cryo-electron microscopy of DNA-binding proteins. Nat Biotechnol 2020; 39:378-386. [PMID: 33077960 PMCID: PMC7956247 DOI: 10.1038/s41587-020-0716-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
Correct reconstruction of macromolecular structure by cryo-electron microscopy (cryo-EM) relies on accurate determination of the orientation of single-particle images. For small (<100 kDa) DNA-binding proteins, obtaining particle images with sufficiently asymmetric features to correctly guide alignment is challenging. We apply DNA origami to construct molecular goniometers—instruments that precisely orient objects—and use them to dock a DNA-binding protein on a double-helix stage that has user-programmable tilt and rotation angles. We construct goniometers with fourteen different stage configurations to orient and visualize the protein just above the cryo-EM grid surface. Each goniometer has a distinct barcode pattern that we use during particle classification to assign angle priors to the bound protein. We use goniometers to obtain a 6.5 Å structure of BurrH, an 82-kDa DNA-binding protein whose helical pseudosymmetry prevents accurate image orientation using traditional cryo-EM. Our approach should be adaptable to other DNA-binding proteins as well as small proteins fused to DNA-binding domains. DNA origami orients single proteins on a surface to aid structure determination by cryo-electron microscopy.
Collapse
Affiliation(s)
- Tural Aksel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Zanlin Yu
- Howard Hughes Medical Institute and the Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Cheng
- Howard Hughes Medical Institute and the Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn M Douglas
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
A TAL effector-like protein of an endofungal bacterium increases the stress tolerance and alters the transcriptome of the host. Proc Natl Acad Sci U S A 2020; 117:17122-17129. [PMID: 32632014 PMCID: PMC7382252 DOI: 10.1073/pnas.2003857117] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Endosymbiotic bacteria are found in diverse fungi, but little is known about how they communicate with their hosts. Some plant pathogenic bacteria use type III-translocated TAL effectors to control host transcription, and TAL-like proteins are encoded in genomes of the fungal endosymbiotic bacterium Mycetohabitans rhizoxinica. In this paper, we present evidence that these proteins are, like TAL effectors, type III-secreted, nuclear-localizing effectors that perturb host transcription and show that one enhances tolerance of the fungal host to cell membrane stress. Our characterization of an effector in a bacterial–fungal symbiosis opens a new door to molecular understanding of these interkingdom partnerships. Our findings also provide insight into the functional diversity and evolution of the TAL effector protein family. Symbioses of bacteria with fungi have only recently been described and are poorly understood. In the symbiosis of Mycetohabitans (formerly Burkholderia) rhizoxinica with the fungus Rhizopus microsporus, bacterial type III (T3) secretion is known to be essential. Proteins resembling T3-secreted transcription activator-like (TAL) effectors of plant pathogenic bacteria are encoded in the three sequenced Mycetohabitans spp. genomes. TAL effectors nuclear-localize in plants, where they bind and activate genes important in disease. The Burkholderia TAL-like (Btl) proteins bind DNA but lack the N- and C-terminal regions, in which TAL effectors harbor their T3 and nuclear localization signals, and activation domain. We characterized a Btl protein, Btl19-13, and found that, despite the structural differences, it can be T3-secreted and can nuclear-localize. A btl19-13 gene knockout did not prevent the bacterium from infecting the fungus, but the fungus became less tolerant to cell membrane stress. Btl19-13 did not alter transcription in a plant-based reporter assay, but 15 R. microsporus genes were differentially expressed in comparisons both of the fungus infected with the wild-type bacterium vs. the mutant and with the mutant vs. a complemented strain. Southern blotting revealed btl genes in 14 diverse Mycetohabitans isolates. However, banding patterns and available sequences suggest variation, and the btl19-13 phenotype could not be rescued by a btl gene from a different strain. Our findings support the conclusion that Btl proteins are effectors that act on host DNA and play important but varied or possibly host genotype-specific roles in the M. rhizoxinica–R. microsporus symbiosis.
