1
|
Young JAH, Liu X, Porter E, Sweet H, Wang W, Evans AF, Zhang C, Obeid KM. Daily Fungal Cell-Free DNA Testing to Assess Clinical Status during Candida krusei Fungemia. J Fungi (Basel) 2024; 10:449. [PMID: 39057334 PMCID: PMC11278359 DOI: 10.3390/jof10070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
We present a case of a man immunocompromised due to myelodysplastic syndrome with Candida krusei fungemia who had a rising cell-free DNA (cfDNA) giant magnetoresistance (GMR) signal when tested daily using plasma blood samples. With the rise in GMR signal paralleling the development of skin lesions in this patient, we conclude that cfDNA can be used to indicate uncontrolled infection and thus help monitor response to therapy. This index patient provides evidence that an invasive fungal infection requires both direct antifungal therapy and an intact immune system to control the infection. This biosensing platform has been simplified to potentially serve as a point-of-care test, setting it apart by overcoming the three common barriers of cfDNA testing: complexity, cost, and time.
Collapse
Affiliation(s)
- Jo-Anne H. Young
- Division of Infectious Disease and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Xiaoying Liu
- Zepto Life Technology, Inc., Saint Paul, MN 55114, USA
| | - Emma Porter
- Zepto Life Technology, Inc., Saint Paul, MN 55114, USA
| | - Hannah Sweet
- Zepto Life Technology, Inc., Saint Paul, MN 55114, USA
| | - Wei Wang
- Zepto Life Technology, Inc., Saint Paul, MN 55114, USA
| | | | - Chi Zhang
- Zepto Life Technology, Inc., Saint Paul, MN 55114, USA
| | - Karam M. Obeid
- Division of Infectious Disease and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
2
|
Im J, Kim S, Park S, Wang SX, Lee JR. Evaluation of restriction and Cas endonuclease kinetics using matrix-insensitive magnetic biosensors. Biosens Bioelectron 2024; 249:116017. [PMID: 38262299 PMCID: PMC10867820 DOI: 10.1016/j.bios.2024.116017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/25/2024]
Abstract
The enzymatic actions of endonucleases in vivo can be altered due to bound substrates and differences in local environments, including enzyme concentration, pH, salinity, ionic strength, and temperature. Thus, accurate estimation of enzymatic reactions in vivo using matrix-dependent methods in solution can be challenging. Here, we report a matrix-insensitive magnetic biosensing platform that enables the measurement of endonuclease activity under different conditions with varying pH, salinity, ionic strength, and temperature. Using biosensor arrays and orthogonal pairs of oligonucleotides, we quantitatively characterized the enzymatic activity of EcoRI under different buffer conditions and in the presence of inhibitors. To mimic a more physiological environment, we monitored the sequence-dependent star activity of EcoRI under unconventional conditions. Furthermore, enzymatic activity was measured in cell culture media, saliva, and serum. Last, we estimated the effective cleavage rates of Cas12a on anchored single-strand DNAs using this platform, which more closely resembles in vivo settings. This platform will facilitate precise characterization of restriction and Cas endonucleases under various conditions.
Collapse
Affiliation(s)
- Jisoo Im
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea; Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Songeun Kim
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea; Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Suhyeon Park
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea; Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea; Graduate Program in Smart Factory, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
3
|
Mostufa S, Rezaei B, Yari P, Xu K, Gómez-Pastora J, Sun J, Shi Z, Wu K. Giant Magnetoresistance Based Biosensors for Cancer Screening and Detection. ACS APPLIED BIO MATERIALS 2023; 6:4042-4059. [PMID: 37725557 DOI: 10.1021/acsabm.3c00592] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Early-stage screening of cancer is critical in preventing its development and therefore can improve the prognosis of the disease. One accurate and effective method of cancer screening is using high sensitivity biosensors to detect optically, chemically, or magnetically labeled cancer biomarkers. Among a wide range of biosensors, giant magnetoresistance (GMR) based devices offer high sensitivity, low background noise, robustness, and low cost. With state-of-the-art micro- and nanofabrication techniques, tens to hundreds of independently working GMR biosensors can be integrated into fingernail-sized chips for the simultaneous detection of multiple cancer biomarkers (i.e., multiplexed assay). Meanwhile, the miniaturization of GMR chips makes them able to be integrated into point-of-care (POC) devices. In this review, we first introduce three types of GMR biosensors in terms of their structures and physics, followed by a discussion on fabrication techniques for those sensors. In order to achieve target cancer biomarker detection, the GMR biosensor surface needs to be subjected to biological decoration. Thus, commonly used methods for surface functionalization are also reviewed. The robustness of GMR-based biosensors in cancer detection has been demonstrated by multiple research groups worldwide and we review some representative examples. At the end of this review, the challenges and future development prospects of GMR biosensor platforms are commented on. With all their benefits and opportunities, it can be foreseen that GMR biosensor platforms will transition from a promising candidate to a robust product for cancer screening in the near future.
