1
|
Gu X, Heinrich A, Li SY, DeFalco T. Testicular macrophages are recruited during a narrow fetal time window and promote organ-specific developmental functions. Nat Commun 2023; 14:1439. [PMID: 36922518 PMCID: PMC10017703 DOI: 10.1038/s41467-023-37199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
A growing body of evidence demonstrates that fetal-derived tissue-resident macrophages have developmental functions. It has been proposed that macrophages promote testicular functions, but which macrophage populations are involved is unclear. Previous studies showed that macrophages play critical roles in fetal testis morphogenesis and described two adult testicular macrophage populations, interstitial and peritubular. There has been debate regarding the hematopoietic origins of testicular macrophages and whether distinct macrophage populations promote specific testicular functions. Here our hematopoietic lineage-tracing studies in mice show that yolk-sac-derived macrophages comprise the earliest testicular macrophages, while fetal hematopoietic stem cells (HSCs) generate monocytes that colonize the gonad during a narrow time window in a Sertoli-cell-dependent manner and differentiate into adult testicular macrophages. Finally, we show that yolk-sac-derived versus HSC-derived macrophages have distinct functions during testis morphogenesis, while interstitial macrophages specifically promote adult Leydig cell steroidogenesis. Our findings provide insight into testicular macrophage origins and their tissue-specific roles.
Collapse
Affiliation(s)
- Xiaowei Gu
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Anna Heinrich
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Shu-Yun Li
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Tony DeFalco
- Reproductive Sciences Center, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
2
|
Tran KTD, Valli-Pulaski H, Colvin A, Orwig KE. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies†. Biol Reprod 2022; 107:382-405. [PMID: 35403667 PMCID: PMC9382377 DOI: 10.1093/biolre/ioac072] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Medical treatments for cancers or other conditions can lead to permanent infertility. Infertility is an insidious disease that impacts not only the ability to have a biological child but also the emotional well-being of the infertile individuals, relationships, finances, and overall health. Therefore, all patients should be educated about the effects of their medical treatments on future fertility and about fertility preservation options. The standard fertility preservation option for adolescent and adult men is sperm cryopreservation. Sperms can be frozen and stored for a long period, thawed at a later date, and used to achieve pregnancy with existing assisted reproductive technologies. However, sperm cryopreservation is not applicable for prepubertal patients who do not yet produce sperm. The only fertility preservation option available to prepubertal boys is testicular tissue cryopreservation. Next-generation technologies are being developed to mature those testicular cells or tissues to produce fertilization-competent sperms. When sperm and testicular tissues are not available for fertility preservation, inducing pluripotent stem cells derived from somatic cells, such as blood or skin, may provide an alternative path to produce sperms through a process call in vitro gametogenesis. This review describes standard and experimental options to preserve male fertility as well as the experimental options to produce functional spermatids or sperms from immature cryopreserved testicular tissues or somatic cells.
Collapse
Affiliation(s)
- Kien T D Tran
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Amanda Colvin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Correspondence: Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA. Tel: 412-641-2460; E-mail:
| |
Collapse
|
3
|
Mu H, Liu S, Tian S, Chen B, Liu Z, Fan Y, Liu Y, Ma W, Zhang W, Fu M, Song X. Study on the SHP2-Mediated Mechanism of Promoting Spermatogenesis Induced by Active Compounds of Eucommiae Folium in Mice. Front Pharmacol 2022; 13:851930. [PMID: 35392568 PMCID: PMC8981153 DOI: 10.3389/fphar.2022.851930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022] Open
Abstract
Spermatogenesis directly determines the reproductive capacity of male animals. With the development of society, the increasing pressure on people’s lives and changes in the living environment, male fertility is declining. The leaf of Eucommia ulmoides Oliv. (Eucommiae Folium, EF) was recorded in the 2020 Chinese Pharmacopoeia and was used in traditional Chinese medicine as a tonic. In recent years, EF has been reported to improve spermatogenesis, but the mechanisms of EF remain was poorly characterized. In this study, the effect of EF ethanol extract (EFEE) on spermatogenesis was tested in mice. Chemical components related to spermatogenesis in EF were predicted by network pharmacology. The biological activity of the predicted chemical components was measured by the proliferation of C18-4 spermatogonial stem cells (SSCs) and the testosterone secretion of TM3 leydig cells. The biological activity of chlorogenic acid (CGA), the active compound in EF, was tested in vivo. The cell cycle was analysed by flow cytometry. Testosterone secretion was detected by ELISA. RNA interference (RNAi) was used to detect the effect of key genes on cell biological activity. Western blotting, qRT–PCR and immunofluorescence staining were used to analyse the molecular mechanism of related biological activities. The results showed that EFEE and CGA could improve spermatogenesis in mice. Furthermore, the main mechanism was that CGA promoted SSC proliferation, self-renewal and Leydig cell testosterone secretion by promoting the expression of SHP2 and activating the downstream signaling pathways involved in these biological processes. This study provided strong evidence for elucidating the mechanism by which EF promotes the spermatogenesis in mice and a new theoretical basis for dealing with the decrease in male reproductive capacity.
