1
|
Hidayat R, Shoieb SM, Mosa FES, Barakat K, Brocks DR, Isse FA, Gerges SH, El-Kadi AOS. 16R-HETE and 16S-HETE alter human cytochrome P450 1B1 enzyme activity probably through an allosteric mechanism. Mol Cell Biochem 2024; 479:1379-1390. [PMID: 37436655 DOI: 10.1007/s11010-023-04801-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/25/2023] [Indexed: 07/13/2023]
Abstract
Cytochrome P450 1B1 (CYP1B1) has been widely associated with the development of cardiac pathologies due to its ability to produce cardiotoxic metabolites like midchain hydroxyeicosatetraenoic acids (HETEs) from arachidonic acid (AA) through an allylic oxidation reaction. 16-HETE is a subterminal HETE that is also produced by CYP-mediated AA metabolism. 19-HETE is another subterminal HETE that was found to inhibit CYP1B1 activity, lower midchain HETEs, and have cardioprotective effects. However, the effect of 16-HETE enantiomers on CYP1B1 has not yet been investigated. We hypothesized that 16(R/S)-HETE could alter the activity of CYP1B1 and other CYP enzymes. Therefore, this study was carried out to investigate the modulatory effect of 16-HETE enantiomers on CYP1B1 enzyme activity, and to examine the mechanisms by which they exert these modulatory effects. To investigate whether these effects are specific to CYP1B1, we also investigated 16-HETE modulatory effects on CYP1A2. Our results showed that 16-HETE enantiomers significantly increased CYP1B1 activity in RL-14 cells, recombinant human CYP1B1, and human liver microsomes, as seen by the significant increase in 7-ethoxyresorufin deethylation rate. On the contrary, 16-HETE enantiomers significantly inhibited CYP1A2 catalytic activity mediated by the recombinant human CYP1A2 and human liver microsomes. 16R-HETE showed stronger effects than 16S-HETE. The sigmoidal binding mode of the enzyme kinetics data demonstrated that CYP1B1 activation and CYP1A2 inhibition occurred through allosteric regulation. In conclusion, our study provides the first evidence that 16R-HETE and 16S-HETE increase CYP1B1 catalytic activity through an allosteric mechanism.
Collapse
Affiliation(s)
- Rahmat Hidayat
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Sherif M Shoieb
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Farag E S Mosa
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Khaled Barakat
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Dion R Brocks
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Fadumo A Isse
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Samar H Gerges
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy & Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, AL, T6G 2E1, Canada.
| |
Collapse
|
2
|
Kurisaki I, Takahashi Y, Kitamura Y, Nagaoka M. Chloride Ions Stabilize Human Adult Hemoglobin in the T-State, Competing with Allosteric Interaction of Oxygen Molecules. J Phys Chem B 2021; 125:12670-12677. [PMID: 34756042 DOI: 10.1021/acs.jpcb.1c07520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the context of a molecular-level understanding of the allostery mechanisms, human adult hemoglobin (HbA) has been extensively studied for over half a century. Chloride ions (Cl-) have been known as one of HbA allosteric effectors, which stabilizes the T-state preferable to release oxygen molecules. The functional mechanisms were individually proposed by Ueno and Perutz several decades ago. Ueno considered that the site-specific Cl- binding is essential, while Perutz proposed the non-site-specific interaction between HbA and Cl-. Each speculation explains the mechanism plausibly since each was tightly associated with its reasonable experimental observation. However, both mechanisms themselves still seem to make their speculations controversial. In the present study, we have theoretically reconsidered these apart from their approaches. Our atomistic molecular dynamics simulations then showed that the increase of Cl- concentration suppresses the conformational conversion from the T-state. Interestingly, chloride ions loosely interact with the amino acid residues inside the HbA central cavity, suggesting that both Perutz's and Ueno's speculations are involved in understanding the microscopic roles of Cl-. In conclusion, we theoretically certified that the effect of Cl- competes against that of solvated O2, i.e., the destabilization of T-state through the non-site-specific interaction, implying the concerted regulation of HbA under physiological conditions.