Collapse
Affiliation(s)
- Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Parsa Yari
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Kanglin Xu
- Department of Computer Science, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jiajia Sun
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Zongqian Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, Shaanxi Province 710049, China
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
4
|
Yu Z, Fang W, Yang Y, Yao H, Hu P, Shi J. Non-PCR Ultrasensitive Detection of Viral RNA by a Nanoprobe-Coupling Strategy: SARS-CoV-2 as an Example. Adv Healthc Mater 2022; 11:e2200031. [PMID: 35678310 PMCID: PMC9347949 DOI: 10.1002/adhm.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/16/2022] [Indexed: 01/27/2023]
Abstract
Developing efficient and highly sensitive diagnostic techniques for early detections of pathogenic viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is vitally important for preventing its widespread. However, the conventional polymerase chain reaction (PCR)-based detection features high complexity, excessive time-consumption, and labor-intensiveness, while viral protein-based detections suffer from moderate sensitivity and specificity. Here, a non-PCR but ultrasensitive viral RNA detection strategy is reported based on a facile nanoprobe-coupling strategy without enzymatic amplification, wherein PCR-induced bias and other shortcomings are successfully circumvented. This approach endows the viral RNA detection with ultra-low background to maximum signal ratio in the linear signal amplification by using Au nanoparticles as reporters. The present strategy exhibits 100% specificity toward SARS-CoV-2 N gene, and ultrasensitive detection of as low as 52 cp mL-1 of SARS-CoV-2 N gene without pre-PCR amplification. This approach presents a novel ultrasensitive tool for viral RNA detections for fighting against COVID-19 and other types of pathogenic virus-caused diseases.
Collapse
Affiliation(s)
- Zhiguo Yu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Wenming Fang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yannan Yang
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaBrisbaneQueensland4072Australia
| | - Heliang Yao
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200331P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious DiseaseChinese Academy of Medical Sciences (2021RU012)Shanghai200050P. R. China
- Shanghai Tenth People's HospitalShanghai Frontiers Science Center of Nanocatalytic MedicineSchool of MedicineTongji UniversityShanghai200331P. R. China
| |
Collapse
|
5
|
Quantitative and rapid detection of morphine and hydromorphone at the point of care by an automated giant magnetoresistive nanosensor platform. Anal Bioanal Chem 2022; 414:7211-7221. [DOI: 10.1007/s00216-022-04274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
|
6
|
Ravi N, Chang SE, Franco LM, Nagamani SCS, Khatri P, Utz PJ, Wang SX. A GMR-based assay for quantification of the human response to influenza. Biosens Bioelectron 2022; 205:114086. [PMID: 35192997 PMCID: PMC8986584 DOI: 10.1016/j.bios.2022.114086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 01/26/2023]
Abstract
Detecting and quantifying the host transcriptional response to influenza virus infection can serve as a real-time diagnostic tool for clinical management. We have employed the multiplexing capabilities of GMR sensors to develop a novel assay based on the influenza metasignature (IMS), which can classify influenza infection based on transcript levels. We show that the assay can reliably detect ten IMS transcripts and distinguish subjects with naturally acquired influenza infection from those with other symptomatic viral infections (AUC 0.93, 95% CI: 0.82-1.00). Separately, we validated that the gene IFI27, not included in the IMS panel, has very high single-biomarker accuracy (AUC 0.95, 95% CI: 0.90-0.99) in stratifying patients with influenza. We demonstrate that a portable GMR biosensor can be used as a tool to diagnose influenza infection by measuring the host response, simultaneously highlighting the power of immune system metrics and advancing the field of gene expression-based diagnostics.
Collapse
Affiliation(s)
- Neeraja Ravi
- Department of Bioengineering, Stanford University, Stanford, CA, 93405, USA.
| | - Sarah E Chang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA; Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Luis M Franco
- Functional Immunogenomics Unit, Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| | - Purvesh Khatri
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Division of Biomedical Informatics, Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA; Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Yaari Z, Horoszko CP, Antman-Passig M, Kim M, Nguyen FT, Heller DA. Emerging technologies in cancer detection. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Saha R, Wu K, Su D, Wang JP. Spin current nano-oscillator (SCNO) as a potential frequency-based, ultra-sensitive magnetic biosensor: a simulation study. NANOTECHNOLOGY 2020; 31:375501. [PMID: 32492673 DOI: 10.1088/1361-6528/ab9921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work is a micromagnetic simulation-based study on the GHz-frequency ferromagnetic resonances (FMR) for the detection of magnetic nanoparticles (MNPs) using spin current nano-oscillator (SCNO) operating in precession mode. Capture antibody-antigen-detection antibody-MNP complex on the SCNO surface generates magnetic fields that modify the FMR peaks and generate measurable resonance peak shifts. Moreover, our results strongly indicate the position-sensitive behavior of the SCNO biosensor and demonstrate ways to eradicate this effect to facilitate improved bio-sensing. Additionally, a study has been made on how MNPs with different sizes can alter the SCNO device performance. This simulation-based study on the SCNO device shows the feasibility of a frequency-based nano-biosensor with the sensitivity of detecting a single MNP, even in presence of background noise.
Collapse
Affiliation(s)
- Renata Saha
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | |
Collapse
|
9
|
Kim SE, Tieu MV, Hwang SY, Lee MH. Magnetic Particles: Their Applications from Sample Preparations to Biosensing Platforms. MICROMACHINES 2020; 11:mi11030302. [PMID: 32183074 PMCID: PMC7142445 DOI: 10.3390/mi11030302] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The growing interest in magnetic materials as a universal tool has been shown by an increasing number of scientific publications regarding magnetic materials and its various applications. Substantial progress has been recently made on the synthesis of magnetic iron oxide particles in terms of size, chemical composition, and surface chemistry. In addition, surface layers of polymers, silica, biomolecules, etc., on magnetic particles, can be modified to obtain affinity to target molecules. The developed magnetic iron oxide particles have been significantly utilized for diagnostic applications, such as sample preparations and biosensing platforms, leading to the selectivity and sensitivity against target molecules and the ease of use in the sensing systems. For the process of sample preparations, the magnetic particles do assist in target isolation from biological environments, having non-specific molecules and undesired molecules. Moreover, the magnetic particles can be easily applied for various methods of biosensing devices, such as optical, electrochemical, and magnetic phenomena-based methods, and also any methods combined with microfluidic systems. Here we review the utilization of magnetic materials in the isolation/preconcentration of various molecules and cells, and their use in various techniques for diagnostic biosensors that may greatly contribute to future innovation in point-of-care and high-throughput automation systems.