Collapse
Affiliation(s)
- Hailong Mu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shuangshi Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shiyang Tian
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Beibei Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zengyuan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Mingzhe Fu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
El-Fakharany YM, Mohamed EM, Etewa RL, Abdel Hamid OI. Selenium nanoparticles alleviate lead acetate-induced toxicological and morphological changes in rat testes through modulation of calmodulin-related genes expression. J Biochem Mol Toxicol 2022; 36:e23017. [PMID: 35194871 DOI: 10.1002/jbt.23017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 02/01/2023]
Abstract
Lead (Pb) is one of the most common toxic heavy metals. It is a well-known testicular toxicant. Selenium nanoparticles (SeNPs) are a more effective form of elemental selenium that reduces drug-induced toxicities. This study aimed to study the possible ameliorating effect of SeNPs on the toxicological and morphological changes in testes of lead acetate intoxicated rats. The study was conducted on 40 adult male albino rats divided into four groups; control, SeNPs-treated, lead acetate-treated, lead acetate and SeNPS treated groups. The concurrent treatment of lead acetate-exposed rats with SeNPs (0.1 mg/kg/day) for 12 weeks significantly lowered the blood and testicular lead levels, increased serum testosterone, and decreased luteinizing hormone and follicle-stimulating hormone to approach control values. In addition, it improved the histopathological, and ultrastructural alterations of the testes and improved the immunohistochemical expression of the c-kit. This was accompanied by maintenance of the testicular oxidant/antioxidant balance and reversing the lead-induced disrupted calmodulin-related genes expression in testicular tissue in the form of downregulation of CAMMK2 and MAP2K6 and upregulation of CXCR4 genes. There was a strong positive correlation between testicular malondialdehyde and MAP2K6 expression level as well as a strong positive correlation between CXCR4 gene expression and the C-kit area %. In conclusion, SeNPs can be considered as a potential therapy for a lead-induced testicular injury.
Collapse
Affiliation(s)
- Yara M El-Fakharany
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M Mohamed
- Department of Medical Histology and Cell Biology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha L Etewa
- Department of Medical Biochemistry, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Omaima I Abdel Hamid
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Human Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Yu J, Li S, Wang L, Dong Z, Si L, Bao L, Wu L. Pathogenesis of Brucella epididymoorchitis-game of Brucella death. Crit Rev Microbiol 2021; 48:96-120. [PMID: 34214000 DOI: 10.1080/1040841x.2021.1944055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Brucellosis is a worldwide zoonotic disease caused by Brucella spp. Human infection often results from direct contact with tissues from infected animals or by consumption of undercooked meat and unpasteurised dairy products, causing serious economic losses and public health problems. The male genitourinary system is a common involved system in patients with brucellosis. Among them, unilateral orchitis and epididymitis are the most common. Although the clinical and imaging aspect of orchi-epididymitis caused by brucellosis have been widely described, the cellular and molecular mechanisms involved in the damage and the immune response in testis and epididymis have not been fully elucidated. In this review, we first summarised the clinical characteristics of Brucella epididymo-orchitis and the composition of testicular and epididymal immune system. Secondly, with regard to the mechanism of Brucella epididymoorchitis, we mainly discussed the process of Brucella invading testis and epididymis in temporal and spatial order, including i) Brucella evades innate immune recognition of testicular PRRs;ii) Brucella overcomes the immune storm triggered by the invasion of testis through bacterial lipoproteins and virulence factors, and changes the secretion mode of cytokines; iii) Brucella breaks through the blood-testis barrier with the help of macrophages, and inflammatory cytokines promote the oxidative stress of Sertoli cells, damaging the integrity of BTB; iv) Brucella inhibits apoptosis of testicular phagocytes. Finally, we revealed the structure and sequence of testis invaded by Brucella at the tissue level. This review will enable us to better understand the pathogenesis of orchi-epididymitis caused by brucellosis and shed light on the development of new treatment strategies for the treatment of brucellosis and the prevention of transition to chronic form. Facing the testicle with immunity privilege, Brucella is like Bruce Lee in the movie Game of Death, winning is survival while losing is death.HIGHLIGHTSWe summarized the clinical features and pathological changes of Brucellaepididymoorchitis.Our research reveals the pathogenesis of Brucella epididymoorchitis, which mainly includes the subversion of testicular immune privilege by Brucella and a series of destructive reactions derived from it.As a basic framework and valuable resource, this study can promote the exploration of the pathogenesis of Brucella and provide reference for determining new therapeutic targets for brucellosis in the future.
Collapse
Affiliation(s)
- Jiuwang Yu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Sha Li
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lu Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhiheng Dong
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lengge Si
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| | - Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lan Wu
- Mongolian Medicine School, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
6
|
Altered Biology of Testicular VSELs and SSCs by Neonatal Endocrine Disruption Results in Defective Spermatogenesis, Reduced Fertility and Tumor Initiation in Adult Mice. Stem Cell Rev Rep 2021; 16:893-908. [PMID: 32592162 DOI: 10.1007/s12015-020-09996-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Reproductive health of men has declined in recent past with reduced sperm count and increased incidence of infertility and testicular cancers mainly attributed to endocrine disruption in early life. Present study aims to evaluate whether testicular stem cells including very small embryonic-like stem cells (VSELs) and spermatogonial stem cells (SSCs) get affected by endocrine disruption and result in pathologies in adult life. Effect of treatment on mice pups with estradiol (20 μg on days 5-7) and diethylstilbestrol (DES, 2 μg on days 1-5) was studied on VSELs, SSCs and spermatogonial cells in adult life. Treatment affected spermatogenesis, tubules in Stage VIII & sperm count were reduced along with reduction of meiotic (4n) cells and markers (Prohibitin, Scp3, Protamine). Enumeration of VSELs by flow cytometry (2-6 μm, 7AAD-, LIN-CD45-SCA-1+) and qRT-PCR using specific transcripts for VSELs (Oct-4a, Sox-2, Nanog, Stella, Fragilis), SSCs (tOct-4, Gfra-1, Gpr-125) and early germ cells (Mvh, Dazl) showed several-fold increase but transition from c-Kit negative to c-Kit positive spermatogonial cells was blocked on D100 after treatment. Transcripts specific for apoptosis (Bcl2, Bax) remained unaffected but tumor suppressor (p53) and epigenetic regulator (NP95) transcripts showed marked disruption. 9 of 10 mice exposed to DES showed tumor-like changes. To conclude, endocrine disruption resulted in a tilt towards excessive self-renewal of VSELs (leading to testicular cancer after DES treatment) and blocked differentiation (reduced numbers of c-Kit positive cells, meiosis, sperm count and fertility). Understanding the underlying basis for infertility and cancer initiation from endogenous stem cells through murine modelling will hopefully improve human therapies in future.
