1
|
Wang D, Booth JL, Wu W, Kiger N, Lettow M, Bates A, Pan C, Metcalf J, Schroeder SJ. Nanopore Direct RNA Sequencing Reveals Virus-Induced Changes in the Transcriptional Landscape in Human Bronchial Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600852. [PMID: 38979243 PMCID: PMC11230378 DOI: 10.1101/2024.06.26.600852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Direct RNA nanopore sequencing reveals changes in gene expression, polyadenylation, splicing, m6A methylation, and pseudouridylation in response to influenza virus exposure in primary human bronchial epithelial cells. This study focuses on the epitranscriptomic profile of genes in the host immune response. In addition to polyadenylated noncoding RNA, we purified and sequenced nonpolyadenylated noncoding RNA and observed changes in expression, N6-methyl-adenosine (m6A), and pseudouridylation (Ψ) in these novel RNA. Two recently discovered lincRNA with roles in immune response, Chaserr and LEADR , became highly methylated in response to influenza exposure. Several H/ACA type snoRNAs that guide pseudouridylation are decreased in expression in response to influenza, and there is a corresponding decrease in the pseudouridylation of two novel lncRNA. Thus, novel epitranscriptomic changes revealed by direct RNA sequencing with nanopore technology provides unique insights into the host epitranscriptomic changes in epithelial gene networks that respond to influenza virus infection.
Collapse
|
2
|
Tsukamoto Y, Igarashi M, Kato H. Targeting cap1 RNA methyltransferases as an antiviral strategy. Cell Chem Biol 2024; 31:86-99. [PMID: 38091983 DOI: 10.1016/j.chembiol.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Methylation is one of the critical modifications that regulates numerous biological processes. Guanine capping and methylation at the 7th position (m7G) have been shown to mature mRNA for increased RNA stability and translational efficiency. The m7G capped cap0 RNA remains immature and requires additional methylation at the first nucleotide (N1-2'-O-Me), designated as cap1, to achieve full maturation. This cap1 RNA with N1-2'-O-Me prevents its recognition by innate immune sensors as non-self. Viruses have also evolved various strategies to produce self-like capped RNAs with the N1-2'-O-Me that potentially evades the antiviral response and establishes an efficient replication. In this review, we focus on the importance of the presence of N1-2'-O-Me in viral RNAs and discuss the potential for drug development by targeting host and viral N1-2'-O-methyltransferases.
Collapse
Affiliation(s)
- Yuta Tsukamoto
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
3
|
Gaucherand L, Iyer A, Gilabert I, Rycroft CH, Gaglia MM. Cut site preference allows influenza A virus PA-X to discriminate between host and viral mRNAs. Nat Microbiol 2023; 8:1304-1317. [PMID: 37349586 PMCID: PMC10690756 DOI: 10.1038/s41564-023-01409-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/10/2023] [Indexed: 06/24/2023]
Abstract
Many viruses block host gene expression to take over the infected cell. This process, termed host shutoff, is thought to promote viral replication by preventing antiviral responses and redirecting cellular resources to viral processes. Several viruses from divergent families accomplish host shutoff through RNA degradation by endoribonucleases. However, viruses also need to ensure expression of their own genes. The influenza A virus endoribonuclease PA-X solves this problem by sparing viral mRNAs and some host RNAs necessary for viral replication. To understand how PA-X distinguishes between RNAs, we characterized PA-X cut sites transcriptome-wide using 5' rapid amplification of complementary DNA ends coupled to high-throughput sequencing. This analysis, along with RNA structure predictions and validation experiments using reporters, shows that PA-Xs from multiple influenza strains preferentially cleave RNAs at GCUG tetramers in hairpin loops. Importantly, GCUG tetramers are enriched in the human but not the influenza transcriptome. Moreover, optimal PA-X cut sites inserted in the influenza A virus genome are quickly selected against during viral replication in cells. This finding suggests that PA-X evolved these cleavage characteristics to preferentially target host over viral mRNAs in a manner reminiscent of cellular self versus non-self discrimination.
Collapse
Affiliation(s)
- Lea Gaucherand
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Amrita Iyer
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Isabel Gilabert
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Chris H Rycroft
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Mathematics, University of Wisconsin-Madison, Madison, WI, USA
| | - Marta M Gaglia
- Program in Molecular Microbiology, Tufts University Graduate School of Biomedical Sciences, Boston, MA, USA.
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA.