Collapse
Affiliation(s)
- Seong-Eun Kim
- Human IT Convergence Research Center, Korea Electronics Technology Institute, Gyeonggi-do 13509, Korea;
| | - My Van Tieu
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Sei Young Hwang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea; (M.V.T.); (S.Y.H.)
- Correspondence: ; Tel.: +82-2-820-5503; Fax: +82-2-814-2651
| |
Collapse
|
10
|
Pardo A, Yáñez S, Piñeiro Y, Iglesias-Rey R, Al-Modlej A, Barbosa S, Rivas J, Taboada P. Cubic Anisotropic Co- and Zn-Substituted Ferrite Nanoparticles as Multimodal Magnetic Agents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9017-9031. [PMID: 31999088 DOI: 10.1021/acsami.9b20496] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The use of magnetic nanoparticles as theranostic agents for the detection and treatment of cancer diseases has been extensively analyzed in the last few years. In this work, cubic-shaped cobalt and zinc-doped iron oxide nanoparticles with edge lengths in the range from 28 to 94 nm are proposed as negative contrast agents for magnetic resonance imaging and to generate localized heat by magnetic hyperthermia, obtaining high values of transverse relaxation coefficients and specific adsorption rates. The applied magnetic fields presented suitable characteristics for the potential validation of the results into the clinical practice in all cases. Pure iron oxide and cobalt- and zinc-substituted ferrites have been structurally and magnetically characterized, observing magnetite as the predominant phase and weak ferrimagnetic behavior at room temperature, with saturation values even larger than those of bulk magnetite. The coercive force increased due to the incorporation of cobalt ions, while zinc substitution promotes a significant increase in saturation magnetization. After their transfer to aqueous solution, those particles showing the best properties were chosen for evaluation in in vitro cell models, exhibiting high critical cytotoxic concentrations and high internalization degrees in several cell lines. The magnetic behavior of the nanocubes after their successful cell internalization was analyzed, detecting negligible variations on their magnetic hysteresis loops and a significant decrease in the specific adsorption rate values.
Collapse
Affiliation(s)
- Alberto Pardo
- Colloids and Polymers Physics Group, Physics of Condensed Matter Area , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
- Health Research Institute of Santiago de Compostela , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Susana Yáñez
- Magnetism and Nanotechnology Group, Department of Applied Physics , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Yolanda Piñeiro
- Magnetism and Nanotechnology Group, Department of Applied Physics , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Ramón Iglesias-Rey
- Clinical Neurosciences Research Laboratory, Clinical University Hospital , Health Research Institute of Santiago de Compostela (IDIS) , Santiago de Compostela 15782 , Spain
| | - Abeer Al-Modlej
- Department of Physics and Astronomy, College of Science , King Saud University , Riyadh 11451 , Saudi Arabia
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Physics of Condensed Matter Area , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
- Health Research Institute of Santiago de Compostela , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - José Rivas
- Magnetism and Nanotechnology Group, Department of Applied Physics , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Physics of Condensed Matter Area , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
- Health Research Institute of Santiago de Compostela , University of Santiago de Compostela , Santiago de Compostela 15782 , Spain
| |
Collapse
|
11
|
Sosa-Acosta JR, Iriarte-Mesa C, Ortega GA, Díaz-García AM. DNA–Iron Oxide Nanoparticles Conjugates: Functional Magnetic Nanoplatforms in Biomedical Applications. Top Curr Chem (Cham) 2020; 378:13. [DOI: 10.1007/s41061-019-0277-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023]
|
12
|
Advances in Magnetoresistive Biosensors. MICROMACHINES 2019; 11:mi11010034. [PMID: 31888076 PMCID: PMC7019276 DOI: 10.3390/mi11010034] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/22/2019] [Accepted: 12/24/2019] [Indexed: 01/05/2023]
Abstract
Magnetoresistance (MR) based biosensors are considered promising candidates for the detection of magnetic nanoparticles (MNPs) as biomarkers and the biomagnetic fields. MR biosensors have been widely used in the detection of proteins, DNAs, as well as the mapping of cardiovascular and brain signals. In this review, we firstly introduce three different MR devices from the fundamental perspectives, followed by the fabrication and surface modification of the MR sensors. The sensitivity of the MR sensors can be improved by optimizing the sensing geometry, engineering the magnetic bioassays on the sensor surface, and integrating the sensors with magnetic flux concentrators and microfluidic channels. Different kinds of MR-based bioassays are also introduced. Subsequently, the research on MR biosensors for the detection of protein biomarkers and genotyping is reviewed. As a more recent application, brain mapping based on MR sensors is summarized in a separate section with the discussion of both the potential benefits and challenges in this new field. Finally, the integration of MR biosensors with flexible substrates is reviewed, with the emphasis on the fabrication techniques to obtain highly shapeable devices while maintaining comparable performance to their rigid counterparts.
Collapse
|
13
|
Su D, Wu K, Krishna VD, Klein T, Liu J, Feng Y, Perez AM, Cheeran MCJ, Wang JP. Detection of Influenza a Virus in Swine Nasal Swab Samples With a Wash-Free Magnetic Bioassay and a Handheld Giant Magnetoresistance Sensing System. Front Microbiol 2019; 10:1077. [PMID: 31164877 PMCID: PMC6536586 DOI: 10.3389/fmicb.2019.01077] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 12/20/2022] Open
Abstract
The dissemination of Influenza A virus (IAV) throughout the world has become one of the main concerns for the health of both animals and human beings. An efficient and sensitive diagnostic tool is thus needed for the early detection of IAV. Here, we developed a wash-free magnetic bioassay and further integrated it with a handheld platform based on giant-magnetoresistance (GMR) sensors. The wash-free magnetic bioassay significantly accelerates and simplifies the detection process. This brand-new system was successful in detecting both IAV nucleoprotein and IAV-contained nasal swab samples from pigs on the farm. The limit of detection (LOD) is 0.3 nM for IAV nucleoprotein and 250 TCID50/mL for IAV-spiked nasal swab samples. The detection of nasal swab samples containing unpurified IAV was also performed, demonstrating the capability of the magnetic wash-free assay in the detection of biomarkers in complex sample matrix.