Collapse
|
7
|
Ishida K, Werner JA, Lafleur M, Wisler J, Wannberg S, Kalanzi J, Bussiere JL, Monticello TM. Phosphatidylinositol 3-Kinase δ-Specific Inhibitor-Induced Changes in the Ovary and Testis in the Sprague Dawley Rat and Cynomolgus Monkey. Int J Toxicol 2021; 40:344-354. [PMID: 33866838 DOI: 10.1177/10915818211008175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) δ is a lipid kinase primarily found in leukocytes, which regulates important cell functions. AMG2519493 was a PI3K δ-specific inhibitor in development for treatment of various inflammatory diseases. AMG2519493-related changes in the male and/or female reproductive organs were observed in the 1- and 3-month oral repeat dose toxicology studies in the rat and cynomolgus monkey. Hemorrhagic corpora lutea cysts and increased incidence of corpora lutea cysts without hemorrhage were observed in the ovaries at supra pharmacological doses in the rat. A decrease in seminiferous germ cells in the testis, indicative of spermatogenesis maturation arrest, was observed in both the rat and cynomolgus monkey. Although the characteristics were comparable, the drug systemic exposures associated with the testicular changes were very different between the 2 species. In the rat, the testicular change was only observed at supra pharmacologic exposure. Isotype assessment of PI3K signaling in rat spermatogonia in vitro indicated a role for PI3K β, but not δ, in the c Kit/PI3K/protein kinase B signaling pathway. Therefore, changes in both the ovary and testis of the rat were considered due to off target effect as they only occurred at suprapharmacologic exposure. In contrast, the testicular changes in the cynomolgus monkey (decrease in seminiferous germ cells) occurred at very low doses associated with PI3K δ-specific inhibition, indicating that the PI3K δ isoform may be important in spermatogenesis maturation in the cynomolgus monkey. Our results suggest species-related differences in PI3K isoform-specific control on reproductive organs.
Collapse
Affiliation(s)
| | | | | | - John Wisler
- 7129Amgen Inc, Thousand Oaks, CA, USA
- 328878AnaptysBio Inc, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
8
|
Lakpour N, Saliminejad K, Ghods R, Reza Sadeghi M, Pilatz A, Khosravi F, Madjd Z. Potential biomarkers for testicular germ cell tumour: Risk assessment, diagnostic, prognostic and monitoring of recurrence. Andrologia 2021; 53:e13998. [PMID: 33534171 DOI: 10.1111/and.13998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 12/17/2022] Open
Abstract
Testicular germ cell tumour (TGCT) is considered a relatively rare malignancy usually occurring in young men between 15 and 35 years of age, and both genetic and environmental factors contribute to its development. The majority of patients are diagnosed in an early-stage of TGCTs with an elevated 5-year survival rate after therapy. However, approximately 25% of patients show an incomplete response to chemotherapy or tumours relapse. The current therapies are accompanied by several adverse effects, including infertility. Aside from classical serum biomarker, many studies reported novel biomarkers for TGCTs, but without proper validation. Cancer cells share many similarities with embryonic stem cells (ESCs), and since ESC genes are not transcribed in most adult tissues, they could be considered ideal candidate targets for cancer-specific diagnosis and treatment. Added to this, several microRNAs (miRNA) including miRNA-371-3p can be further investigated as a molecular biomarker for diagnosis and monitoring of TGCTs. In this review, we will illustrate the findings of recent investigations in novel TGCTs biomarkers applicable for risk assessment, screening, diagnosis, prognosis, prediction and monitoring of the relapse.
Collapse
Affiliation(s)
- Niknam Lakpour
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Adrian Pilatz
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University, Giessen, Germany
| | - Farhad Khosravi
- Department of Physiology, Faculty of Medicine, Justus Liebig University, Giessen, Germany
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Pakhomova A, Pershina O, Nebolsin V, Ermakova N, Krupin V, Sandrikina L, Pan E, Widera D, Dygai A, Skurikhin E. Bisamide Derivative of Dicarboxylic Acid Contributes to Restoration of Testicular Tissue Function and Influences Spermatogonial Stem Cells in Metabolic Disorders. Front Cell Dev Biol 2020; 8:562358. [PMID: 33344442 PMCID: PMC7744787 DOI: 10.3389/fcell.2020.562358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/30/2020] [Indexed: 11/13/2022] Open
Abstract
Metabolic syndrome can lead to several challenging complications including degeneration of the pancreas and hypogonadism. Recently, we have shown that Bisamide Derivative of Dicarboxylic Acid (BDDA) can contribute to pancreatic restoration in mice with metabolic disorders via its positive effects on lipid and glucose metabolism, and by increasing the numbers of pancreatic stem cells. In the present study, we hypothesized that BDDA might also be effective in restoring hypogonadism caused by metabolic syndrome. Experiments were performed on male C57BL/6 mice with hypogonadism, where metabolic disorders have been introduced by a combination of streptozotocin treatment and high fat diet. Using a combination of histological and biochemical methods along with a flow cytometric analysis of stem and progenitor cell markers, we evaluated the biological effects of BDDA on testicular tissue, germ cells, spermatogonial stem cells in vitro and in vivo, as well as on fertility. We demonstrate that in mice with metabolic disorders, BDDA has positive effects on spermatogenesis and restores fertility. We also show that BDDA exerts its therapeutic effects by reducing inflammation and by modulating spermatogonial stem cells. Thus, our results suggest that BDDA could represent a promising lead compound for the development of novel therapeutics able to stimulate regeneration of the testicular tissue and to restore fertility in hypogonadism resulting from complications of metabolic syndrome.
