1
|
Zarzecka U, Skorko-Glonek J. Intricate Structure-Function Relationships: The Case of the HtrA Family Proteins from Gram-Negative Bacteria. Int J Mol Sci 2024; 25:13182. [PMID: 39684892 DOI: 10.3390/ijms252313182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Proteolytic enzymes play key roles in living organisms. Because of their potentially destructive action of degrading other proteins, their activity must be very tightly controlled. The evolutionarily conserved proteins of the HtrA family are an excellent example illustrating strategies for regulating enzymatic activity, enabling protease activation in response to an appropriate signal, and protecting against uncontrolled proteolysis. Because HtrA homologs play key roles in the virulence of many Gram-negative bacterial pathogens, they are subject to intense investigation as potential therapeutic targets. Model HtrA proteins from bacterium Escherichia coli are allosteric proteins with reasonably well-studied properties. Binding of appropriate ligands induces very large structural changes in these enzymes, including changes in the organization of the oligomer, which leads to the acquisition of the active conformation. Properly coordinated events occurring during the process of HtrA activation ensure proper functioning of HtrA and, consequently, ensure fitness of bacteria. The aim of this review is to present the current state of knowledge on the structure and function of the exemplary HtrA family proteins from Gram-negative bacteria, including human pathogens. Special emphasis is paid to strategies for regulating the activity of these enzymes.
Collapse
Affiliation(s)
- Urszula Zarzecka
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Joanna Skorko-Glonek
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
Hou XN, Song B, Zhao C, Chu WT, Ruan MX, Dong X, Meng LS, Gong Z, Weng YX, Zheng J, Wang J, Tang C. Connecting Protein Millisecond Conformational Dynamics to Protein Thermal Stability. JACS AU 2024; 4:3310-3320. [PMID: 39211624 PMCID: PMC11350723 DOI: 10.1021/jacsau.4c00649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The stability of protein folded states is crucial for its function, yet the relationship with the protein sequence remains poorly understood. Prior studies have focused on the amino acid composition and thermodynamic couplings within a single folded conformation, overlooking the potential contribution of protein dynamics. Here, we address this gap by systematically analyzing the impact of alanine mutations in the C-terminal β-strand (β5) of ubiquitin, a model protein exhibiting millisecond timescale interconversion between two conformational states differing in the β5 position. Our findings unveil a negative correlation between millisecond dynamics and thermal stability, with alanine substitutions at seemingly flexible C-terminal residues significantly enhancing thermostability. Integrating spectroscopic and computational approaches, we demonstrate that the thermally unfolded state retains a substantial secondary structure but lacks β5 engagement, recapitulating the transition state for millisecond dynamics. Thus, alanine mutations that modulate the stabilities of the folded states with respect to the partially unfolded state impact both the dynamics and stability. Our findings underscore the importance of conformational dynamics with implications for protein engineering and design.
Collapse
Affiliation(s)
- Xue-Ni Hou
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Song
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chang Zhao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Wen-Ting Chu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Mei-Xia Ruan
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Dong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Ling-Shen Meng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhou Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei, Wuhan 430071, China
| | - Yu-Xiang Weng
- Beijing National Laboratory for Condensed Matter Physics, CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zheng
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, Newyork 11794-3400, United States
| | - Chun Tang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, PKU-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Li H, Yu Y, Ruan M, Jiao F, Chen H, Gao J, Weng Y, Bao Y. The mechanism for thermal-enhanced chaperone-like activity of α-crystallin against UV irradiation-induced aggregation of γD-crystallin. Biophys J 2022; 121:2233-2250. [PMID: 35619565 DOI: 10.1016/j.bpj.2022.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/11/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
Exposure to solar UV irradiation damages γ-crystallin, leading to cataract formation via aggregation. α-Crystallin, as a small heat-shock protein (sHsps), efficiently suppresses this irreversible aggregation by selectively binding the denatured γ-crystallin monomer. In this study, liquid chromatography tandem mass spectrometry (LC-MS) was used to evaluate UV-325 nm irradiation-induced photodamage of human γD-crystallin in the presence of bovine α-crystallin, atomic force microscope (AFM) and dynamic light scattering (DLS) techniques were used to detect the quaternary structure changes of α-crystallin oligomer, and Fourier transform infrared (FTIR) spectroscopy and temperature-jump (T-jump) nanosecond time-resolved IR absorbance difference spectroscopy were used to probe the secondary structure changes of bovine α-crystallin. We find that the thermal-induced subunit dissociation of α-crystallin oligomer involves the breaking of hydrogen bonds at the dimeric interface, leading to three different spectral components at varied temperature regions as resolved from temperature-dependent IR spectra. Under UV-325 nm irradiation, unfolded γD-crystallin binds to the dissociated α-crystallin subunit to form αγ-complex, then follows the reassociation of αγ-complex to the partially dissociated α-crystallin oligomer. This prevents the aggregation of denatured γD-crystallin. The formation of the γD-bound α-crystallin oligomer is further confirmed by AFM and DLS analysis, which reveals an obvious size expansion in the reassociated αγ-oligomers. In addition, UV-325 nm irradiation causes a peptide bond cleavage of γD-crystallin at Ala158 in presence of α-crystallin. Our results suggest a very effective protection mechanism for subunits dissociated from α-crystallin oligomers against UV irradiation-induced aggregation of γD-crystallin, at an expense of a loss of a short C-terminal peptide in γD-crystallin.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Yu