- Institute for Molecular Virology and Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
4
|
Whelan M, Pelchat M. Role of RNA Polymerase II Promoter-Proximal Pausing in Viral Transcription. Viruses 2022; 14:v14092029. [PMID: 36146833 PMCID: PMC9503719 DOI: 10.3390/v14092029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
The promoter-proximal pause induced by the binding of the DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) to RNAP II is a key step in the regulation of metazoan gene expression. It helps maintain a permissive chromatin landscape and ensures a quick transcriptional response from stimulus-responsive pathways such as the innate immune response. It is also involved in the biology of several RNA viruses such as the human immunodeficiency virus (HIV), the influenza A virus (IAV) and the hepatitis delta virus (HDV). HIV uses the pause as one of its mechanisms to enter and maintain latency, leading to the creation of viral reservoirs resistant to antiretrovirals. IAV, on the other hand, uses the pause to acquire the capped primers necessary to initiate viral transcription through cap-snatching. Finally, the HDV RNA genome is transcribed directly by RNAP II and requires the small hepatitis delta antigen to displace NELF from the polymerase and overcome the transcriptional block caused by RNAP II promoter-proximal pausing. In this review, we will discuss the RNAP II promoter-proximal pause and the roles it plays in the life cycle of RNA viruses such as HIV, IAV and HDV.
Collapse
|
5
|
Tay DJW, Lew ZZR, Chu JJH, Tan KS. Uncovering Novel Viral Innate Immune Evasion Strategies: What Has SARS-CoV-2 Taught Us? Front Microbiol 2022; 13:844447. [PMID: 35401477 PMCID: PMC8984613 DOI: 10.3389/fmicb.2022.844447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic has tested the capabilities of public health and scientific community. Since the dawn of the twenty-first century, viruses have caused several outbreaks, with coronaviruses being responsible for 2: SARS-CoV in 2007 and MERS-CoV in 2013. As the border between wildlife and the urban population continue to shrink, it is highly likely that zoonotic viruses may emerge more frequently. Furthermore, it has been shown repeatedly that these viruses are able to efficiently evade the innate immune system through various strategies. The strong and abundant antiviral innate immunity evasion strategies shown by SARS-CoV-2 has laid out shortcomings in our approach to quickly identify and modulate these mechanisms. It is thus imperative that there be a systematic framework for the study of the immune evasion strategies of these viruses, to guide development of therapeutics and curtail transmission. In this review, we first provide a brief overview of general viral evasion strategies against the innate immune system. Then, we utilize SARS-CoV-2 as a case study to highlight the methods used to identify the mechanisms of innate immune evasion, and pinpoint the shortcomings in the current paradigm with its focus on overexpression and protein-protein interactions. Finally, we provide a recommendation for future work to unravel viral innate immune evasion strategies and suitable methods to aid in the study of virus-host interactions. The insights provided from this review may then be applied to other viruses with outbreak potential to remain ahead in the arms race against viral diseases.
Collapse
Affiliation(s)
- Douglas Jie Wen Tay
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhe Zhang Ryan Lew
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kai Sen Tan
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- *Correspondence: Kai Sen Tan,
| |
Collapse
|
6
|
de Rozières CM, Pequeno A, Shahabi S, Lucas TM, Godula K, Ghosh G, Joseph S. PABP1 Drives the Selective Translation of Influenza A Virus mRNA. J Mol Biol 2022; 434:167460. [PMID: 35074482 PMCID: PMC8897273 DOI: 10.1016/j.jmb.2022.167460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
Abstract
Influenza A virus (IAV) is a human-infecting pathogen with a history of causing seasonal epidemics and on several occasions worldwide pandemics. Infection by IAV causes a dramatic decrease in host mRNA translation, whereas viral mRNAs are efficiently translated. The IAV mRNAs have a highly conserved 5'-untranslated region (5'UTR) that is rich in adenosine residues. We show that the human polyadenylate binding protein 1 (PABP1) binds to the 5'UTR of the viral mRNAs. The interaction of PABP1 with the viral 5'UTR makes the translation of viral mRNAs more resistant to canonical cap-dependent translation inhibition than model mRNAs. Additionally, PABP1 bound to the viral 5'UTR can recruit eIF4G in an eIF4E-independent manner. These results indicate that PABP1 bound to the viral 5'UTR may promote eIF4E-independent translation initiation.