Collapse
Affiliation(s)
- Angelina Pakhomova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Olga Pershina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | | | - Natalia Ermakova
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Vyacheslav Krupin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Lubov Sandrikina
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Edgar Pan
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Alexander Dygai
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| | - Evgenii Skurikhin
- Laboratory of Regenerative Pharmacology, Goldberg ED Research Institute of Pharmacology and Regenerative Medicine, Tomsk National Research Medical Centre of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
10
|
Wang X, Kang JY, Wei L, Yang X, Sun H, Yang S, Lu L, Yan M, Bai M, Chen Y, Long J, Li N, Li D, Huang J, Lei M, Shao Z, Yuan W, Zuo E, Lu K, Liu MF, Li J. PHF7 is a novel histone H2A E3 ligase prior to histone-to-protamine exchange during spermiogenesis. Development 2019; 146:dev.175547. [PMID: 31189663 DOI: 10.1242/dev.175547] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
Epigenetic regulation, including histone-to-protamine exchanges, controls spermiogenesis. However, the underlying mechanisms of this regulation are largely unknown. Here, we report that PHF7, a testis-specific PHD and RING finger domain-containing protein, is essential for histone-to-protamine exchange in mice. PHF7 is specifically expressed during spermiogenesis. PHF7 deletion results in male infertility due to aberrant histone retention and impaired protamine replacement in elongated spermatids. Mechanistically, PHF7 can simultaneously bind histone H2A and H3; its PHD domain, a histone code reader, can specifically bind H3K4me3/me2, and its RING domain, a histone writer, can ubiquitylate H2A. Thus, our study reveals that PHF7 is a novel E3 ligase that can specifically ubiquitylate H2A through binding H3K4me3/me2 prior to histone-to-protamine exchange.
Collapse
Affiliation(s)
- Xiukun Wang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Jun-Yan Kang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Leixin Wei
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China.,Department of Orthopaedic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Xiaogan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Hongduo Sun
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Lei Lu
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Meng Yan
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Meizhu Bai
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Yanyan Chen
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China
| | - Juanjuan Long
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China
| | - Na Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Dangsheng Li
- CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, Shanghai 200031, China
| | - Jing Huang
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China
| | - Ming Lei
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China
| | - Zhen Shao
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wen Yuan
- Department of Orthopaedic Surgery, Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Erwei Zuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China .,Research Center of Animal Genomics, Agricultural Genomics Institute at Shengzhen, Chinese Academy of Agricultural Sciences, Shengzhen, Guangdong 518210, China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Mo-Fang Liu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, University of Chinese Academy of Science, Shanghai 200031, China
| |
Collapse
|
11
|
Zhou H, Zeng Z, Koentgen F, Khan M, Mombaerts P. The testicular soma of Tsc22d3 knockout mice supports spermatogenesis and germline transmission from spermatogonial stem cell lines upon transplantation. Genesis 2019; 57:e23295. [PMID: 31001916 PMCID: PMC6617806 DOI: 10.1002/dvg.23295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/19/2019] [Accepted: 03/22/2019] [Indexed: 12/16/2022]
Abstract
Spermatogonial stem cells (SSCs) are adult stem cells that are slowly cycling and self-renewing. The pool of SSCs generates very large numbers of male gametes throughout the life of the individual. SSCs can be cultured in vitro for long periods of time, and established SSC lines can be manipulated genetically. Upon transplantation into the testes of infertile mice, long-term cultured mouse SSCs can differentiate into fertile spermatozoa, which can give rise to live offspring. Here, we show that the testicular soma of mice with a conditional knockout (conKO) in the X-linked gene Tsc22d3 supports spermatogenesis and germline transmission from cultured mouse SSCs upon transplantation. Infertile males were produced by crossing homozygous Tsc22d3 floxed females with homozygous ROSA26-Cre males. We obtained 96 live offspring from six long-term cultured SSC lines with the aid of intracytoplasmic sperm injection. We advocate the further optimization of Tsc22d3-conKO males as recipients for testis transplantation of SSC lines.