Collapse
Affiliation(s)
- Diqing Su
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Venkatramana D Krishna
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Todd Klein
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Jinming Liu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Yinglong Feng
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Andres M Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - Jian-Ping Wang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, United States.,Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Markwalter C, Kantor AG, Moore CP, Richardson KA, Wright DW. Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics. Chem Rev 2019; 119:1456-1518. [PMID: 30511833 PMCID: PMC6348445 DOI: 10.1021/acs.chemrev.8b00136] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 12/12/2022]
Abstract
Infectious diseases claim millions of lives each year. Robust and accurate diagnostics are essential tools for identifying those who are at risk and in need of treatment in low-resource settings. Inorganic complexes and metal-based nanomaterials continue to drive the development of diagnostic platforms and strategies that enable infectious disease detection in low-resource settings. In this review, we highlight works from the past 20 years in which inorganic chemistry and nanotechnology were implemented in each of the core components that make up a diagnostic test. First, we present how inorganic biomarkers and their properties are leveraged for infectious disease detection. In the following section, we detail metal-based technologies that have been employed for sample preparation and biomarker isolation from sample matrices. We then describe how inorganic- and nanomaterial-based probes have been utilized in point-of-care diagnostics for signal generation. The following section discusses instrumentation for signal readout in resource-limited settings. Next, we highlight the detection of nucleic acids at the point of care as an emerging application of inorganic chemistry. Lastly, we consider the challenges that remain for translation of the aforementioned diagnostic platforms to low-resource settings.
Collapse
Affiliation(s)
| | | | | | | | - David W. Wright
- Department of Chemistry, Vanderbilt
University, Nashville, Tennessee 37235, United States
| |
Collapse
|
15
|
Magneto-nanosensor smartphone platform for the detection of HIV and leukocytosis at point-of-care. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:10-19. [PMID: 30502420 DOI: 10.1016/j.nano.2018.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 11/23/2022]
Abstract
The advent of personalized medicine has brought an increased interest in personal health among general consumers. As a result, there is a great need for user-centric point-of-care (POC) health devices. Such devices are equally pertinent in developing countries or resource-limited settings for performing diagnostic tests. However, current POC tests for diseases such as human immunodeficiency virus (HIV) or leukocytosis do not provide adequate levels of sensitivity or do not exist at all. Here, we extend our mobile magneto-nanosensor platform to point-of-care HIV and leukocytosis detection. The platform can be multiplexed, and the circuitry enables portability and sensitivity in the POC setting. A smartphone application simplifies operation and provides guidance to facilitate self-testing. Commercially available POC test kits typically provide only qualitative or semi-quantitative results of a single analyte. The magneto-nanosensor platform can provide users with pleasant user-experience while demonstrating robust sensitive and specific multiplexed quantification and detection of common diseases.
Collapse
|
16
|
Kim K, Hall DA, Yao C, Lee JR, Ooi CC, Bechstein DJB, Guo Y, Wang SX. Magnetoresistive biosensors with on-chip pulsed excitation and magnetic correlated double sampling. Sci Rep 2018; 8:16493. [PMID: 30405155 PMCID: PMC6220270 DOI: 10.1038/s41598-018-34720-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/04/2018] [Indexed: 11/09/2022] Open
Abstract
Giant magnetoresistive (GMR) sensors have been shown to be among the most sensitive biosensors reported. While high-density and scalable sensor arrays are desirable for achieving multiplex detection, scalability remains challenging because of long data acquisition time using conventional readout methods. In this paper, we present a scalable magnetoresistive biosensor array with an on-chip magnetic field generator and a high-speed data acquisition method. The on-chip field generators enable magnetic correlated double sampling (MCDS) and global chopper stabilization to suppress 1/f noise and offset. A measurement with the proposed system takes only 20 ms, approximately 50× faster than conventional frequency domain analysis. A corresponding time domain temperature correction technique is also presented and shown to be able to remove temperature dependence from the measured signal without extra measurements or reference sensors. Measurements demonstrate detection of magnetic nanoparticles (MNPs) at a signal level as low as 6.92 ppm. The small form factor enables the proposed platform to be portable as well as having high sensitivity and rapid readout, desirable features for next generation diagnostic systems, especially in point-of-care (POC) settings.
Collapse
Affiliation(s)
- Kyunglok Kim
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Drew A Hall
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, United States
| | - Chengyang Yao
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Jung-Rok Lee
- Division of Mechanical and Biomedical Engineering, Ewha Womans University, Seoul, South Korea
| | - Chin C Ooi
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States
| | - Daniel J B Bechstein
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Yue Guo
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, CA, United States.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States.