Collapse
|
7
|
Transgenic Testing Does Not Support a Role for Additional Candidate Genes in Wolbachia Male Killing or Cytoplasmic Incompatibility. mSystems 2020; 5:5/1/e00658-19. [PMID: 31937677 PMCID: PMC6967388 DOI: 10.1128/msystems.00658-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Wolbachia are widespread bacterial endosymbionts that manipulate the reproduction of diverse arthropods to spread through a population and can substantially shape host evolution. Recently, reports identified three prophage WO genes (wmk, cifA, and cifB) that transgenically recapitulate many aspects of reproductive manipulation in Drosophila melanogaster. Here, we transgenically tested 10 additional gene candidates for CI and/or male killing in flies. The results yield no evidence for the involvement of these gene candidates in reproductive parasitism, bolstering the evidence for identification of the cif and wmk genes as the major factors involved in their phenotypes. In addition, evidence supports new hypotheses for prediction of male-killing phenotypes or lack thereof based on wmk transcript length and copy number. These experiments inform efforts to understand the full basis of reproductive parasitism for basic and applied purposes and lay the foundation for future work on the function of an interesting group of Wolbachia and phage WO genes. Endosymbiotic bacteria in the genus Wolbachia remarkably infect nearly half of all arthropod species. They spread in part because of manipulations of host sexual reproduction that enhance the maternal transmission of the bacteria, including male killing (death of infected males) and unidirectional cytoplasmic incompatibility (CI; death of offspring from infected fathers and uninfected mothers). Recent discoveries identified several genes in prophage WO of Wolbachia (wmk, cifA, and cifB) that fully or partially recapitulate male killing or CI when transgenically expressed in Drosophila melanogaster. However, it is not yet fully resolved if other gene candidates contribute to these phenotypes. Here, we transgenically tested 10 additional gene candidates for their involvement in male killing and/or CI. The results show that despite sequence and protein architecture similarities or comparative associations with reproductive parasitism, transgenic expression of the candidates does not recapitulate male killing or CI. Sequence analysis across Wmk and its closest relatives reveals amino acids that may be important to its function. In addition, evidence is presented to propose new hypotheses regarding the relationship between wmk transcript length and its ability to kill a given host, as well as copy number of wmk homologs within a bacterial strain, which may be predictive of host resistance. Together, these analyses continue to build the evidence for identification of wmk, cifA, and cifB as the major genes that have thus far been shown to cause reproductive parasitism in Wolbachia, and the transgenic resources provide a basis for further functional study of phage WO genes. IMPORTANCEWolbachia are widespread bacterial endosymbionts that manipulate the reproduction of diverse arthropods to spread through a population and can substantially shape host evolution. Recently, reports identified three prophage WO genes (wmk, cifA, and cifB) that transgenically recapitulate many aspects of reproductive manipulation in Drosophila melanogaster. Here, we transgenically tested 10 additional gene candidates for CI and/or male killing in flies. The results yield no evidence for the involvement of these gene candidates in reproductive parasitism, bolstering the evidence for identification of the cif and wmk genes as the major factors involved in their phenotypes. In addition, evidence supports new hypotheses for prediction of male-killing phenotypes or lack thereof based on wmk transcript length and copy number. These experiments inform efforts to understand the full basis of reproductive parasitism for basic and applied purposes and lay the foundation for future work on the function of an interesting group of Wolbachia and phage WO genes.
Collapse
|
8
|
Meygret A, Peuchant O, Dordet-Frisoni E, Sirand-Pugnet P, Citti C, Bébéar C, Béven L, Pereyre S. High Prevalence of Integrative and Conjugative Elements Encoding Transcription Activator-Like Effector Repeats in Mycoplasma hominis. Front Microbiol 2019; 10:2385. [PMID: 31681239 PMCID: PMC6813540 DOI: 10.3389/fmicb.2019.02385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/01/2019] [Indexed: 12/02/2022] Open
Abstract
Integrative and conjugative elements (ICEs) are modular mobile genetic elements that can disseminate through excision, circularization, and transfer. Mycoplasma ICEs have recently been found distributed among some mycoplasma species and there is accumulating evidence that they play a pivotal role in horizontal gene transfers. The occurrence of ICEs has not been documented in Mycoplasma hominis, a human urogenital pathogen responsible for urogenital infections, neonatal infections and extragenital infections. In this study, we searched for, characterized, and compared ICEs by genome analyses of 12 strains of M. hominis. ICEs of 27–30 kb were found in one or two copies in seven of the 12 M. hominis strains sequenced. Only five of these ICEs seemed to be functional, as assessed by detection of circular forms of extrachromosomal ICE. Moreover, the prevalence of ICEs in M. hominis was estimated to be 45% in a collection of 120 clinical isolates of M. hominis, including 27 tetracycline-resistant tet(M)-positive isolates. The proportion of ICEs was not higher in isolates carrying the tet(M) gene, suggesting that ICEs are not involved in tetracycline resistance. Notably, all M. hominis ICEs had a very similar structure, consisting of a 4.0–5.1 kb unusual module composed of five to six juxtaposed CDSs. All the genes forming this module were specific to M. hominis ICEs as they had no homologs in other mycoplasma ICEs. In each M. hominis ICE, one to three CDSs encode proteins that share common structural features with transcription activator-like (TAL) effectors involved in polynucleotide recognition and signal transduction in symbiotic plant pathogen bacteria. The conserved and specific structure of M. hominis ICEs and the high prevalence in clinical strains suggest that these ICEs may confer a selective advantage for the physiology or pathogenicity of this human pathogenic bacterium. These data open the way for further studies aiming at unraveling horizontal gene transfers and virulence factors in M. hominis.
Collapse
Affiliation(s)
- Alexandra Meygret
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Olivia Peuchant
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Emilie Dordet-Frisoni
- IHAP, INRA, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Pascal Sirand-Pugnet
- UMR 1332, BFP, University of Bordeaux, Bordeaux, France.,INRA, UMR 1332, BFP, Bordeaux, France
| | - Christine Citti
- IHAP, INRA, Ecole Nationale Vétérinaire de Toulouse, Université de Toulouse, Toulouse, France
| | - Cécile Bébéar
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| | - Laure Béven
- UMR 1332, BFP, University of Bordeaux, Bordeaux, France.,INRA, UMR 1332, BFP, Bordeaux, France
| | - Sabine Pereyre
- USC EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,INRA, USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Bordeaux, France.,Department of Bacteriology, French National Reference Center for Bacterial STI, CHU Bordeaux, Bordeaux, France
| |
Collapse
|
9
|
Perez-Quintero AL, Szurek B. A Decade Decoded: Spies and Hackers in the History of TAL Effectors Research. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:459-481. [PMID: 31387457 DOI: 10.1146/annurev-phyto-082718-100026] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transcription activator-like effectors (TALEs) from the genus Xanthomonas are proteins with the remarkable ability to directly bind the promoters of genes in the plant host to induce their expression, which often helps bacterial colonization. Metaphorically, TALEs act as spies that infiltrate the plant disguised as high-ranking civilians (transcription factors) to trick the plant into activating weak points that allow an invasion. Current knowledge of how TALEs operate allows researchers to predict their activity (counterespionage) and exploit their function, engineering them to do our bidding (a Manchurian agent). This has been possible thanks particularly to the discovery of their DNA binding mechanism, which obeys specific amino acid-DNA correspondences (the TALE code). Here, we review the history of how researchers discovered the way these proteins work and what has changed in the ten years since the discovery of the code. Recommended music for reading this review can be found in the Supplemental Material.