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China
| | - Meixia Ruan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hailong Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jiali Gao
- College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yongzhen Bao
- Department of Ophthalmology, Peking University People's Hospital, Eye Diseases and Optometry Institute, Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, College of Optometry, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
4
|
Šulskis D, Thoma J, Burmann BM. Structural basis of DegP protease temperature-dependent activation. SCIENCE ADVANCES 2021; 7:eabj1816. [PMID: 34878848 PMCID: PMC8654288 DOI: 10.1126/sciadv.abj1816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/16/2021] [Indexed: 05/21/2023]
Abstract
Protein quality control is an essential cellular function mainly executed by a vast array of different proteases and molecular chaperones. One of the bacterial high temperature requirement A (HtrA) protein family members, the homo-oligomeric DegP protease, plays a crucial role in the Escherichia coli protein quality control machinery by removing unfolded proteins or preventing their aggregation and chaperoning them to their final folded state within the periplasm. DegP contains two regulatory PDZ domains, which play key roles in substrate recognition and in the transformation of DegP between inactive hexameric and proteolytic active cage-like structures. Here, we analyze the interaction and dynamics of the DegP PDZ domains underlying this transformation by high-resolution NMR spectroscopy complemented with biochemical cleavage assays. We identify an interdomain molecular lock, which controls the interactions between the two PDZ domains, regulated by fine-tuned temperature-dependent protein dynamics, and which is potentially conserved in proteins harboring tandem PDZ domains.
Collapse
Affiliation(s)
- Darius Šulskis
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Johannes Thoma
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M. Burmann
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden
- Corresponding author.
| |
Collapse
|
5
|
Kim H, Wu K, Lee C. Stress-Responsive Periplasmic Chaperones in Bacteria. Front Mol Biosci 2021; 8:678697. [PMID: 34046432 PMCID: PMC8144458 DOI: 10.3389/fmolb.2021.678697] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 01/14/2023] Open
Abstract
Periplasmic proteins are involved in a wide range of bacterial functions, including motility, biofilm formation, sensing environmental cues, and small-molecule transport. In addition, a wide range of outer membrane proteins and proteins that are secreted into the media must travel through the periplasm to reach their final destinations. Since the porous outer membrane allows for the free diffusion of small molecules, periplasmic proteins and those that travel through this compartment are more vulnerable to external environmental changes, including those that result in protein unfolding, than cytoplasmic proteins are. To enable bacterial survival under various stress conditions, a robust protein quality control system is required in the periplasm. In this review, we focus on several periplasmic chaperones that are stress responsive, including Spy, which responds to envelope-stress, DegP, which responds to temperature to modulate chaperone/protease activity, HdeA and HdeB, which respond to acid stress, and UgpB, which functions as a bile-responsive chaperone.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, South Korea
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kevin Wu
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| |
Collapse
|
6
|
Li H, Wang Y, Ye M, Li S, Li D, Ren H, Wang M, Du L, Li H, Veglia G, Gao J, Weng Y. Dynamical and allosteric regulation of photoprotection in light harvesting complex II. Sci China Chem 2020; 63:1121-1133. [PMID: 33163014 DOI: 10.1007/s11426-020-9771-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Major light-harvesting complex of photosystem II (LHCII) plays a dual role in light-harvesting and excited energy dissipation to protect photodamage from excess energy. The regulatory switch is induced by increased acidity, temperature or both. However, the molecular origin of the protein dynamics at the atomic level is still unknown. We carried out temperature-jump time-resolved infrared spectroscopy and molecular dynamics simulations to determine the energy quenching dynamics and conformational changes of LHCII trimers. We found that the spontaneous formation of a pair of local α-helices from the 310-helix E/loop and the C-terminal coil of the neighboring monomer, in response to the increased environmental temperature and/or acidity, induces a scissoring motion of transmembrane helices A and B, shifting the conformational equilibrium to a more open state, with an increased angle between the associated carotenoids. The dynamical allosteric conformation change leads to close contacts between the first excited state of carotenoid lutein 1 and chlorophyll pigments, facilitating the fluorescence quenching. Based on these results, we suggest a unified mechanism by which the LHCII trimer controls the dissipation of excess excited energy in response to increased temperature and acidity, as an intrinsic result of intense sun light in plant photosynthesis.