Collapse
Affiliation(s)
- Cyrus M de Rozières
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Alberto Pequeno
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Shandy Shahabi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Taryn M Lucas
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA.
| |
Collapse
|
7
|
Weis S, te Velthuis AJW. Influenza Virus RNA Synthesis and the Innate Immune Response. Viruses 2021; 13:v13050780. [PMID: 33924859 PMCID: PMC8146608 DOI: 10.3390/v13050780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 12/25/2022] Open
Abstract
Infection with influenza A and B viruses results in a mild to severe respiratory tract infection. It is widely accepted that many factors affect the severity of influenza disease, including viral replication, host adaptation, innate immune signalling, pre-existing immunity, and secondary infections. In this review, we will focus on the interplay between influenza virus RNA synthesis and the detection of influenza virus RNA by our innate immune system. Specifically, we will discuss the generation of various RNA species, host pathogen receptors, and host shut-off. In addition, we will also address outstanding questions that currently limit our knowledge of influenza virus replication and host adaption. Understanding the molecular mechanisms underlying these factors is essential for assessing the pandemic potential of future influenza virus outbreaks.
Collapse
|
8
|
Dai H, Gu W. Small RNA Plays Important Roles in Virus-Host Interactions. Viruses 2020; 12:E1271. [PMID: 33171824 PMCID: PMC7695165 DOI: 10.3390/v12111271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/30/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Non-coding small RNAs play important roles in virus-host interactions. For hosts, small RNAs can serve as sensors in antiviral pathways including RNAi and CRISPR; for viruses, small RNAs can be involved in viral transcription and replication. This paper covers several recent discoveries on small RNA mediated virus-host interactions, and focuses on influenza virus cap-snatching and a few important virus sensors including PIR-1, RIG-I like protein DRH-1 and piRNAs. The paper also discusses recent advances in mammalian antiviral RNAi.
Collapse
Affiliation(s)
| | - Weifeng Gu
- Department of Molecular, Cell and Systems Biology, University of California, Riverside 900 University Avenue, Riverside, CA 92521, USA;
| |
Collapse
|
9
|
Li L, Dai H, Nguyen AP, Hai R, Gu W. Influenza A virus utilizes noncanonical cap-snatching to diversify its mRNA/ncRNA. RNA (NEW YORK, N.Y.) 2020; 26:1170-1183. [PMID: 32444459 PMCID: PMC7430677 DOI: 10.1261/rna.073866.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Influenza A virus (IAV) utilizes cap-snatching to obtain host capped small RNAs for priming viral mRNA synthesis, generating capped hybrid mRNAs for translation. Previous studies have been focusing on canonical cap-snatching, which occurs at the very 5' end of viral mRNAs. Here we discovered noncanonical cap-snatching, which generates capped hybrid mRNAs/noncoding RNAs mapped to the region ∼300 nucleotides (nt) upstream of each mRNA 3' end, and to the 5' region, primarily starting at the second nt, of each virion RNAs (vRNA). Like canonical cap-snatching, noncanonical cap-snatching utilizes a base-pairing between the last nt G of host capped RNAs and a nt C of template RNAs to prime RNA synthesis. However, the nt upstream of this template C is usually A/U rather than just U; prime-realignment occurs less frequently. We also demonstrate that IAV can snatch capped IAV RNAs in addition to host RNAs. Noncanonical cap-snatching likely generates novel mRNAs with start AUG encoded in viral or host RNAs. These findings expand our understanding of cap-snatching mechanisms and suggest that IAV may utilize noncanonical cap-snatching to diversify its mRNAs/ncRNAs.