Collapse
Affiliation(s)
- Alvaro L Perez-Quintero
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado 80523-1177, USA;
- IRD, CIRAD, Université Montpellier, IPME, 34000 Montpellier, France;
| | - Boris Szurek
- IRD, CIRAD, Université Montpellier, IPME, 34000 Montpellier, France;
| |
Collapse
|
10
|
Bastedo DP, Lo T, Laflamme B, Desveaux D, Guttman DS. Diversity and Evolution of Type III Secreted Effectors: A Case Study of Three Families. Curr Top Microbiol Immunol 2019; 427:201-230. [DOI: 10.1007/82_2019_165] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Wang J, Zeng X, Tian D, Yang X, Wang L, Yin Z. The pepper Bs4C proteins are localized to the endoplasmic reticulum (ER) membrane and confer disease resistance to bacterial blight in transgenic rice. MOLECULAR PLANT PATHOLOGY 2018; 19:2025-2035. [PMID: 29603592 PMCID: PMC6638055 DOI: 10.1111/mpp.12684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/21/2018] [Accepted: 03/25/2018] [Indexed: 05/07/2023]
Abstract
Transcription activator-like effector (TALE)-dependent dominant disease resistance (R) genes in plants, also referred to as executor R genes, are induced on infection by phytopathogenic bacteria of the genus Xanthomonas harbouring the corresponding TALE genes. Unlike the traditional R proteins, the executor R proteins do not determine the resistance specificity and may function broadly in different plant species. The executor R gene Bs4C-R in the resistant genotype PI 235047 of the pepper species Capsicum pubescens (CpBs4C-R) confers disease resistance to Xanthomonas campestris pv. vesicatoria (Xcv) harbouring the TALE genes avrBsP/avrBs4. In this study, the synthetic genes of CpBs4C-R and two other Bs4C-like genes, the susceptible allele in the genotype PI585270 of C. pubescens (CpBs4C-S) and the CaBs4C-R homologue gene in the cultivar 'CM334' of Capsicum annum (CaBs4C), were characterized in tobacco (Nicotiana benthamiana) and rice (Oryza sativa). The Bs4C genes induced cell death in N. benthamiana. The functional Bs4C-eCFP fusion proteins were localized to the endoplasmic reticulum (ER) membrane in the leaf epidermal cells of N. benthamiana. The Xa10 promoter-Bs4C fusion genes in transgenic rice conferred strain-specific disease resistance to Xanthomonas oryzae pv. oryzae (Xoo), the causal agent of bacterial blight in rice, and were specifically induced by the Xa10-incompatible Xoo strain PXO99A (pHM1avrXa10). The results indicate that the Bs4C proteins from pepper species function broadly in rice and the Bs4C protein-mediated cell death from the ER is conserved between dicotyledonous and monocotyledonous plants, which can be utilized to engineer novel and enhanced disease resistance in heterologous plants.
Collapse
Affiliation(s)
- Jun Wang
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
| | - Xuan Zeng
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
| | - Dongsheng Tian
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
| | - Xiaobei Yang
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
| | - Lanlan Wang
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
| | - Zhongchao Yin
- Temasek Life Sciences LaboratoryNational University of SingaporeSingapore 117604Singapore
- Department of Biological SciencesNational University of SingaporeSingapore 117543Singapore
| |
Collapse
|
12
|
Büttner D. Behind the lines-actions of bacterial type III effector proteins in plant cells. FEMS Microbiol Rev 2018; 40:894-937. [PMID: 28201715 PMCID: PMC5091034 DOI: 10.1093/femsre/fuw026] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/31/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023] Open
Abstract
Pathogenicity of most Gram-negative plant-pathogenic bacteria depends on the type III secretion (T3S) system, which translocates bacterial effector proteins into plant cells. Type III effectors modulate plant cellular pathways to the benefit of the pathogen and promote bacterial multiplication. One major virulence function of type III effectors is the suppression of plant innate immunity, which is triggered upon recognition of pathogen-derived molecular patterns by plant receptor proteins. Type III effectors also interfere with additional plant cellular processes including proteasome-dependent protein degradation, phytohormone signaling, the formation of the cytoskeleton, vesicle transport and gene expression. This review summarizes our current knowledge on the molecular functions of type III effector proteins with known plant target molecules. Furthermore, plant defense strategies for the detection of effector protein activities or effector-triggered alterations in plant targets are discussed.