Collapse
Affiliation(s)
- Hai Zhou
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Zhen Zeng
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | | | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| |
Collapse
|
12
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
13
|
Insights from molecular signature of in vivo cardiac c-Kit(+) cells following cardiac injury and β-catenin inhibition. J Mol Cell Cardiol 2018; 123:64-74. [PMID: 30171847 DOI: 10.1016/j.yjmcc.2018.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/03/2018] [Accepted: 08/28/2018] [Indexed: 01/26/2023]
Abstract
There is much interest over resident c-Kit(+) cells in tissue regeneration. Their role in cardiac regeneration has been controversial. In this study we aim to understand the in vivo behavior of cardiac c-Kit(+) cells at baseline and after myocardial infarction and in response to Sfrp2. This approach can accurately study the in vivo transcript expressions of these cells in temporal response to injury and overcomes the limitations of the in vitro approach. RNA-seq was performed with c-Kit(+) cells and cardiomyocytes from healthy non-injured mice as well as c-Kit(+) cells from 1 day post-MI and 12 days post-MI mice. When compared to in vivo c-Kit(+) cells isolated from a healthy non-injured mouse heart, cardiomyocytes were enriched in transcripts that express anion channels, cation channels, developmental/differentiation pathway components, as well as proteins that inhibit canonical Wnt/β-catenin signaling. Myocardial infarction (MI) induced in vivo c-Kit(+) cells to transiently adopt the cardiomyocyte-specific signature: expression of a number of cardiomyocyte-specific transcripts was maximal 1 day post-MI and declined by 12 days post-MI. We next studied the effect of β-catenin inhibition on in vivo c-Kit(+) cells by administering the Wnt inhibitor Sfrp2 into the infarct border zone. Sfrp2 both enhanced and sustained cardiomyocyte-specific gene expression in the in vivo c-Kit(+) cells: expression of cardiomyocyte-specific transcripts was higher and there was no decline in expression by 12 days post-MI. Further analysis of the biology of c-Kit(+) cells identified that culture induced a significant and irreversible change in their molecular signature raising questions about reliability of in vitro studies. Our findings provide evidence that MI induces in vivo c-Kit(+) cells to adopt transiently a cardiomyocyte-specific pattern of gene expression, and Sfrp2 further enhances and induces sustained gene expression. Our approach is important for understanding c-Kit(+) cells in cardiac regeneration and also has broad implications in the investigation of in vivo resident stem cells in other areas of tissue regeneration.
Collapse
|
14
|
Kim J, Villadsen R. Expression of Luminal Progenitor Marker CD117 in the Human Breast Gland. J Histochem Cytochem 2018; 66:879-888. [PMID: 30004288 DOI: 10.1369/0022155418788845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CD117 is a putative marker of luminal progenitor cells in the human breast. However, so far mapping the expression pattern of CD117 within the normal gland has not been reported. Here, we examined the anatomical distribution of CD117-expressing cells in lobular and ductal structures by immunohistochemistry. The presence of CD117-positive luminal cells could be divided into three distinct patterns: (1) contiguous, with coherent positive cells and rare negative cells interspaced; (2) patched, with a roughly equal frequency of positive and negative cells distributed focally; or (3) scattered, with few or no positive cells in the structure. Generally, a patched or scattered expression pattern was more frequent in lobules compared with ducts. Furthermore, an age-correlated increase in heterogeneity was observed. When comparing women below and above 21 years of age this heterogeneity was evident for both lobules and ducts. Although CD117-expression was generally segregated from luminal-lineage transcription factor GATA3-positive cells, some did co-express both markers. Finally, co-staining with Ki-67 revealed that a prominent part of cycling cells belonged to the CD117-positive population. Together these data demonstrate the presence of a CD117-expressing progenitor compartment with the capacity to replenish the luminal lineage of the breast gland.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Cellular and Molecular Medicine, and Novo Nordisk Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, and Novo Nordisk Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Alves-Lopes JP, Stukenborg JB. Testicular organoids: a new model to study the testicular microenvironment in vitro? Hum Reprod Update 2017; 24:176-191. [PMID: 29281008 DOI: 10.1093/humupd/dmx036] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In recent decades, a broad range of strategies have been applied to model the testicular microenvironment in vitro. These models have been utilized to study testicular physiology and development. However, a system that allows investigations into testicular organogenesis and its impact in the spermatogonial stem-cell (SSC) niche in vitro has not been developed yet. Recently, the creation of tissue-specific organ-like structures called organoids has resurged, helping researchers to answer scientific questions that previous in vitro models could not help to elucidate. So far, a small number of publications have concerned the generation of testicular organoids and their application in the field of reproductive medicine and biology. OBJECTIVE AND RATIONALE Here, we aim to elucidate whether testicular organoids might be useful in answering current scientific questions about the regulation and function of the SSC niche as well as germ cell proliferation and differentiation, and whether or not the existing in vitro models are already sufficient to address them. Moreover, we would like to discuss how an organoid system can be a better solution to address these prominent scientific problems in our field, by the creation of a rationale parallel to those in other areas where organoid systems have been successfully utilized. SEARCH METHODS We comprehensively reviewed publications regarding testicular organoids and the methods that most closely led to the formation of these organ-like structures in vitro by searching for the following terms in both PubMed and the Web of Science database: testicular organoid, seminiferous tubule 3D culture, Sertoli cell 3D culture, testicular cord formation in vitro, testicular morphogenesis in vitro, germ cell 3D culture, in vitro spermatogenesis, testicular de novo morphogenesis, seminiferous tubule de novo morphogenesis, seminiferous tubule-like structures, testicular in vitro model and male germ cell niche in vitro, with no restrictions to any publishing year. The inclusion criteria were based on the relation with the main topic (i.e. testicular organoids, testicular- and seminiferous-like structures as in vitro models), methodology applied (i.e. in vitro culture, culture dimensions (2D, 3D), testicular cell suspension or fragments) and outcome of interest (i.e. organization in vitro). Publications about grafting of testicular tissue, germ-cell transplantation and female germ-cell culture were excluded. OUTCOMES The application of organoid systems is making its first steps in the field of reproductive medicine and biology. A restricted number of publications have reported and characterized testicular organoids and even fewer have denominated such structures by this method. However, we detected that a clear improvement in testicular cell reorganization is recognized when 3D culture conditions are utilized instead of 2D conditions. Depending on the scientific question, testicular organoids might offer a more appropriate in vitro model to investigate testicular development and physiology because of the easy manipulation of cell suspensions (inclusion or exclusion of a specific cell population), the fast reorganization of these structures and the controlled in vitro conditions, to the same extent as with other organoid strategies reported in other fields. WIDER IMPLICATIONS By way of appropriate research questions, we might use testicular organoids to deepen our basic understanding of testicular development and the SSC niche, leading to new methodologies for male infertility treatment.