Collapse
Affiliation(s)
- Lichao Li
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521, USA
| | - Hui Dai
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521, USA
| | - An-Phong Nguyen
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521, USA
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California, Riverside, California 92521, USA
| | - Weifeng Gu
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
10
|
Jones R, Lessoued S, Meier K, Devignot S, Barata-García S, Mate M, Bragagnolo G, Weber F, Rosenthal M, Reguera J. Structure and function of the Toscana virus cap-snatching endonuclease. Nucleic Acids Res 2020; 47:10914-10930. [PMID: 31584100 PMCID: PMC6847833 DOI: 10.1093/nar/gkz838] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 12/03/2022] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne human pathogen responsible for seasonal outbreaks of fever and meningoencephalitis in the Mediterranean basin. TOSV is a segmented negative-strand RNA virus (sNSV) that belongs to the genus phlebovirus (family Phenuiviridae, order Bunyavirales), encompassing other important human pathogens such as Rift Valley fever virus (RVFV). Here, we carried out a structural and functional characterization of the TOSV cap-snatching endonuclease, an N terminal domain of the viral polymerase (L protein) that provides capped 3′OH primers for transcription. We report TOSV endonuclease crystal structures in the apo form, in complex with a di-ketoacid inhibitor (DPBA) and in an intermediate state of inhibitor release, showing details on substrate binding and active site dynamics. The structure reveals substantial folding rearrangements absent in previously reported cap-snatching endonucleases. These include the relocation of the N terminus and the appearance of new structural motifs important for transcription and replication. The enzyme shows high activity rates comparable to other His+ cap-snatching endonucleases. Moreover, the activity is dependent on conserved residues involved in metal ion and substrate binding. Altogether, these results bring new light on the structure and function of cap-snatching endonucleases and pave the way for the development of specific and broad-spectrum antivirals.
Collapse
Affiliation(s)
- Rhian Jones
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Sana Lessoued
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | - Kristina Meier
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany
| | - Stéphanie Devignot
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | | | - Maria Mate
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France
| | | | - Friedemann Weber
- Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University, D-35392 Giessen, Germany
| | - Maria Rosenthal
- Bernhard Nocht Institute for Tropical Medicine, Department of Virology, D-20359 Hamburg, Germany
| | - Juan Reguera
- Aix-Marseille Université, CNRS, AFMB UMR 7257, 13288 Marseille, France.,INSERM, AFMB UMR7257,13288 Marseille, France
| |
Collapse
|
11
|
Comprehensive Characterization of Transcriptional Activity during Influenza A Virus Infection Reveals Biases in Cap-Snatching of Host RNA Sequences. J Virol 2020; 94:JVI.01720-19. [PMID: 32161175 PMCID: PMC7199409 DOI: 10.1128/jvi.01720-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/10/2020] [Indexed: 12/22/2022] Open
Abstract
Infection with influenza A virus (IAV) infection is responsible for an estimated 500,000 deaths and up to 5 million cases of severe respiratory illness each year. In this study, we looked at human primary immune cells (macrophages) infected with IAV. Our method allows us to look at both the host and the virus in parallel. We used these data to explore a process known as “cap-snatching,” where IAV snatches a short nucleotide sequence from capped host RNA. This process was believed to be random. We demonstrate biased snatching of numerous host RNAs, including those associated with snRNA transcription, and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then describe the transcriptional landscape of the host response to IAV, observing new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments. Macrophages in the lung detect and respond to influenza A virus (IAV), determining the nature of the immune response. Using terminal-depth cap analysis of gene expression (CAGE), we quantified transcriptional activity of both host and pathogen over a 24-h time course of IAV infection in primary human monocyte-derived macrophages (MDMs). This method allowed us to observe heterogenous host sequences incorporated into IAV mRNA, “snatched” 5′ RNA caps, and corresponding RNA sequences from host RNAs. In order to determine whether cap-snatching is random or exhibits a bias, we systematically compared host sequences incorporated into viral mRNA (“snatched”) against a complete survey of all background host RNA in the same cells, at the same time. Using a computational strategy designed to eliminate sources of bias due to read length, sequencing depth, and multimapping, we were able to quantify overrepresentation of host RNA features among the sequences that were snatched by IAV. We demonstrate biased snatching of numerous host RNAs, particularly small nuclear RNAs (snRNAs), and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then used a systems approach to describe the transcriptional landscape of the host response to IAV, observing many new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments. IMPORTANCE Infection with influenza A virus (IAV) infection is responsible for an estimated 500,000 deaths and up to 5 million cases of severe respiratory illness each year. In this study, we looked at human primary immune cells (macrophages) infected with IAV. Our method allows us to look at both the host and the virus in parallel. We used these data to explore a process known as “cap-snatching,” where IAV snatches a short nucleotide sequence from capped host RNA. This process was believed to be random. We demonstrate biased snatching of numerous host RNAs, including those associated with snRNA transcription, and avoidance of host transcripts encoding host ribosomal proteins, which are required by IAV for replication. We then describe the transcriptional landscape of the host response to IAV, observing new features, including a failure of IAV-treated MDMs to induce feedback inhibitors of inflammation, seen in response to other treatments.