Collapse
Affiliation(s)
- Daniela Büttner
- Genetics Department, Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
13
|
Kachroo A, Vincelli P, Kachroo P. Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is It Being Applied? PHYTOPATHOLOGY 2017; 107:1452-1461. [PMID: 28609156 DOI: 10.1094/phyto-04-17-0130-rvw] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Paul Vincelli
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| |
Collapse
|
14
|
Perycz M, Krwawicz J, Bochtler M. A TALE-inspired computational screen for proteins that contain approximate tandem repeats. PLoS One 2017; 12:e0179173. [PMID: 28617832 PMCID: PMC5472282 DOI: 10.1371/journal.pone.0179173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/24/2017] [Indexed: 11/18/2022] Open
Abstract
TAL (transcription activator-like) effectors (TALEs) are bacterial proteins that are secreted from bacteria to plant cells to act as transcriptional activators. TALEs and related proteins (RipTALs, BurrH, MOrTL1 and MOrTL2) contain approximate tandem repeats that differ in conserved positions that define specificity. Using PERL, we screened ~47 million protein sequences for TALE-like architecture characterized by approximate tandem repeats (between 30 and 43 amino acids in length) and sequence variability in conserved positions, without requiring sequence similarity to TALEs. Candidate proteins were scored according to their propensity for nuclear localization, secondary structure, repeat sequence complexity, as well as covariation and predicted structural proximity of variable residues. Biological context was tentatively inferred from co-occurrence of other domains and interactome predictions. Approximate repeats with TALE-like features that merit experimental characterization were found in a protein of chestnut blight fungus, a eukaryotic plant pathogen.
Collapse
Affiliation(s)
- Malgorzata Perycz
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Joanna Krwawicz
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| | - Matthias Bochtler
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland
- International Institute of Molecular and Cell Biology in Warsaw, Poland
- * E-mail:
| |
Collapse
|
15
|
de Lange O, Schandry N, Wunderlich M, Berendzen KW, Lahaye T. Exploiting the sequence diversity of TALE-like repeats to vary the strength of dTALE-promoter interactions. Synth Biol (Oxf) 2017; 2:ysx004. [PMID: 32995505 PMCID: PMC7445789 DOI: 10.1093/synbio/ysx004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/13/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Designer transcription activator-like effectors (dTALEs) are programmable transcription factors used to regulate user-defined promoters. The TALE DNA-binding domain is a tandem series of amino acid repeats that each bind one DNA base. Each repeat is 33-35 amino acids long. A residue in the center of each repeat is responsible for defining DNA base specificity and is referred to as the base specificying residue (BSR). Other repeat residues are termed non-BSRs and can contribute to TALE DNA affinity in a non-base-specific manner. Previous dTALE engineering efforts have focused on BSRs. Non-BSRs have received less attention, perhaps because there is almost no non-BSR sequence diversity in natural TALEs. However, more sequence diverse, TALE-like proteins are found in diverse bacterial clades. Here, we show that natural non-BSR sequence diversity of TALEs and TALE-likes can be used to modify DNA-binding strength in a new form of dTALE repeat array that we term variable sequence TALEs (VarSeTALEs). We generated VarSeTALE repeat modules through random assembly of repeat sequences from different origins, while holding BSR composition, and thus base preference, constant. We used two different VarSeTALE design approaches combing either whole repeats from different TALE-like sources (inter-repeat VarSeTALEs) or repeat subunits corresponding to secondary structural elements (intra-repeat VarSeTALEs). VarSeTALE proteins were assayed in bacteria, plant protoplasts and leaf tissues. In each case, VarSeTALEs activated or repressed promoters with a range of activities. Our results indicate that natural non-BSR diversity can be used to diversify the binding strengths of dTALE repeat arrays while keeping target sequences constant.
Collapse
Affiliation(s)
- Orlando de Lange
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universitat Tübingen, Tübingen, Germany
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Niklas Schandry
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universitat Tübingen, Tübingen, Germany
| | - Markus Wunderlich
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universitat Tübingen, Tübingen, Germany
| | - Kenneth Wayne Berendzen
- ZMBP Central Facilities, Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Thomas Lahaye
- Department of General Genetics, Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universitat Tübingen, Tübingen, Germany
| |
Collapse
|
16
|
Huang R, Hui S, Zhang M, Li P, Xiao J, Li X, Yuan M, Wang S. A Conserved Basal Transcription Factor Is Required for the Function of Diverse TAL Effectors in Multiple Plant Hosts. FRONTIERS IN PLANT SCIENCE 2017; 8:1919. [PMID: 29163628 PMCID: PMC5681966 DOI: 10.3389/fpls.2017.01919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/23/2017] [Indexed: 05/17/2023]
Abstract
Many Xanthomonas bacteria use transcription activator-like effector (TALE) proteins to activate plant disease susceptibility (S) genes, and this activation contributes to disease. We recently reported that rice basal transcription factor IIA gamma subunit, OsTFIIAγ5, is hijacked by TALE-carrying Xanthomonas oryzae infecting the plants. However, whether TFIIAγs are also involved in TALE-carrying Xanthomonas-caused diseases in other plants is unknown. Here, molecular and genetic approaches were used to investigate the role of TFIIAγs in other plants. We found that TFIIAγs are also used by TALE-carrying Xanthomonas to cause disease in other plants. The TALEs of Xanthomonas citri pv. citri (Xcc) causing canker in citrus and Xanthomonas campestris pv. vesicatoria (Xcv) causing bacterial spot in pepper and tomato interacted with corresponding host TFIIAγs as in rice. Transcriptionally suppressing TFIIAγ led to resistance to Xcc in citrus and Xcv in pepper and tomato. The 39th residue of OsTFIIAγ5 and citrus CsTFIIAγ is vital for TALE-dependent induction of plant S genes. As mutated OsTFIIAγ5V 39E, CsTFIIAγV 39E, pepper CaTFIIAγV 39E, and tomato SlTFIIAγV 39E also did not interact with TALEs to prevent disease. These results suggest that TALE-carrying bacteria share a common mechanism for infecting plants. Using TFIIAγV 39E-type mutation could be a general strategy for improving resistance to TALE-carrying pathogens in crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Meng Yuan
- *Correspondence: Meng Yuan, Shiping Wang,
| | | |
Collapse
|
17
|
Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife 2016; 5:e19605. [PMID: 27472897 PMCID: PMC4993585 DOI: 10.7554/elife.19605] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 01/27/2023] Open
Abstract
Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.