| |
Collapse
|
17
|
Pearson TJ, Freedman DE. Size Determines Efficacy of Nanoparticle Magnetoresistance. ACS CENTRAL SCIENCE 2018; 4:1092-1094. [PMID: 30276241 PMCID: PMC6161038 DOI: 10.1021/acscentsci.8b00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
18
|
Bougas L, Langenegger LD, Mora CA, Zeltner M, Stark WJ, Wickenbrock A, Blanchard JW, Budker D. Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids. Sci Rep 2018; 8:3491. [PMID: 29472727 PMCID: PMC5823888 DOI: 10.1038/s41598-018-21802-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/16/2018] [Indexed: 12/31/2022] Open
Abstract
Over the last decades, the use of magnetic nanoparticles in research and commercial applications has increased dramatically. However, direct detection of trace quantities remains a challenge in terms of equipment cost, operating conditions and data acquisition times, especially in flowing conditions within complex media. Here we present the in-line, non-destructive detection of magnetic nanoparticles using high performance atomic magnetometers at ambient conditions in flowing media. We achieve sub-picomolar sensitivities measuring ~30 nm ferromagnetic iron and cobalt nanoparticles that are suitable for biomedical and industrial applications, under flowing conditions in water and whole blood. Additionally, we demonstrate real-time surveillance of the magnetic separation of nanoparticles from water and whole blood. Overall our system has the merit of in-line direct measurement of trace quantities of ferromagnetic nanoparticles with so far unreached sensitivities and could be applied in the biomedical field (diagnostics and therapeutics) but also in the industrial sector.
Collapse
Affiliation(s)
| | - Lukas D Langenegger
- Functional Materials Laboratory, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Carlos A Mora
- Functional Materials Laboratory, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Martin Zeltner
- Functional Materials Laboratory, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Wendelin J Stark
- Functional Materials Laboratory, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | | | | | - Dmitry Budker
- Johannes Gutenberg-Universität Mainz, 55128, Mainz, Germany
- Helmholtz-Institut Mainz, 55128, Mainz, Germany
- Department of Physics, University of California, Berkeley, CA, 94720-7300, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
19
|
Sepehri S, Eriksson E, Kalaboukhov A, Zardán Gómez de la Torre T, Kustanovich K, Jesorka A, Schneiderman JF, Blomgren J, Johansson C, Strømme M, Winkler D. Volume-amplified magnetic bioassay integrated with microfluidic sample handling and high- Tc SQUID magnetic readout. APL Bioeng 2017; 2:016102. [PMID: 31069287 PMCID: PMC6481700 DOI: 10.1063/1.4999713] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/26/2017] [Indexed: 11/14/2022] Open
Abstract
A bioassay based on a high-Tc superconducting quantum interference device (SQUID) reading out functionalized magnetic nanoparticles (fMNPs) in a prototype microfluidic platform is presented. The target molecule recognition is based on volume amplification using padlock-probe-ligation followed by rolling circle amplification (RCA). The MNPs are functionalized with single-stranded oligonucleotides, which give a specific binding of the MNPs to the large RCA coil product, resulting in a large change in the amplitude of the imaginary part of the ac magnetic susceptibility. The RCA products from amplification of synthetic Vibrio cholera target DNA were investigated using our SQUID ac susceptibility system in microfluidic channel with an equivalent sample volume of 3 μl. From extrapolation of the linear dependence of the SQUID signal versus concentration of the RCA coils, it is found that the projected limit of detection for our system is about 1.0 × 105 RCA coils (0.2 × 10−18 mol), which is equivalent to 66 fM in the 3 μl sample volume. This ultra-high magnetic sensitivity and integration with microfluidic sample handling are critical steps towards magnetic bioassays for rapid detection of DNA and RNA targets at the point of care.
Collapse
Affiliation(s)
- Sobhan Sepehri
- Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, Göteborg 412 96, Sweden
| | | | - Alexei Kalaboukhov
- Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, Göteborg 412 96, Sweden
| | | | - Kiryl Kustanovich
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | | | | | | | - Maria Strømme
- Department of Engineering Sciences, Uppsala University, The Ångström Laboratory, Box 534, SE-751 21 Uppsala, Sweden
| | - Dag Winkler
- Department of Microtechnology and Nanoscience-MC2, Chalmers University of Technology, Göteborg 412 96, Sweden
| |
Collapse
|
20
|
Wu K, Klein T, Krishna VD, Su D, Perez AM, Wang JP. Portable GMR Handheld Platform for the Detection of Influenza A Virus. ACS Sens 2017; 2:1594-1601. [PMID: 29068663 DOI: 10.1021/acssensors.7b00432] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Influenza A virus (IAV) is a common respiratory pathogen infecting many hosts including humans, pigs (swine influenza virus or SIV), and birds (avian influenza virus or AIV). Monitoring swine and avian influenza viruses in the wild, farms, and live poultry markets is of great significance for human and veterinary public health. A portable, sensitive, and quantitative immunoassay device will be of high demand especially in the rural and resource-limited areas. We report herein our Z-Lab point-of-care (POC) device for sensitive and specific detection of swine influenza viruses with minimum sample handling and laboratory skill requirements. In the present study, a portable and quantitative immunoassay platform based on giant magnetoresistive (GMR) technology is used for the detection of IAV nucleoprotein (NP) and purified H3N2v. Z-Lab displays quantitative results in less than 10 min with sensitivities down to 15 ng/mL and 125 TCID50/mL for IAV nucleoprotein and purified H3N2v, respectively. This platform allows lab-testing to be performed outdoors and opens up the applications of immunoassays in nonclinical settings.