Collapse
|
12
|
Lutz MM, Dunagan MM, Kurebayashi Y, Takimoto T. Key Role of the Influenza A Virus PA Gene Segment in the Emergence of Pandemic Viruses. Viruses 2020; 12:v12040365. [PMID: 32224899 PMCID: PMC7232137 DOI: 10.3390/v12040365] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza A viruses (IAVs) are a significant human pathogen that cause seasonal epidemics and occasional pandemics. Avian waterfowl are the natural reservoir of IAVs, but a wide range of species can serve as hosts. Most IAV strains are adapted to one host species and avian strains of IAV replicate poorly in most mammalian hosts. Importantly, IAV polymerases from avian strains function poorly in mammalian cells but host adaptive mutations can restore activity. The 2009 pandemic H1N1 (H1N1pdm09) virus acquired multiple mutations in the PA gene that activated polymerase activity in mammalian cells, even in the absence of previously identified host adaptive mutations in other polymerase genes. These mutations in PA localize within different regions of the protein suggesting multiple mechanisms exist to activate polymerase activity. Additionally, an immunomodulatory protein, PA-X, is expressed from the PA gene segment. PA-X expression is conserved amongst many IAV strains but activity varies between viruses specific for different hosts, suggesting that PA-X also plays a role in host adaptation. Here, we review the role of PA in the emergence of currently circulating H1N1pdm09 viruses and the most recent studies of host adaptive mutations in the PA gene that modulate polymerase activity and PA-X function.
Collapse
Affiliation(s)
- Michael M. Lutz
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
| | - Megan M. Dunagan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
| | - Yuki Kurebayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi 422-8526, Japan
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA (M.M.D.); (Y.K.)
- Correspondence: ; Tel.: +1-585-273-2856
| |
Collapse
|
13
|
De Vlugt C, Sikora D, Rocheleau L, Pelchat M. Priming and realignment by the influenza a virus RdRp is dependent on the length of the host primers and the extent of base pairing to viral RNA. Virology 2019; 536:91-100. [PMID: 31404845 DOI: 10.1016/j.virol.2019.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 11/25/2022]
Abstract
Initiation of influenza A virus (IAV) transcription depends on RNA primers derived from host RNAs. During this process, some primers are elongated by a few nucleotides, realigned on the viral RNA templates (vRNA), and then used to initiate another round of transcription. Here, we used information on the host primers used by four IAV strains and four mini-replicons to investigate the characteristics of primer undergoing priming and realignment. We report that primers are biased towards this mechanism on the basis of length and RNA duplex stability with the vRNA templates. Priming and realignment results in primers three nucleotides longer, ending in a nucleotide sequence able to base pair with the 3' end of the vRNA template. By acting on primers based on length and sequence compatibility with the 3' end of the vRNA, priming and realignment rescues suboptimal primers, converting them into ones that can efficiently initiate transcription.
Collapse
Affiliation(s)
- Corey De Vlugt
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Dorota Sikora
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada.
| |
Collapse
|
14
|
Walker AP, Fodor E. Interplay between Influenza Virus and the Host RNA Polymerase II Transcriptional Machinery. Trends Microbiol 2019; 27:398-407. [PMID: 30642766 PMCID: PMC6467242 DOI: 10.1016/j.tim.2018.12.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/30/2018] [Accepted: 12/20/2018] [Indexed: 12/12/2022]
Abstract
The influenza virus RNA-dependent RNA polymerase (RdRP) cleaves the 5' end of nascent capped host RNAs and uses the capped RNA fragment to prime viral transcription in a mechanism called 'cap snatching'. Cap snatching requires an intimate association between influenza RdRP and cellular RNA polymerase II (Pol II), which is the source of nascent capped host RNAs targeted by influenza virus. Recent structural studies have revealed how influenza RdRP binds to Pol II and how this binding promotes the initiation of viral transcription by influenza RdRP. In this review we focus on these recent insights into the mechanism of cap snatching by influenza virus and the impact of cap snatching on host gene expression during influenza virus infection.
Collapse
Affiliation(s)
- Alexander P Walker
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
15
|
De Vlugt C, Sikora D, Pelchat M. Insight into Influenza: A Virus Cap-Snatching. Viruses 2018; 10:v10110641. [PMID: 30453478 PMCID: PMC6266781 DOI: 10.3390/v10110641] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 12/27/2022] Open
Abstract
The influenza A virus (IAV) genome consists of eight single-stranded RNA segments. Each segment is associated with a protein complex, with the 3′ and 5′ ends bound to the RNA-dependent RNA polymerase (RdRp) and the remainder associated with the viral nucleoprotein. During transcription of viral mRNA, this ribonucleoprotein complex steals short, 5′-capped transcripts produced by the cellular DNA dependent RNA polymerase II (RNAPII) and uses them to prime transcription of viral mRNA. Here, we review the current knowledge on the process of IAV cap-snatching and suggest a requirement for RNAPII promoter-proximal pausing for efficient IAV mRNA transcription.