Collapse
Affiliation(s)
- Ikuo Kurisaki
- Graduate School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yume Takahashi
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yukichi Kitamura
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku Naka-ku, Hamamatsu 432-8561, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan
| | - Masataka Nagaoka
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honmachi, Kawaguchi 332-0012, Japan.,Future Value Creation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
TANAKA M, TAKAHASHI Y, TAKAMI K, KITAMURA Y, NAGAOKA M. Data Scientific Study on Allosteric Regulation of Hemoglobin -The Role of Chloride Ion in Quaternary Structural Change-. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2021. [DOI: 10.2477/jccj.2021-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Miho TANAKA
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yume TAKAHASHI
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kei TAKAMI
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yukichi KITAMURA
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Masataka NAGAOKA
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
4
|
Leitner DM, Hyeon C, Reid KM. Water-mediated biomolecular dynamics and allostery. J Chem Phys 2020; 152:240901. [DOI: 10.1063/5.0011392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Changbong Hyeon
- Korea Institute for Advanced Study, Seoul 02455, South Korea
| | - Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
5
|
Bhat AS, Dustin Schaeffer R, Kinch L, Medvedev KE, Grishin NV. Recent advances suggest increased influence of selective pressure in allostery. Curr Opin Struct Biol 2020; 62:183-188. [PMID: 32302874 DOI: 10.1016/j.sbi.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/19/2022]
Abstract
Allosteric regulation of protein functions is ubiquitous in organismal biology, but the principles governing its evolution are not well understood. Here we discuss recent studies supporting the large-scale existence of latent allostery in ancestor proteins of superfamilies. As suggested, the evolution of allostery could be driven by the need for specificity in paralogs of slow evolving protein complexes with conserved active sites. The same slow evolution is displayed by purifying selection exhibited in allosteric proteins with somatic mutations involved in cancer, where disease-associated mutations are enriched in both orthosteric and allosteric sites. Consequently, disease-associated variants can be used to identify druggable allosteric sites that are specific for paralogs in protein superfamilies with otherwise similar functions.
Collapse
Affiliation(s)
- Archana S Bhat
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Richard Dustin Schaeffer
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Lisa Kinch
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Kirill E Medvedev
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9050, United States.
| |
Collapse
|
6
|
TAKAMI K, KITAMURA Y, NAGAOKA M. Performance Research of Clustering Methods for Detecting State Transition Trajectories in Hemoglobin. JOURNAL OF COMPUTER CHEMISTRY-JAPAN 2020. [DOI: 10.2477/jccj.2021-0014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kei TAKAMI
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yukichi KITAMURA
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku Naka-ku Hamamatsu 432-8561, Japan
| | - Masataka NAGAOKA
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
- Future Value Creation Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
7
|
Maksimov GV, Slatinskaya OV, Tkhor ES, Anisimov NA, Mamaeva SN, Shutova VV. The Role of Erythrocyte Receptors in Regulation of the Conformation and Distribution of Hemoglobin. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Schay G, Kaposi AD, Smeller L, Szigeti K, Fidy J, Herenyi L. Dissimilar flexibility of α and β subunits of human adult hemoglobin influences the protein dynamics and its alteration induced by allosteric effectors. PLoS One 2018; 13:e0194994. [PMID: 29584765 PMCID: PMC5871000 DOI: 10.1371/journal.pone.0194994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/14/2018] [Indexed: 12/19/2022] Open
Abstract
The general question by what mechanism an "effector" molecule and the hemes of hemoglobin interact over widely separated intramolecular distances to change the oxygen affinity has been extensively investigated, and still has remained of central interest. In the present work we were interested in clarifying the general role of the protein matrix and its dynamics in the regulation of human adult hemoglobin (HbA). We used a spectroscopy approach that yields the compressibility (κ) of the protein matrix around the hemes of the subunits in HbA and studied how the binding of heterotropic allosteric effectors modify this parameter. κ is directly related to the variance of volume fluctuation, therefore it characterizes the molecular dynamics of the protein structure. For the experiments the heme groups either in the α or in the β subunits of HbA were replaced by fluorescent Zn-protoporphyrinIX, and series of fluorescence line narrowed spectra were measured at varied pressures. The evaluation of the spectra yielded the compressibility that showed significant dynamic asymmetry between the subunits: κ of the α subunit was 0.17±0.05/GPa, while for the β subunit it was much higher, 0.36±0.07/GPa. The heterotropic effectors, chloride ions, inositol hexaphosphate and bezafibrate did not cause significant changes in κ of the α subunits, while in the β subunits the effectors lead to a significant reduction down to 0.15±0.04/GPa. We relate our results to structural data, to results of recent functional studies and to those of molecular dynamics simulations, and find good agreements. The observed asymmetry in the flexibility suggests a distinct role of the subunits in the regulation of Hb that results in the observed changes of the oxygen binding capability.