Collapse
Affiliation(s)
- Kai Wu
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Todd Klein
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Venkatramana D. Krishna
- Department
of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Diqing Su
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Andres M. Perez
- Department
of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Jian-Ping Wang
- Department
of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
21
|
Zhou X, Huang CC, Hall DA. Giant Magnetoresistive Biosensor Array for Detecting Magnetorelaxation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2017; 11:755-764. [PMID: 28749344 DOI: 10.1109/tbcas.2017.2682080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, a time-domain magnetorelaxometry biosensing scheme is presented using giant magnetoresistive (GMR) sensors to measure the fast relaxation response of superparamagnetic magnetic nanoparticles (MNPs) in a pulsed magnetic field. The system consists of an 8 × 10 GMR sensor array, a Helmholtz coil, an electromagnet driver, and an integrator-based analog front-end needed to capture the fast relaxation dynamics of MNPs. A custom designed electromagnet driver and Helmholtz coil improve the switch-off speed to >5 Oe/μs, limiting the dead zone time to <10 μs, and thus enables the system to monitor fast relaxation processes of 30 nm MNPs. A magnetic correlated double sampling technique is proposed to reduce sensor-to-sensor variation by 99.98% while also reducing temperature drift, circuit offset, and nonlinearity below the noise level. An optimum integration time is calculated and experimentally verified to maximize the SNR. Experiments with dried MNPs have shown successful relaxation detection, and immunoassay experiments have demonstrated their binding kinetics.
Collapse
|
22
|
Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem Rev 2017; 117:9973-10042. [DOI: 10.1021/acs.chemrev.7b00037] [Citation(s) in RCA: 414] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zdeněk Farka
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Tomáš Juřík
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - David Kovář
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Libuše Trnková
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Skládal
- Central
European Institute of Technology (CEITEC), ‡Department of Biochemistry, Faculty
of Science, and §Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
23
|
Park J, Porter MD, Granger MC. Colloidally Assembled Zinc Ferrite Magnetic Beads: Superparamagnetic Labels with High Magnetic Moments for MR Sensors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:19569-19577. [PMID: 28508632 DOI: 10.1021/acsami.7b03182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Magnetic particles are widely used as labels in magnetoresistive sensors. To use magnetic particles as labels, several important characteristics should be considered, such as superparamagnetism, a high magnetic moment per particle (m), facile surface functionalization and biomolecule immobilization, colloidal stability, and analyte specificity. In this paper, we describe the preparation of magnetic labels with a high m, using colloidal assemblies of superparamagnetic zinc ferrite nanoparticles (ZFNPs, ∼9 nm). Also, several properties of these particles are compared with those of commercially available magnetic beads, Dynabeads and TurboBeads. The colloidally assembled zinc ferrite magnetic beads (ZFMBs, ∼160 nm) were synthesized by assembling ZFNPs via an emulsion-based assembly approach. While retaining superparamagnetism at room temperature, the m of ZFMBs is ∼4000× higher than that of the constituent ZFNPs. Surface functionalization with a layer of polyacrylic acid stabilized the ZFMBs in aqueous solution and enabled conjugation with streptavidin via carbodiimide linking chemistry. The streptavidinated ZFMBs can be suspended in aqueous buffer for ≥24 h, whereas 1.05 μm Dynabeads and 30 nm TurboBeads undergo ballistic deposition and instantaneous aggregation in solution, respectively. Finally, the streptavidinated ZFMBs were employed as labels in an immunoassay for the detection of osteopontin, a potential pancreatic cancer marker, proving superior to the commercial particles in terms of limit of detection and dynamic range. We expect that the work presented in this article can be extended to other biological applications, especially where superparamagnetic particles with a high m and colloidal stability are needed.
Collapse
Affiliation(s)
- Jooneon Park
- Department of Chemical Engineering, ‡Department of Chemistry, §Department of Surgery, School of Medicine, and ∥Nano Institute of Utah, University of Utah , Salt Lake City 84112, United States
| | - Marc D Porter
- Department of Chemical Engineering, ‡Department of Chemistry, §Department of Surgery, School of Medicine, and ∥Nano Institute of Utah, University of Utah , Salt Lake City 84112, United States
| | - Michael C Granger
- Department of Chemical Engineering, ‡Department of Chemistry, §Department of Surgery, School of Medicine, and ∥Nano Institute of Utah, University of Utah , Salt Lake City 84112, United States
| |
Collapse
|
24
|
Wu K, Schliep K, Zhang X, Liu J, Ma B, Wang JP. Characterizing Physical Properties of Superparamagnetic Nanoparticles in Liquid Phase Using Brownian Relaxation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604135. [PMID: 28374941 DOI: 10.1002/smll.201604135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/24/2017] [Indexed: 05/21/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used as bioimaging contrast agents, heating sources for tumor therapy, and carriers for controlled drug delivery and release to target organs and tissues. These applications require elaborate tuning of the physical and magnetic properties of the SPIONs. The authors present here a search-coil-based method to characterize these properties. The nonlinear magnetic response of SPIONs to alternating current magnetic fields induces harmonic signals that contain information of these nanoparticles. By analyzing the phase lag and harmonic ratios in the SPIONs, the authors can predict the saturation magnetization, the average hydrodynamic size, the dominating relaxation processes of SPIONs, and the distinction between single- and multicore particles. The numerical simulations reveal that the harmonic ratios are inversely proportional to saturation magnetizations and core diameters of SPIONs, and that the phase lag is dependent on the hydrodynamic volumes of SPIONs, which corroborate the experimental results. Herein, the authors stress the feasibility of using search coils as a method to characterize physical and magnetic properties of SPIONs, which may be applied as building blocks in nanoparticle characterization devices.