Collapse
Affiliation(s)
- Corey De Vlugt
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Dorota Sikora
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
16
|
Initiation, Elongation, and Realignment during Influenza Virus mRNA Synthesis. J Virol 2018; 92:JVI.01775-17. [PMID: 29142123 PMCID: PMC5774887 DOI: 10.1128/jvi.01775-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/03/2017] [Indexed: 01/15/2023] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of the influenza A virus replicates and transcribes the viral genome segments in the nucleus of the host cell. To transcribe these viral genome segments, the RdRp “snatches” capped RNA oligonucleotides from nascent host cell mRNAs and aligns these primers to the ultimate or penultimate nucleotide of the segments for the initiation of viral mRNA synthesis. It has been proposed that this initiation process is not processive and that the RdRp uses a prime-realign mechanism during transcription. Here we provide in vitro evidence for the existence of this transcriptional prime-realign mechanism but show that it functions efficiently only for primers that are short or cannot stably base pair with the template. In addition, we demonstrate that transcriptional elongation is dependent on the priming loop of the PB1 subunit of the RdRp. We propose that the prime-realign mechanism may be used to rescue abortive transcription initiation events or cope with sequence variation among primers. Overall, these observations advance our mechanistic understanding of how influenza A virus initiates transcription correctly and efficiently. IMPORTANCE Influenza A virus causes severe disease in humans and is considered a major global health threat. The virus replicates and transcribes its genome by using an enzyme called the RNA polymerase. To ensure that the genome is amplified faithfully and abundant viral mRNAs are made for viral protein synthesis, the viral RNA polymerase must transcribe the viral genome efficiently. In this report, we characterize a structure inside the polymerase that contributes to the efficiency of viral mRNA synthesis.
Collapse
|
17
|
Abstract
Influenza is a negative-sense single-stranded RNA virus with segmented genome. Each segment is encapsidated by a ribonucleoprotein (RNP) complex composed of RNA-dependent RNA polymerase (RdRP) and multiple copies of nucleoprotein (NP). The RNP complex plays a crucial role in viral life cycle, supporting and regulating transcription and replication of viral genome in infected cells. The structural characterization of RdRP and RNP in recent years has shed light on its functions and mechanism of action. In this review, we summarize current understanding on the structure of RNP complex, as well as the structure of each subunit. Crucial functions of RNP are also discussed.
Collapse
Affiliation(s)
- Chun-Yeung Lo
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| | - Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China.
| |
Collapse
|
18
|
Lin W, Qiu P, Jin J, Liu S, Ul Islam S, Yang J, Zhang J, Kormelink R, Du Z, Wu Z. The Cap Snatching of Segmented Negative Sense RNA Viruses as a Tool to Map the Transcription Start Sites of Heterologous Co-infecting Viruses. Front Microbiol 2017; 8:2519. [PMID: 29312219 PMCID: PMC5735111 DOI: 10.3389/fmicb.2017.02519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023] Open
Abstract
Identification of the transcription start sites (TSSs) of a virus is of great importance to understand and dissect the mechanism of viral genome transcription but this often requires costly and laborious experiments. Many segmented negative-sense RNA viruses (sNSVs) cleave capped leader sequences from a large variety of mRNAs and use these cleaved leaders as primers for transcription in a conserved process called cap snatching. The recent developments in high-throughput sequencing have made it possible to determine most, if not all, of the capped RNAs snatched by a sNSV. Here, we show that rice stripe tenuivirus (RSV), a plant-infecting sNSV, co-infects Nicotiana benthamiana with two different begomoviruses and snatches capped leader sequences from their mRNAs. By determining the 5' termini of a single RSV mRNA with high-throughput sequencing, the 5' ends of almost all the mRNAs of the co-infecting begomoviruses could be identified and mapped on their genomes. The findings in this study provide support for the using of the cap snatching of sNSVs as a tool to map viral TSSs.