Collapse
Affiliation(s)
- João Pedro Alves-Lopes
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
16
|
Suttorp M, Bornhäuser M, Metzler M, Millot F, Schleyer E. Pharmacology and pharmacokinetics of imatinib in pediatric patients. Expert Rev Clin Pharmacol 2017; 11:219-231. [PMID: 29076384 DOI: 10.1080/17512433.2018.1398644] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The tyrosine kinase inhibitor (TKI) imatinib was rationally designed to target BCR-ABL1 which is constitutively activated in chronic myeloid leukemia (CML). Following the tremendous success in adults, imatinib also became licensed for treatment of CML in minors. The rarity of pediatric CML hampers the conduction of formal trials. Thus, imatinib is still the single TKI approved for CML treatment in childhood. Areas covered: This review attempts to provide an overview of the literature on pharmacology, pharmacokinetic, and pharmacogenetic of imatinib concerning pediatric CML treatment. Articles were identified through a PubMed search and by reviewing abstracts from relevant hematology congresses. Additional information was provided from the authors' libraries and expertise and from our own measurements of imatinib trough plasma levels in children. Pharmacokinetic variables (e.g. alpha 1-acid glycoprotein binding, drug-drug/food-drug interactions via cytochrome P450 3A4/5, cellular uptake mediated via OCT-1-influx variations and P-glycoprotein-mediated drug efflux) still await to be addressed in pediatric patients systematically. Expert commentary: TKI response rates vary among different individuals and pharmacokinetic variables all can influence CML treatment success. Adherence to imatinib intake may be the most prominent factor influencing treatment outcome in teenagers thus pointing towards the potential benefits of regular drug monitoring.
Collapse
Affiliation(s)
- Meinolf Suttorp
- a Pediatric Hematology and Oncology , University Hospital 'Carl Gustav Carus' , Dresden , Germany
| | - Martin Bornhäuser
- b I. Medical Clinic , University Hospital 'Carl Gustav Carus' , Dresden , Germany
| | - Markus Metzler
- c Department of Paediatrics and Adolescent Medicine , University Hospital Erlangen , Erlangen , Germany
| | - Frédéric Millot
- d Pediatric Oncology Unit , CIC 802 INSERM, University Hospital , Poitiers , France
| | - Eberhard Schleyer
- b I. Medical Clinic , University Hospital 'Carl Gustav Carus' , Dresden , Germany
| |
Collapse
|
17
|
Dumont L, Chalmel F, Oblette A, Berby B, Rives A, Duchesne V, Rondanino C, Rives N. Evaluation of apoptotic- and autophagic-related protein expressions before and after IVM of fresh, slow-frozen and vitrified pre-pubertal mouse testicular tissue. Mol Hum Reprod 2017; 23:738-754. [DOI: 10.1093/molehr/gax054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- L Dumont
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - F Chalmel
- Inserm U1085-IRSET, Université de Rennes 1, Rennes, France
| | - A Oblette
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - B Berby
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - A Rives
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - V Duchesne
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - C Rondanino
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| | - N Rives
- Normandie Univ, UNIROUEN, EA 4308 ‘Gametogenesis and Gamete Quality’, Rouen University Hospital, Department of Reproductive Biology—CECOS, F 76000 Rouen, France
- Institute for Research and Innovation in Biomedicine (IRIB), France
| |
Collapse
|
18
|
Skurikhin EG, Pakhomova AV, Pershina OV, Ermolaeva LA, Krupin VA, Ermakova NN, Pan ES, Kudryashova AI, Rybalkina OY, Pavlovskaya TB, Litvyakov NV, Goldberg VE, Dygai AM. Regenerative Potential of Spermatogonial Stem Cells, Endothelial Progenitor Cells, and Epithelial Progenitor Cells of C57Bl/6 Male Mice with Metabolic Disorders. Bull Exp Biol Med 2017; 163:239-244. [PMID: 28726193 DOI: 10.1007/s10517-017-3775-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 11/30/2022]
Abstract
The properties of spermatogonial stem cells, endothelial progenitor cells, and the epithelial progenitors of C57Bl/6 mice under conditions of metabolic disorders were studied using the model of busulfan-induced suppression of spermatogenesis and in vitro culture technique. Spermatogonial stem cells CD117-CD90+ and epithelial progenitors CD45-CD31-Sca-1+CD49f+ derived from the testes of mice with metabolic disturbances demonstrated 17- and 28-fold increase in the respective cell mass and generated cell colonies in vitro. In contrast, spermatogonial stem cells with immune phenotype CD51-CD24+CD52+ had reduced selfrenewal capacity. Spermatogonial stem cells CD117-CD90+ and CD117+CD90+ as well as endothelial progenitors CD45-CD31+ derived from the testes of donor mice with metabolic disorders demonstrated high transplantation capacity in C57Bl/6 mouse testes damaged by cytostatic busulfan.