Collapse
Affiliation(s)
- Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Renyan Huang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, Xiao J, Li X, Wang S. A host basal transcription factor is a key component for infection of rice by TALE-carrying bacteria. eLife 2016; 5. [PMID: 27472897 DOI: 10.7554/elife.19605.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 07/21/2016] [Indexed: 05/20/2023] Open
Abstract
Transcription activator-like effectors (TALEs) are sequence-specific DNA binding proteins found in a range of plant pathogenic bacteria, where they play important roles in host-pathogen interactions. However, it has been unclear how TALEs, after they have been injected into the host cells, activate transcription of host genes required for infection success. Here, we show that the basal transcription factor IIA gamma subunit TFIIAγ5 from rice is a key component for infection by the TALE-carrying bacterium Xanthomonas oryzae pv. oryzae, the causal agent for bacterial blight. Direct interaction of several TALEs with TFIIAγ5 is required for activation of disease susceptibility genes. Conversely, reduced expression of the TFIIAγ5 host gene limits the induction of susceptibility genes and thus decreases bacterial blight symptoms. Suppression or mutation of TFIIAγ5 can also reduce bacterial streak, another devastating disease of rice caused by TALE-carrying X. oryzae pv. oryzicola. These results have important implications for formulating a widely applicable strategy with which to improve resistance of plants to TALE-carrying pathogens.
Collapse
Affiliation(s)
- Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yinggen Ke
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Renyan Huang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zeyu Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Taian, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
19
|
Stella S, Montoya G. The genome editing revolution: A CRISPR-Cas TALE off-target story. Bioessays 2016; 38 Suppl 1:S4-S13. [DOI: 10.1002/bies.201670903] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Stefano Stella
- Novo Nordisk Foundation Center for Protein Research, Protein Structure and Function Programme, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - Guillermo Montoya
- Novo Nordisk Foundation Center for Protein Research, Protein Structure and Function Programme, Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
20
|
The Use and Development of TAL Effector Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Abstract
Transcription activator-like effectors (TALEs) are proteins with a unique DNA-binding domain that confers both a predictable and programmable specificity. The DNA-binding domain consists typically of 34-amino acid near-identical repeats. The repeats form a right-handed superhelical structure that wraps around the DNA double helix and exposes the variable amino acids at position 13 of each repeat to the sense strand DNA bases. Each repeat binds one base in a highly specific, non-overlapping, and comma-free fashion. Although TALE specificities are encoded in a simple way, sophisticated rules can be taken into account to build highly efficient DNA-binding modules for biotechnological use.
Collapse
|
22
|
Abstract
Agrobacterium, due to the transfer of T-DNA to the host genome, is known as nature's genetic engineer. Once again, bacteria have led the way to newfound riches in biotechnology. Xanthomonas has emerged as nature's molecular biologist as the functional domains of the sequence-specific DNA transcription factors known as TAL effectors were characterized and associated with the cognate disease susceptibility and resistance genes of plants.
Collapse
Affiliation(s)
- Frank White
- Department of Plant Pathology, University of Florida, Fifield Hall, 110680, Gainesville, FL, 32611-0680, USA.
| |
Collapse
|
23
|
de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nucleic Acids Res 2015; 43:10065-10080. [PMID: 26481363 DOI: 10.1093/nar.gkv1053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2015] [Indexed: 05/28/2023] Open
Abstract
Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats.
