1
|
Zhang B, Wu L, Feng X, Li C, Miao X, Hui Y, Zhao K, Ding J, Jin B, Chen J, Zhu Y, Sun CJ, Chow GM. Tuning Irreversible Magnetoresistance in Pr 0.67Sr 0.33MnO 3 Film via Octahedral Rotation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43222-43230. [PMID: 32820885 DOI: 10.1021/acsami.0c10402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oxygen octahedral rotation around the out-of-plane axis is explored to study its effect on metastable status, magnetic cluster glass in manganite. The antiphase rotation around the out-of-plane axis (TiO6 a0a0c-) of SrTiO3 enhances the Mn-O bond anisotropy along in-plane and out-of-plane directions and weakens the ferromagnetic interactions in a 12 nm Pr0.67Sr0.33MnO3 film on the (001) SrTiO3 substrate, which together promote the formation of magnetic cluster-glassiness and enlarges the irreversible magnetoresistance (MR) effect with enhanced relaxation time of charge carriers. The effect of TiO6 a0a0c- in the SrTiO3 substrate on material properties is obvious with a large irreversible MR effect for thin films, which fades away with the increase in film thickness. At 10 K, the irreversible MR is 0.91 for the 12 nm film and 0.22 for the 30 nm film. This work extends current understanding on interfacial coupling to metastable status and could help explore other systems in the perovskite structure with octahedral rotation.
Collapse
Affiliation(s)
- Bangmin Zhang
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Lijun Wu
- Condensed Matter Physics & Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Xin Feng
- Department of Materials Science & Engineering, National University of Singapore, 117575, Singapore
| | - Chun Li
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Xinyang Miao
- Petroleum and Chemical Industry Federation Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, China University of Petroleum, Beijing 102249, China
| | - Yajuan Hui
- Department of Materials Science & Engineering, National University of Singapore, 117575, Singapore
| | - Kun Zhao
- Petroleum and Chemical Industry Federation Key Laboratory of Oil and Gas Terahertz Spectroscopy and Photoelectric Detection, China University of Petroleum, Beijing 102249, China
| | - Jun Ding
- Department of Materials Science & Engineering, National University of Singapore, 117575, Singapore
| | - Biaobing Jin
- Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
| | - Jingsheng Chen
- Department of Materials Science & Engineering, National University of Singapore, 117575, Singapore
| | - Yimei Zhu
- Condensed Matter Physics & Materials Science Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Cheng-Jun Sun
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Gan Moog Chow
- Department of Materials Science & Engineering, National University of Singapore, 117575, Singapore
| |
Collapse
|
2
|
Chai X, Xing H, Jin K. Evolution of photoinduced effects in phase-separated Sm0.5Sr0.5Mn1-yCryO3 thin films. Sci Rep 2016; 6:23280. [PMID: 27001006 PMCID: PMC4802389 DOI: 10.1038/srep23280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/03/2016] [Indexed: 11/23/2022] Open
Abstract
Systematic study on electrical transport properties has been performed in Sm0.5Sr0.5Mn1-yCryO3 thin films illuminated by the light. An evolution of persistent and transient photoinduced effects induced by the impurity doping and temperature has been observed, which is closely related to the number of ferromagnetic clusters. The maximum persistent photoinduced effect is observed at y = 0.08 and the corresponding value is about 61.7% at the power density of 13.7 mW/mm(2). The underlying mechanism can be understood by the coexistence and competition of the multiphases in phase-separated manganites induced by Cr-doping. These results would pave the way for practical applications in innovative photoelectric devices of all-oxides.
Collapse
Affiliation(s)
- Xiaojie Chai
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Hui Xing
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kexin Jin
- Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|