Collapse
Affiliation(s)
- Kai Wu
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karl Schliep
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiaowei Zhang
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jinming Liu
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bin Ma
- Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, P. R. China
| | - Jian-Ping Wang
- The Center for Micromagnetics and Information Technologies (MINT), Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
25
|
Giant Magnetoresistive Biosensors for Time-Domain Magnetorelaxometry: A Theoretical Investigation and Progress Toward an Immunoassay. Sci Rep 2017; 7:45493. [PMID: 28374833 PMCID: PMC5379630 DOI: 10.1038/srep45493] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/28/2017] [Indexed: 01/18/2023] Open
Abstract
Magnetorelaxometry (MRX) is a promising new biosensing technique for point-of-care diagnostics. Historically, magnetic sensors have been primarily used to monitor the stray field of magnetic nanoparticles bound to analytes of interest for immunoassays and flow cytometers. In MRX, the magnetic nanoparticles (MNPs) are first magnetized and then the temporal response is monitored after removing the magnetic field. This new sensing modality is insensitive to the magnetic field homogeneity making it more amenable to low-power portable applications. In this work, we systematically investigated time-domain MRX by measuring the signal dependence on the applied field, magnetization time, and magnetic core size. The extracted characteristic times varied for different magnetic MNPs, exhibiting unique magnetic signatures. We also measured the signal contribution based on the MNP location and correlated the coverage with measured signal amplitude. Lastly, we demonstrated, for the first time, a GMR-based time-domain MRX bioassay. This approach validates the feasibility of immunoassays using GMR-based MRX and provides an alternative platform for point-of-care diagnostics.
Collapse
|
26
|
Reisbeck M, Helou MJ, Richter L, Kappes B, Friedrich O, Hayden O. Magnetic fingerprints of rolling cells for quantitative flow cytometry in whole blood. Sci Rep 2016; 6:32838. [PMID: 27596736 PMCID: PMC5011763 DOI: 10.1038/srep32838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/15/2016] [Indexed: 01/15/2023] Open
Abstract
Over the past 50 years, flow cytometry has had a profound impact on preclinical and clinical applications requiring single cell function information for counting, sub-typing and quantification of epitope expression. At the same time, the workflow complexity and high costs of such optical systems still limit flow cytometry applications to specialized laboratories. Here, we present a quantitative magnetic flow cytometer that incorporates in situ magnetophoretic cell focusing for highly accurate and reproducible rolling of the cellular targets over giant magnetoresistance sensing elements. Time-of-flight analysis is used to unveil quantitative single cell information contained in its magnetic fingerprint. Furthermore, we used erythrocytes as a biological model to validate our methodology with respect to precise analysis of the hydrodynamic cell diameter, quantification of binding capacity of immunomagnetic labels, and discrimination of cell morphology. The extracted time-of-flight information should enable point-of-care quantitative flow cytometry in whole blood for clinical applications, such as immunology and primary hemostasis.
Collapse
Affiliation(s)
- Mathias Reisbeck
- In-Vitro DX &Bioscience, Department of Strategy and Innovation, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany.,Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Michael Johannes Helou
- In-Vitro DX &Bioscience, Department of Strategy and Innovation, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany
| | - Lukas Richter
- In-Vitro DX &Bioscience, Department of Strategy and Innovation, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nuremberg (FAU), Paul-Gordan-Str. 3, 91052 Erlangen, Germany
| | - Oliver Hayden
- In-Vitro DX &Bioscience, Department of Strategy and Innovation, Siemens Healthcare GmbH, Günther-Scharowsky-Str. 1, 91058 Erlangen, Germany
| |
Collapse
|
27
|
Lee JR, Choi J, Shultz TO, Wang SX. Small Molecule Detection in Saliva Facilitates Portable Tests of Marijuana Abuse. Anal Chem 2016; 88:7457-61. [PMID: 27434697 DOI: 10.1021/acs.analchem.6b01688] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As medical and recreational use of cannabis, or marijuana, becomes more prevalent, law enforcement needs a tool to evaluate whether drivers are operating vehicles under the influence of cannabis, specifically the psychoactive substance, tetrahydrocannabinol (THC). However, the cutoff concentration of THC that causes impairment is still controversial, and current on-site screening tools are not sensitive enough to detect trace amounts of THC in oral fluids. Here we present a novel sensing platform that employs giant magnetoresistive (GMR) biosensors integrated with a portable reader system and smartphone to detect THC in saliva using competitive assays. With a simple saliva collection scheme, we have optimized the assay to measure THC in the range from 0 to 50 ng/mL, covering most cutoff values proposed in previous studies. This work facilitates on-site screening for THC and shows potential for testing of other small molecule drugs and analytes in point-of-care (POC) settings.
Collapse
Affiliation(s)
- Jung-Rok Lee
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Joohong Choi
- Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States
| | - Tyler O Shultz
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - Shan X Wang
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.,Department of Electrical Engineering, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
28
|
Cubells-Beltrán MD, Reig C, Madrenas J, De Marcellis A, Santos J, Cardoso S, Freitas PP. Integration of GMR Sensors with Different Technologies. SENSORS 2016; 16:s16060939. [PMID: 27338415 PMCID: PMC4934364 DOI: 10.3390/s16060939] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/06/2016] [Accepted: 06/16/2016] [Indexed: 11/19/2022]
Abstract
Less than thirty years after the giant magnetoresistance (GMR) effect was described, GMR sensors are the preferred choice in many applications demanding the measurement of low magnetic fields in small volumes. This rapid deployment from theoretical basis to market and state-of-the-art applications can be explained by the combination of excellent inherent properties with the feasibility of fabrication, allowing the real integration with many other standard technologies. In this paper, we present a review focusing on how this capability of integration has allowed the improvement of the inherent capabilities and, therefore, the range of application of GMR sensors. After briefly describing the phenomenological basis, we deal on the benefits of low temperature deposition techniques regarding the integration of GMR sensors with flexible (plastic) substrates and pre-processed CMOS chips. In this way, the limit of detection can be improved by means of bettering the sensitivity or reducing the noise. We also report on novel fields of application of GMR sensors by the recapitulation of a number of cases of success of their integration with different heterogeneous complementary elements. We finally describe three fully functional systems, two of them in the bio-technology world, as the proof of how the integrability has been instrumental in the meteoric development of GMR sensors and their applications.