Collapse
Affiliation(s)
- Orlando de Lange
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Christina Wolf
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Philipp Thiel
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Jens Krüger
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | | | - Oliver Kohlbacher
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany Quantitative Biology Centre and Faculty of Medicine, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Thomas Lahaye
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| |
Collapse
|
24
|
de Lange O, Wolf C, Thiel P, Krüger J, Kleusch C, Kohlbacher O, Lahaye T. DNA-binding proteins from marine bacteria expand the known sequence diversity of TALE-like repeats. Nucleic Acids Res 2015; 43:10065-80. [PMID: 26481363 PMCID: PMC4787788 DOI: 10.1093/nar/gkv1053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2015] [Indexed: 12/24/2022] Open
Abstract
Transcription Activator-Like Effectors (TALEs) of Xanthomonas bacteria are programmable DNA binding proteins with unprecedented target specificity. Comparative studies into TALE repeat structure and function are hindered by the limited sequence variation among TALE repeats. More sequence-diverse TALE-like proteins are known from Ralstonia solanacearum (RipTALs) and Burkholderia rhizoxinica (Bats), but RipTAL and Bat repeats are conserved with those of TALEs around the DNA-binding residue. We study two novel marine-organism TALE-like proteins (MOrTL1 and MOrTL2), the first to date of non-terrestrial origin. We have assessed their DNA-binding properties and modelled repeat structures. We found that repeats from these proteins mediate sequence specific DNA binding conforming to the TALE code, despite low sequence similarity to TALE repeats, and with novel residues around the BSR. However, MOrTL1 repeats show greater sequence discriminating power than MOrTL2 repeats. Sequence alignments show that there are only three residues conserved between repeats of all TALE-like proteins including the two new additions. This conserved motif could prove useful as an identifier for future TALE-likes. Additionally, comparing MOrTL repeats with those of other TALE-likes suggests a common evolutionary origin for the TALEs, RipTALs and Bats.
Collapse
Affiliation(s)
- Orlando de Lange
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Christina Wolf
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Philipp Thiel
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Jens Krüger
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | | | - Oliver Kohlbacher
- Department of Computer Science and Centre for Bioinformatics, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany Quantitative Biology Centre and Faculty of Medicine, University of Tuebingen, Sand 14, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| | - Thomas Lahaye
- Department of General Genetics, Centre for Plant Molecular Biology, University of Tuebingen, Auf der Morgenstelle 32, Tuebingen, Baden-Wuerttemberg, 72076, Germany
| |
Collapse
|
25
|
Venken KJT, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL. Genome engineering: Drosophila melanogaster and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:233-67. [PMID: 26447401 DOI: 10.1002/wdev.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Koen J T Venken
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Paul J Vandeventer
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Audrey E Christiansen
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Kristi L Hoffman
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| |
Collapse
|
26
|
Wade M. High-Throughput Silencing Using the CRISPR-Cas9 System: A Review of the Benefits and Challenges. JOURNAL OF BIOMOLECULAR SCREENING 2015; 20:1027-39. [PMID: 26001564 DOI: 10.1177/1087057115587916] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/29/2015] [Indexed: 12/13/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has been seized upon with a fervor enjoyed previously by small interfering RNA (siRNA) and short hairpin RNA (shRNA) technologies and has enormous potential for high-throughput functional genomics studies. The decision to use this approach must be balanced with respect to adoption of existing platforms versus awaiting the development of more "mature" next-generation systems. Here, experience from siRNA and shRNA screening plays an important role, as issues such as targeting efficiency, pooling strategies, and off-target effects with those technologies are already framing debates in the CRISPR field. CRISPR/Cas can be exploited not only to knockout genes but also to up- or down-regulate gene transcription-in some cases in a multiplex fashion. This provides a powerful tool for studying the interaction among multiple signaling cascades in the same genetic background. Furthermore, the documented success of CRISPR/Cas-mediated gene correction (or the corollary, introduction of disease-specific mutations) provides proof of concept for the rapid generation of isogenic cell lines for high-throughput screening. In this review, the advantages and limitations of CRISPR/Cas are discussed and current and future applications are highlighted. It is envisaged that complementarities between CRISPR, siRNA, and shRNA will ensure that all three technologies remain critical to the success of future functional genomics projects.
Collapse
Affiliation(s)
- Mark Wade
- Screening Unit, Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
27
|
Schreiber T, Sorgatz A, List F, Blüher D, Thieme S, Wilmanns M, Bonas U. Refined requirements for protein regions important for activity of the TALE AvrBs3. PLoS One 2015; 10:e0120214. [PMID: 25781334 PMCID: PMC4363659 DOI: 10.1371/journal.pone.0120214] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/20/2015] [Indexed: 11/25/2022] Open
Abstract
AvrBs3, the archetype of the family of transcription activator-like (TAL) effectors from phytopathogenic Xanthomonas bacteria, is translocated by the type III secretion system into the plant cell. AvrBs3 localizes to the plant cell nucleus and activates the transcription of target genes. Crucial for this is the central AvrBs3 region of 17.5 34-amino acid repeats that functions as a DNA-binding domain mediating recognition in a “one-repeat-to-one base pair” manner. Although AvrBs3 forms homodimers in the plant cell cytosol prior to nuclear import, it binds DNA as a monomer. Here, we show that complex formation of AvrBs3 proteins negatively affects their DNA-binding affinity in vitro. The conserved cysteine residues at position 30 of each repeat facilitate AvrBs3 complexes via disulfide bonds in vitro but are also required for the gene-inducing activity of the AvrBs3 monomer, i.e., activation of plant gene promoters. Our data suggest that the latter is due to a contribution to protein plasticity and that cysteine substitutions to alanine or serine result in a different DNA-binding mode. In addition, our studies revealed that extended parts of both the N-terminal and C-terminal regions of AvrBs3 contribute to DNA binding and, hence, gene-inducing activity in planta.