Collapse
Affiliation(s)
- Gusztáv Schay
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - András D. Kaposi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - László Smeller
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Judit Fidy
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Levente Herenyi
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
9
|
Solvent Composition Drives the Rebinding Kinetics of Nitric Oxide to Microperoxidase. Sci Rep 2018; 8:5281. [PMID: 29588445 PMCID: PMC5869715 DOI: 10.1038/s41598-018-22944-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/27/2018] [Indexed: 12/25/2022] Open
Abstract
The rebinding kinetics of NO after photodissociation from microperoxidase (Mp-9) is studied in different solvent environments. In mixed glycerol/water (G/W) mixtures the dissociating ligand rebinds with a yield close to 1 due to the cavities formed by the solvent whereas in pure water the ligand can diffuse into the solvent after photodissociation. In the G/W mixture, only geminate rebinding on the sub-picosecond and 5 ps time scales was found and the rebinding fraction is unity which compares well with available experiments. Contrary to that, simulations in pure water find two time scales – ~10 ps and ~200 ps - indicating that both, geminate rebinding and rebinding after diffusion of NO in the surrounding water contribute. The rebinding fraction is around 0.63 within 1 ns which is in stark contrast with experiment. Including ions (Na and Cl) at 0.15 M concentration in water leads to rebinding kinetics tending to that in the glycerol/water mixture and yields agreement with experiments. The effect of temperature is also probed and found to be non-negligible. The present simulations suggest that NO rebinding in Mp is primarily driven by thermal fluctuations which is consistent with recent resonance Raman spectroscopy experiments and simulations on MbNO.
Collapse
|
10
|
Chen WR, Yu Y, Zulfajri M, Lin PC, Wang CC. Phthalide Derivatives from Angelica Sinensis Decrease Hemoglobin Oxygen Affinity: A New Allosteric-Modulating Mechanism and Potential Use as 2,3-BPG Functional Substitutes. Sci Rep 2017; 7:5504. [PMID: 28710372 PMCID: PMC5511246 DOI: 10.1038/s41598-017-04554-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/16/2017] [Indexed: 11/09/2022] Open
Abstract
Angelica sinensis (AS), one of the most versatile herbal medicines remains widely used due to its multi-faceted pharmacologic activities. Besides its traditional use as the blood-nourishing tonic, its anti-hypertensive, anti-cardiovascular, neuroprotective and anti-cancer effects have been reported. Albeit the significant therapeutic effects, how AS exerts such diverse efficacies from the molecular level remains elusive. Here we investigate the influences of AS and four representative phthalide derivatives from AS on the structure and function of hemoglobin (Hb). From the spectroscopy and oxygen equilibrium experiments, we show that AS and the chosen phthalides inhibited the oxygenated Hb from transforming into the high-affinity “relaxed” (R) state, decreasing Hb’s oxygen affinity. It reveals that phthalides cooperate with the endogenous Hb modulator, 2,3-bisphosphoglycerate (2,3-BPG) to synergetically regulate Hb allostery. From the docking modeling, phthalides appear to interact with Hb mainly through its α1/α2 interface, likely strengthening four (out of six) Hb “tense” (T) state stabilizing salt-bridges. A new allosteric-modulating mechanism is proposed to rationalize the capacity of phthalides to facilitate Hb oxygen transport, which may be inherently correlated with the therapeutic activities of AS. The potential of phthalides to serve as 2,3-BPG substitutes/supplements and their implications in the systemic biology and preventive medicine are discussed.
Collapse
Affiliation(s)
- Wei-Ren Chen
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Youqing Yu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Muhammad Zulfajri
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Ping-Cheng Lin
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China
| | - Chia C Wang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China. .,Aerosol Science Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, 80424, Republic of China.
| |
Collapse
|