Collapse
Affiliation(s)
| | - Càndid Reig
- Department of Electronic Engineering, Universitat de València, Av. Universitat s/n, Burjassot 46100 , Spain.
| | - Jordi Madrenas
- Department of Electronic Engineering, Universitat Politècnica de Catalunya, C. Jordi Girona, 1-3, Barcelona 08034, Spain.
| | - Andrea De Marcellis
- Department of Industrial and Information Engineering and Economics, University of L'Aquila, L'Aquila 67100, Italy.
| | - Joana Santos
- INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, Lisbon 1000-029, Portugal.
| | - Susana Cardoso
- INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, Lisbon 1000-029, Portugal.
| | - Paulo P Freitas
- INESC Microsistemas e Nanotecnologias, Rua Alves Redol 9, Lisbon 1000-029, Portugal.
| |
Collapse
|
29
|
Ng E, Nadeau KC, Wang SX. Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection. Biosens Bioelectron 2016; 80:359-365. [DOI: 10.1016/j.bios.2016.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/27/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
30
|
Krishna VD, Wu K, Perez AM, Wang JP. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus. Front Microbiol 2016; 7:400. [PMID: 27065967 PMCID: PMC4809872 DOI: 10.3389/fmicb.2016.00400] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/14/2016] [Indexed: 11/29/2022] Open
Abstract
We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 10(2) TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 10(5) TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 10(3) to 10(5) TCID50/mL.
Collapse
Affiliation(s)
- Venkatramana D. Krishna
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. PaulMN, USA
| | - Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, MinneapolisMN, USA
| | - Andres M. Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. PaulMN, USA
| | - Jian-Ping Wang
- Department of Electrical and Computer Engineering, University of Minnesota, MinneapolisMN, USA
| |
Collapse
|
31
|
Lee JR, Sato N, Bechstein DJB, Osterfeld SJ, Wang J, Gani AW, Hall DA, Wang SX. Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors. Sci Rep 2016; 6:18692. [PMID: 26728870 PMCID: PMC4700494 DOI: 10.1038/srep18692] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Giant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field. We also demonstrated that the direction of the average magnetic field from the particles that contributes to the signal is indeed the same as that of the applied field, indicating that the particles in the trench are pivotal to produce sensor signal. Importantly, the same detection principle was validated with a duplex protein assay. Also, 8 different types of sensor stripes were fabricated and design parameters were explored. According to the detection principle uncovered, GMR biosensors can be further optimized to improve their sensitivity, which is highly desirable for early diagnosis of diseases.
Collapse
Affiliation(s)
- Jung-Rok Lee
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Noriyuki Sato
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Daniel J B Bechstein
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | | | - Junyi Wang
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Adi Wijaya Gani
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Drew A Hall
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Electrical and Computer Engineering, University of California, San Diego, USA
| | - Shan X Wang
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.,Department of Materials Science and Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
32
|
Zhang L, Huo W, Gao Y, Shi S, Gao Y. Determination of Affinity and Kinetic Constants of the Biotin-Streptavidin Complex Using Microfluidic GMR Biosensors. IEEE TRANSACTIONS ON MAGNETICS 2015; 51:1-4. [PMID: 0 DOI: 10.1109/tmag.2015.2443125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
33
|
Giant magnetoresistive-based biosensing probe station system for multiplex protein assays. Biosens Bioelectron 2015; 70:61-8. [DOI: 10.1016/j.bios.2015.03.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/19/2015] [Accepted: 03/04/2015] [Indexed: 12/29/2022]
|
34
|
Park J, Porter MD, Granger MC. Silica encapsulation of ferrimagnetic zinc ferrite nanocubes enabled by layer-by-layer polyelectrolyte deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:3537-45. [PMID: 25756216 PMCID: PMC4751990 DOI: 10.1021/acs.langmuir.5b00268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Stable suspensions of magnetic nanoparticles (MNPs) with large magnetic moment, m, per particle have tremendous utility in a wide range of biological applications. However, because of the strong magnetic coupling interactions often present in these systems, it is challenging to stabilize individual, high-moment, ferro- and ferrimagnetic nanoparticles. A novel approach to encapsulate large, that is, >100 nm, ferrimagnetic zinc ferrite nanocubes (ZFNCs) with silica after an intermediary layer-by-layer polyelectrolyte deposition step is described in this paper. The seed ZFNCs are uniform in shape and size and have high saturation mass magnetic moment (σ(s) ∼100 emu/g, m ∼ 4 × 10(-13) emu/particle at 150 Oe). For the MNP system described within, successful silica encapsulation and creation of discrete ZFNCs were realized only after depositing polyelectrolyte multilayers composed of alternating polyallylamine and polystyrenesulfonate. Without the intermediary polyelectrolyte layers, magnetic dipole-dipole interactions led to the formation of linearly chained ZFNCs embedded in a silica matrix. Characterization of particle samples was performed by electron microscopy, energy-dispersive X-ray spectroscopy, infrared spectroscopy, powder X-ray diffraction, dynamic light scattering (hydrodynamic size and ζ-potential), and vibrating sample magnetometry. The results of these characterizations, which were performed after each of the synthetic steps, and synthetic details are presented.
Collapse
Affiliation(s)
- Jooneon Park
- Department of Chemical Engineering, University of Utah
- Nano Institute of Utah, University of Utah, University of Utah
| | - Marc D. Porter
- Department of Chemical Engineering, University of Utah
- Departments of Chemistry, Bioengineering, and Pathology, University of Utah
- Nano Institute of Utah, University of Utah, University of Utah
| | - Michael C. Granger
- Department of Chemical Engineering, University of Utah
- Nano Institute of Utah, University of Utah, University of Utah
- Department of Surgery, School of Medicine, University of Utah
- Corresponding Author:
| |
Collapse
|