Collapse
Affiliation(s)
- Tom Schreiber
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Anika Sorgatz
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Felix List
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, Hamburg, Germany
| | - Doreen Blüher
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sabine Thieme
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestraße 85, Hamburg, Germany
| | - Ulla Bonas
- Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail:
| |
Collapse
|
28
|
Hutin M, Pérez-Quintero AL, Lopez C, Szurek B. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. FRONTIERS IN PLANT SCIENCE 2015. [PMID: 26236326 DOI: 10.3389/fpls.2015.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance.
Collapse
Affiliation(s)
- Mathilde Hutin
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2 Montpellier, France
| | - Alvaro L Pérez-Quintero
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2 Montpellier, France
| | - Camilo Lopez
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2 Montpellier, France ; Biology Department, Universidad Nacional de Colombia Bogota, Colombia
| | - Boris Szurek
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2 Montpellier, France
| |
Collapse
|
29
|
Pérez-Quintero AL, Lamy L, Gordon JL, Escalon A, Cunnac S, Szurek B, Gagnevin L. QueTAL: a suite of tools to classify and compare TAL effectors functionally and phylogenetically. FRONTIERS IN PLANT SCIENCE 2015; 6:545. [PMID: 26284082 PMCID: PMC4522561 DOI: 10.3389/fpls.2015.00545] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 07/06/2015] [Indexed: 05/20/2023]
Abstract
Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi.
Collapse
Affiliation(s)
| | - Léo Lamy
- UMR IPME, IRD-CIRAD-Université MontpellierMontpellier, France
| | | | - Aline Escalon
- UMR PVBMT, CIRAD-Université de la RéunionSaint-Pierre, France
| | | | - Boris Szurek
- UMR IPME, IRD-CIRAD-Université MontpellierMontpellier, France
- *Correspondence: Boris Szurek and Lionel Gagnevin, UMR IPME, IRD-CIRAD-UM, 911, Av. Agropolis BP 64501, 34394 Montpellier, France ;
| | - Lionel Gagnevin
- UMR IPME, IRD-CIRAD-Université MontpellierMontpellier, France
- *Correspondence: Boris Szurek and Lionel Gagnevin, UMR IPME, IRD-CIRAD-UM, 911, Av. Agropolis BP 64501, 34394 Montpellier, France ;
| |
Collapse
|
30
|
Hutin M, Pérez-Quintero AL, Lopez C, Szurek B. MorTAL Kombat: the story of defense against TAL effectors through loss-of-susceptibility. FRONTIERS IN PLANT SCIENCE 2015; 6:535. [PMID: 26236326 PMCID: PMC4500901 DOI: 10.3389/fpls.2015.00535] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/30/2015] [Indexed: 05/21/2023]
Abstract
Many plant-pathogenic xanthomonads rely on Transcription Activator-Like (TAL) effectors to colonize their host. This particular family of type III effectors functions as specific plant transcription factors via a programmable DNA-binding domain. Upon binding to the promoters of plant disease susceptibility genes in a sequence-specific manner, the expression of these host genes is induced. However, plants have evolved specific strategies to counter the action of TAL effectors and confer resistance. One mechanism is to avoid the binding of TAL effectors by mutations of their DNA binding sites, resulting in resistance by loss-of-susceptibility. This article reviews our current knowledge of the susceptibility hubs targeted by Xanthomonas TAL effectors, possible evolutionary scenarios for plants to combat the pathogen with loss-of-function alleles, and how this knowledge can be used overall to develop new pathogen-informed breeding strategies and improve crop resistance.
Collapse
Affiliation(s)
- Mathilde Hutin
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2Montpellier, France
| | - Alvaro L. Pérez-Quintero
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2Montpellier, France
| | - Camilo Lopez
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2Montpellier, France
- Biology Department, Universidad Nacional de ColombiaBogota, Colombia
| | - Boris Szurek
- UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2Montpellier, France
- *Correspondence: Boris Szurek, UMR IPME, Institut de Recherche Pour le Développement, IRD-CIRAD-Université Montpellier 2, 911 Avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France,
| |
Collapse
|
31
|
Boch J, Bonas U, Lahaye T. TAL effectors--pathogen strategies and plant resistance engineering. THE NEW PHYTOLOGIST 2014; 204:823-32. [PMID: 25539004 DOI: 10.1111/nph.13015] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transcription activator-like effectors (TALEs) from plant pathogenic Xanthomonas spp. and the related RipTALs from Ralstonia solanacearum are DNA-binding proteins with a modular DNA-binding domain. This domain is both predictable and programmable, which simplifies elucidation of TALE function in planta and facilitates generation of DNA-binding modules with desired specificity for biotechnological approaches. Recently identified TALE host target genes that either promote or stop bacterial disease provide new insights into how expression of TALE genes affects the plant–pathogen interaction. Since its elucidation the TALE code has been continuously refined and now provides a mature tool that, in combination with transcriptome profiling, allows rapid isolation of novel TALE target genes. The TALE code is also the basis for synthetic promoter-traps that mediate recognition of TALE or RipTAL proteins in engineered plants. In this review, we will summarize recent findings in plant-focused TALE research. In addition, we will provide an outline of the newly established gene isolation approach for TALE or RipTAL host target genes with an emphasis on potential pitfalls.