Collapse
Affiliation(s)
- E G Skurikhin
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - A V Pakhomova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia.
| | - O V Pershina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - L A Ermolaeva
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - V A Krupin
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - N N Ermakova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - E S Pan
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - A I Kudryashova
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - O Yu Rybalkina
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - T B Pavlovskaya
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - N V Litvyakov
- Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V E Goldberg
- Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A M Dygai
- E. D. Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| |
Collapse
|
19
|
Wu FJ, Lin TY, Sung LY, Chang WF, Wu PC, Luo CW. BMP8A sustains spermatogenesis by activating both SMAD1/5/8 and SMAD2/3 in spermatogonia. Sci Signal 2017; 10:10/477/eaal1910. [DOI: 10.1126/scisignal.aal1910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Abstract
Precise genome editing is a powerful tool for analysis of gene function. However, in spermatogonial stem cells (SSCs), this still remains a big challenge mainly due to low efficiency and complexity of currently available gene editing techniques. The CRISPR-Cas9 system from bacteria has been applied to modifying genome in different species at a very high efficiency and specificity. Here we describe CRISPR-Cas9-mediated gene editing via nonhomologous end joining (NHEJ) or homology-directed repair (HDR) in SSCs. This protocol provides guidelines for derivation of SSCs, nucleofection of SSCs with the CRISPR-Cas9 system, transplantation of the gene-modified SSCs into the recipient testes, and production of mice using transplanted SSC-derived round spermatids.
Collapse
Affiliation(s)
- Yinghua Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yifu Ding
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Jinsong Li
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China.
| |
Collapse
|
21
|
Naccache A, Louiset E, Duparc C, Laquerrière A, Patrier S, Renouf S, Gomez-Sanchez CE, Mukai K, Lefebvre H, Castanet M. Temporal and spatial distribution of mast cells and steroidogenic enzymes in the human fetal adrenal. Mol Cell Endocrinol 2016; 434:69-80. [PMID: 27302892 DOI: 10.1016/j.mce.2016.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 11/16/2022]
Abstract
Mast cells are present in the human adult adrenal with a potential role in the regulation of aldosterone secretion in both normal cortex and adrenocortical adenomas. We have investigated the human developing adrenal gland for the presence of mast cells in parallel with steroidogenic enzymes profile and serotonin signaling pathway. RT-QPCR and immunohistochemical studies were performed on adrenals at 16-41 weeks of gestation (WG). Tryptase-immunopositive mast cells were found from 18 WG in the adrenal subcapsular layer, close to 3βHSD- and CYP11B2-immunoreactive cells, firstly detected at 18 and 24 WG, respectively. Tryptophan hydroxylase and serotonin receptor type 4 expression increased at 30 WG before the CYP11B2 expression surge. In addition, HDL and LDL cholesterol receptors were expressed in the subcapsular zone from 24 WG. Altogether, our findings suggest the implication of mast cells and serotonin in the establishment of the mineralocorticoid synthesizing pathway during fetal adrenal development.
Collapse
Affiliation(s)
- Alexandre Naccache
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| | - Estelle Louiset
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| | - Céline Duparc
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| | | | - Sophie Patrier
- Pathology Laboratory, University Hospital of Rouen, Rouen, France.
| | - Sylvie Renouf
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| | - Celso E Gomez-Sanchez
- Endocrine Section, Department of Medicine, G.V. (Sonny) Montgomery VA Medical Center and University of Mississippi Medical Center, Jackson, MS, USA.
| | - Kuniaki Mukai
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, 160-8582, Japan.
| | - Hervé Lefebvre
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| | - Mireille Castanet
- INSERM U982, Laboratory of Differentiation & Neuronal and Neuroendocrine Communication, Institute for Research and Innovation in Biomedicine, University of Rouen, Mont-Saint-Aignan, France.
| |
Collapse
|
22
|
Abstract
Stem and progenitor cells were studied on mouse model of testicular ischemia. Testicular ischemia led to a decrease in free testosterone concentration. Hemodynamic changes, interstitial edema, and destruction of spermatogenic epithelium, Leydig, and Sertoli cells were observed in the testicular tissue. Accumulation of degenerative germ cells was accompanied by reduction in the count of spermatogonial stem cells with immunophenotype CD117(-)CD29(+)CD90(+) and CD117(+)CD29(+)CD90(+). Simultaneously with pathomorphological changes in the testes and suppression of spermatogenesis, ischemia reduced the count of hematopoietic progenitor cells, hematopoietic stem cells with immunophenotype Lin(-)CD117(+)Sca-1(+)c-kit(+)CD34(+) and Lin(-)CD117(+)Sca-1(+)c-kit(+)CD34(-), and multipotent mesenchymal stromal cells (CD45(-)CD31(-) CD90(+)CD106(+)) in the testicular tissue. The population of CD45(-)CD31(+)-endothelial cells in ischemic testicular tissue increased.