Collapse
Affiliation(s)
- Hao Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingjie Wang
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Manping Ye
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shanshan Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Deyong Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Haisheng Ren
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mohan Wang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luchao Du
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Heng Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Gianluigi Veglia
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jiali Gao
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Shenzhen Bay Laboratory, Shenzhen 518055, China
- Laboratory of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuxiang Weng
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhang D, He D, Pan X, Xu Y, Liu L. Structural analysis and rational design of orthogonal stacking system in an E. coli DegP PDZ1–peptide complex. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00797-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Chang Z. The function of the DegP (HtrA) protein: Protease versus chaperone. IUBMB Life 2016; 68:904-907. [PMID: 27670951 DOI: 10.1002/iub.1561] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/06/2016] [Indexed: 11/06/2022]
Abstract
The DegP (or HtrA) is a highly conserved family of proteins functioning in all living organisms. It was initially identified as a protease functioning in the periplasmic space of the Gram-negative bacterial cells. It was later reported to also exhibit chaperone activity and thus has been designated as a bifunctional protein. However, recent studies demonstrated that in living cells it more likely functions only as a protease with hardly detectable chaperone activities. In this review, I will summarize the evidences clarifying that DegP more likely only functions as a protease rather than as a chaperone in cells. © 2016 IUBMB Life, 68(11):904-907, 2016.
Collapse
Affiliation(s)
- Zengyi Chang
- Center for Protein Science, State Key Laboratory of Protein and Plant Gene Studies, School of Life Sciences, Center for History and Philosophy of Science, Peking University, Beijing, China.
| |
Collapse
|
9
|
Leng CB, Pang SF, Zhang Y, Cai C, Liu Y, Zhang YH. Vacuum FTIR Observation on the Dynamic Hygroscopicity of Aerosols under Pulsed Relative Humidity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9107-9115. [PMID: 26161462 DOI: 10.1021/acs.est.5b01218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A novel approach based on a combination of a pulse RH controlling system and a rapid scan vacuum FTIR spectrometer (PRHCS-RSVFTIR) was utilized to investigate dynamic hygroscopicity of two atmospheric aerosols: ammonium sulfate ((NH4)2SO4) and magnesium sulfate (MgSO4). In this approach, rapid-scan infrared spectra of water vapor and aerosols were obtained to determine relative humidity (RH) in sample cell and hygroscopic property of aerosols with a subsecond time resolution. Heterogeneous nucleation rates of (NH4)2SO4 were, for the first time, measured under low RH conditions (<35% RH). In addition, studies of MgSO4 aerosols revealed that water mass transport may be limited by different processes depending on RH values (surface limited at 40% < RH < 52% and bulk phase limited at RH < 40%). Furthermore, we are also the first to report water diffusion constants in micron size MgSO4 aerosols at very low RH values. Our results have shown that the PRHCS-RSVFTIR is well-suited for determination of hygroscopicity of atmospheric aerosols and water transport and nucleation kinetics of liquid aerosols.
Collapse
Affiliation(s)
- Chun-Bo Leng
- †Institute of Chemical Physics, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China
- ‡Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Shu-Feng Pang
- †Institute of Chemical Physics, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China
| | - Yun Zhang
- †Institute of Chemical Physics, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China
| | - Chen Cai
- †Institute of Chemical Physics, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China
| | - Yong Liu
- ‡Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Yun-Hong Zhang
- †Institute of Chemical Physics, School of Chemistry, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
Li D, Li Y, Li H, Wu X, Yu Q, Weng Y. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:053105. [PMID: 26026512 DOI: 10.1063/1.4921473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm(-1) as the IR probe. The results demonstrate that this system has a sensitivity of 1 × 10(-4) ΔOD for a single wavelength detection, and 2 × 10(-4) ΔOD for spectral detection in amide I' region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.
Collapse
Affiliation(s)
- Deyong Li
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunliang Li
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Li
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xianyou Wu
- Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Qingxu Yu
- School of Physics and Optoelectronic Technology, Dalian University of Technology, No. 2, Linggong Road, Dalian 116023, China
| | - Yuxiang Weng
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Levantino M, Schirò G, Lemke HT, Cottone G, Glownia JM, Zhu D, Chollet M, Ihee H, Cupane A, Cammarata M. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser. Nat Commun 2015; 6:6772. [PMID: 25832715 PMCID: PMC4396393 DOI: 10.1038/ncomms7772] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/25/2015] [Indexed: 11/26/2022] Open
Abstract
Light absorption can trigger biologically relevant protein conformational changes. The light-induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such 'proteinquake' observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations with a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.
Collapse
Affiliation(s)
- Matteo Levantino
- Department of Physics and Chemistry, University of Palermo, Palermo 90128, Italy
| | - Giorgio Schirò
- CNRS, Université Grenoble Alpes, CEA—Institut de Biologie Structurale, Grenoble 38044, France
| | - Henrik Till Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Grazia Cottone
- Department of Physics and Chemistry, University of Palermo, Palermo 90128, Italy
| | | | - Diling Zhu
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Mathieu Chollet
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Hyotcherl Ihee
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 305-701, Republic of Korea
- Department of Chemistry, KAIST, Daejeon 305-701, Republic of Korea
| | - Antonio Cupane
- Department of Physics and Chemistry, University of Palermo, Palermo 90128, Italy
| | - Marco Cammarata
- Department of Physics, UMR UR1-CNRS 6251, University of Rennes 1, Rennes 35042, France
| |
Collapse
|