Collapse
|
32
|
Juillerat A, Beurdeley M, Valton J, Thomas S, Dubois G, Zaslavskiy M, Mikolajczak J, Bietz F, Silva GH, Duclert A, Daboussi F, Duchateau P. Exploring the transcription activator-like effectors scaffold versatility to expand the toolbox of designer nucleases. BMC Mol Biol 2014; 15:13. [PMID: 24997498 PMCID: PMC4099384 DOI: 10.1186/1471-2199-15-13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/02/2014] [Indexed: 12/19/2022] Open
Abstract
Background The past decade has seen the emergence of several molecular tools that render possible modification of cellular functions through accurate and easy addition, removal, or exchange of genomic DNA sequences. Among these technologies, transcription activator-like effectors (TALE) has turned out to be one of the most versatile and incredibly robust platform for generating targeted molecular tools as demonstrated by fusion to various domains such as transcription activator, repressor and nucleases. Results In this study, we generated a novel nuclease architecture based on the transcription activator-like effector scaffold. In contrast to the existing Tail to Tail (TtT) and head to Head (HtH) nuclease architectures based on the symmetrical association of two TALE DNA binding domains fused to the C-terminal (TtT) or N-terminal (HtH) end of FokI, this novel architecture consists of the asymmetrical association of two different engineered TALE DNA binding domains fused to the N- and C-terminal ends of FokI (TALE::FokI and FokI::TALE scaffolds respectively). The characterization of this novel Tail to Head (TtH) architecture in yeast enabled us to demonstrate its nuclease activity and define its optimal target configuration. We further showed that this architecture was able to promote substantial level of targeted mutagenesis at three endogenous loci present in two different mammalian cell lines. Conclusion Our results demonstrated that this novel functional TtH architecture which requires binding to only one DNA strand of a given endogenous locus has the potential to extend the targeting possibility of FokI-based TALE nucleases.
Collapse
|
33
|
Stella S, Molina R, López-Méndez B, Juillerat A, Bertonati C, Daboussi F, Campos-Olivas R, Duchateau P, Montoya G. BuD, a helix-loop-helix DNA-binding domain for genome modification. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2042-52. [PMID: 25004980 PMCID: PMC4089491 DOI: 10.1107/s1399004714011183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/15/2014] [Indexed: 12/30/2022]
Abstract
DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein-DNA interactions in protein scaffolds is key to providing `toolkits' for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix-loop-helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing.
Collapse
Affiliation(s)
- Stefano Stella
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Structural Biology Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Rafael Molina
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Blanca López-Méndez
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | | | | | - Ramon Campos-Olivas
- Spectroscopy and NMR Unit, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | - Guillermo Montoya
- Macromolecular Crystallography Group, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Calle de Melchor Fernández Almagro 3, 28029 Madrid, Spain
- Structural Biology Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
34
|
Lange O, Binder A, Lahaye T. From dead leaf, to new life:
TAL
effectors as tools for synthetic biology. THE PLANT JOURNAL 2014; 78:753-771. [PMID: 24602153 DOI: 10.1111/tpj.12431] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Orlando Lange
- Department of General Genetics Centre for Plant Molecular Biology Eberhard‐Karls‐University Tübingen Auf der Morgenstelle 32 72076 Tübingen Germany
| | - Andreas Binder
- Genetics Faculty of Biology I University of Munich Großhaderner Straße 2‐4 82152 Martinsried Germany
| | - Thomas Lahaye
- Department of General Genetics Centre for Plant Molecular Biology Eberhard‐Karls‐University Tübingen Auf der Morgenstelle 32 72076 Tübingen Germany
| |
Collapse
|
35
|
de Lange O, Wolf C, Dietze J, Elsaesser J, Morbitzer R, Lahaye T. Programmable DNA-binding proteins from Burkholderia provide a fresh perspective on the TALE-like repeat domain. Nucleic Acids Res 2014; 42:7436-49. [PMID: 24792163 PMCID: PMC4066763 DOI: 10.1093/nar/gku329] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The tandem repeats of transcription activator like effectors (TALEs) mediate sequence-specific DNA binding using a simple code. Naturally, TALEs are injected by Xanthomonas bacteria into plant cells to manipulate the host transcriptome. In the laboratory TALE DNA binding domains are reprogrammed and used to target a fused functional domain to a genomic locus of choice. Research into the natural diversity of TALE-like proteins may provide resources for the further improvement of current TALE technology. Here we describe TALE-like proteins from the endosymbiotic bacterium Burkholderia rhizoxinica, termed Bat proteins. Bat repeat domains mediate sequence-specific DNA binding with the same code as TALEs, despite less than 40% sequence identity. We show that Bat proteins can be adapted for use as transcription factors and nucleases and that sequence preferences can be reprogrammed. Unlike TALEs, the core repeats of each Bat protein are highly polymorphic. This feature allowed us to explore alternative strategies for the design of custom Bat repeat arrays, providing novel insights into the functional relevance of non-RVD residues. The Bat proteins offer fertile grounds for research into the creation of improved programmable DNA-binding proteins and comparative insights into TALE-like evolution.
Collapse
Affiliation(s)
- Orlando de Lange
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| | - Christina Wolf
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| | - Jörn Dietze
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| | - Janett Elsaesser
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| | - Robert Morbitzer
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| | - Thomas Lahaye
- Genetics, Department of Biology I, Ludwig-Maximilians-University Munich, Martinsried, Bavaria, 82152, Germany
| |
Collapse
|