Collapse
|
23
|
Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9. J Genet Genomics 2016; 43:289-96. [PMID: 27210043 DOI: 10.1016/j.jgg.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/02/2016] [Accepted: 02/15/2016] [Indexed: 12/30/2022]
Abstract
Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals. However, conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process, restricting rapid study of the gene function in vivo. CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing technique, which has enabled rapid generation of gene knockout lines in mouse by direct injection of CRISPR-Cas9 into zygotes. Here, we demonstrate CRISPR-Cas9-mediated spermatogenic cell-specific disruption of Scp3 gene in testes in one step. We first generated transgenic mice by pronuclear injection of a plasmid containing Hspa2 promoter driving Cas9 expression and showed Cas9 specific expression in spermatogenic cells. We then produced transgenic mice carrying Hspa2 promoter driven Cas9 and constitutive expressed sgRNA targeting Scp3 gene. Male founders were infertile due to developmental arrest of spermatogenic cells while female founders could produce progeny normally. Consistently, male progeny from female founders were infertile and females could transmit the transgenes to the next generation. Our study establishes a CRISPR-Cas9-based one-step strategy to analyze the gene function in adult tissues by a temporal-spatial pattern.
Collapse
|
24
|
Different fixative methods influence histological morphology and TUNEL staining in mouse testes. Reprod Toxicol 2016; 60:53-61. [PMID: 26820454 DOI: 10.1016/j.reprotox.2016.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/11/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Society of Toxicologic Pathology has recommended mDF to fix testes since 2002. However, subsequent studies showed that false TUNEL-positive cells were observed in mDF-fixed testes. This study compared the effects of different fixation methods on histology and TUNEL staining in mouse testes. Results showed that fixation for 24 or 36h in mDF provided better morphologic details in untreated testes, but markedly enhanced false TUNEL-positive staining. To optimize the fixation, testes were fixed using mDF for 6h and then PFA for 18h. Interestingly, fixation using mDF/PFA manifested better morphologic details, and rarely caused false TUNEL-positive cells in testes. Finally, we examined germ cell apoptosis in testes using mDF/PFA fixation in cadmium-treated mice. As expected, cadmium triggered germ cell apoptosis which was well visualized in the mDF/PFA fixed testes. Taken together, mDF plus PFA fixation not only minimizes false TUNEL-positive cells, but also provides integrated morphologic details in testes.
Collapse
|
25
|
Qin J, Xu H, Zhang P, Zhang C, Zhu Z, Qu R, Qin Y, Zeng W. An efficient strategy for generation of transgenic mice by lentiviral transduction of male germline stem cells in vivo. J Anim Sci Biotechnol 2015; 6:59. [PMID: 26705472 PMCID: PMC4690335 DOI: 10.1186/s40104-015-0058-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022] Open
Abstract
Background Male germline stem cells (MGSCs) are a subpopulation of germ cells in the testis tissue. MGSCs are capable of differentiation into spermatozoa and thus are perfect targets for genomic manipulation to generate transgenic animals. Method The present study was to optimize a protocol of production of transgenic mice through transduction of MGSCs in vivo using lentiviral-based vectors. The recombinant lentiviral vectors with either EF-1 or CMV promoter to drive the expression of enhanced green fluorescent protein (eGFP) transgene were injected into seminiferous tubules or inter-tubular space of 7-day-old and 28-day-old mouse testes. At 5 or 6 wk post-surgery, these pre-founders were mated with wild-type C57BL/6J female mice (1.5 to 2.0-month-old). Results Sixty-seven percent of F1 generation and 55.56 % of F2 offspring were positive for eGFP transgene under the control of EF-1 promoter via PCR analysis. The transgenic pups were generated in an injection site-and age-independent manner. The expression of transgene was displayed in the progeny derived from lentiviral vector containing CMV promoter to drive transgene, but it was silenced or undetectable in the offspring derived from lentiviral vector with transgene under EF-1 promoter. The methylation level of gDNA in the promoter region of transgene was much higher in the samples derived lentiviral vectors with EF-1 promoter than that with CMV promoter, suggesting eGFP transgene was suppressed by DNA methylation in vivo. Conclusion This research reported here an effective strategy for generation of transgenic mice through transduction of MGSCs in vivo using lentivirus vectors with specific promoters, and the transgenic offspring were obtained in an injection site-and age-independent manner. This protocol could be applied to other animal species, leading to advancement of animal transgenesis in agricultural and biomedical fields. Electronic supplementary material The online version of this article (doi:10.1186/s40104-015-0058-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jinzhou Qin
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Haixia Xu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Pengfei Zhang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Conghui Zhang
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Zhendong Zhu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Rongfeng Qu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Yuwei Qin
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| | - Wenxian Zeng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100 China
| |
Collapse
|
26
|
Zuo EW, Yang XG, Lu YQ, Xie L, Shang JH, Li D, Yang H, Hu LL, Zhao HM, Lu SS, Lu KH. ZPAC is required for normal spermatogenesis in mice. Mol Reprod Dev 2015; 82:747-55. [DOI: 10.1002/mrd.22507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/15/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Er-Wei Zuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Xiao-Gan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Yang-Qing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
- Regenerative Bioscience Center; Department of Animal and Dairy Science; University of Georgia; Athens Georgia 30602 USA
| | - Long Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Jiang-Hua Shang
- Buffalo Research Institute; Chinese Academy of Agricultural Sciences; Nanning Guangxi 530001 China
| | - Di Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Huan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Lin-Lin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Hui-Min Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Sheng-Sheng Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| | - Ke-Huan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi High Education Laboratory for Animal Reproduction and Biotechnology; Guangxi University; Nanning Guangxi 530004 China
| |
Collapse
|
27
|
Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res 2014; 25:67-79. [PMID: 25475058 DOI: 10.1038/cr.2014.160] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 12/13/2022] Open
Abstract
Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc(-/-)) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs.
Collapse
|