Collapse
Affiliation(s)
- Wenzhong Lin
- Fujian Province Key Laboratory of Plant Virology, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ping Qiu
- Fujian Province Key Laboratory of Plant Virology, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Jin
- Fujian Province Key Laboratory of Plant Virology, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shunmin Liu
- Fujian Province Key Laboratory of Plant Virology, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Saif Ul Islam
- Fujian Province Key Laboratory of Plant Virology, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinguang Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jie Zhang
- Fujian Province Key Laboratory of Plant Virology, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research Centre, Wageningen, Netherlands
| | - Zhenguo Du
- Fujian Province Key Laboratory of Plant Virology, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, China
| |
Collapse
|
19
|
Rice Stripe Tenuivirus Has a Greater Tendency To Use the Prime-and-Realign Mechanism in Transcription of Genomic than in Transcription of Antigenomic Template RNAs. J Virol 2017; 92:JVI.01414-17. [PMID: 29046442 DOI: 10.1128/jvi.01414-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/04/2017] [Indexed: 01/06/2023] Open
Abstract
Most segmented negative-sense RNA viruses employ a process termed cap snatching, during which they snatch capped RNA leaders from host cellular mRNAs and use the snatched leaders as primers for transcription, leading to the synthesis of viral mRNAs with 5' heterogeneous sequences (HSs). With traditional methods, only a few HSs can be determined, and identification of their donors is difficult. Here, the mRNA 5' ends of Rice stripe tenuivirus (RSV) and Rice grassy stunt tenuivirus (RGSV) and those of their host rice were determined by high-throughput sequencing. Millions of tenuiviral HSs were obtained, and a large number of them mapped to the 5' ends of corresponding host cellular mRNAs. Repeats of the dinucleotide AC, which are complementary to the U1G2 of the tenuiviral template 3'-U1G2U3G4UUUCG, were found to be prevalent at the 3' termini of tenuiviral HSs. Most of these ACs did not match host cellular mRNAs, supporting the idea that tenuiviruses use the prime-and-realign mechanism during cap snatching. We previously reported a greater tendency of RSV than RGSV to use the prime-and-realign mechanism in transcription with leaders cap snatched from a coinfecting reovirus. Besides confirming this observation in natural tenuiviral infections, the data here additionally reveal that RSV has a greater tendency to use this mechanism in transcribing genomic than in transcribing antigenomic templates. The data also suggest that tenuiviruses cap snatch host cellular mRNAs from translation- and photosynthesis-related genes, and capped RNA leaders snatched by tenuiviruses base pair with U1/U3 or G2/G4 of viral templates. These results provide unprecedented insights into the cap-snatching process of tenuiviruses.IMPORTANCE Many segmented negative-sense RNA viruses (segmented NSVs) are medically or agriculturally important pathogens. The cap-snatching process is a promising target for the development of antiviral strategies against this group of viruses. However, many details of this process remain poorly characterized. Tenuiviruses constitute a genus of agriculturally important segmented NSVs, several members of which are major viral pathogens of rice. Here, we for the first time adopted a high-throughput sequencing strategy to determine the 5' heterogeneous sequences (HSs) of tenuiviruses and mapped them to host cellular mRNAs. Besides providing deep insights into the cap snatching of tenuiviruses, the data obtained provide clear evidence to support several previously proposed models regarding cap snatching. Curiously and importantly, the data here reveal that not only different tenuiviruses but also the same tenuivirus synthesizing different mRNAs use the prime-and-realign mechanism with different tendencies during their cap snatching.
Collapse
|
20
|
Harwig A, Landick R, Berkhout B. The Battle of RNA Synthesis: Virus versus Host. Viruses 2017; 9:v9100309. [PMID: 29065472 PMCID: PMC5691660 DOI: 10.3390/v9100309] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Transcription control is the foundation of gene regulation. Whereas a cell is fully equipped for this task, viruses often depend on the host to supply tools for their transcription program. Over the course of evolution and adaptation, viruses have found diverse ways to optimally exploit cellular host processes such as transcription to their own benefit. Just as cells are increasingly understood to employ nascent RNAs in transcription regulation, recent discoveries are revealing how viruses use nascent RNAs to benefit their own gene expression. In this review, we first outline the two different transcription programs used by viruses, i.e., transcription (DNA-dependent) and RNA-dependent RNA synthesis. Subsequently, we use the distinct stages (initiation, elongation, termination) to describe the latest insights into nascent RNA-mediated regulation in the context of each relevant stage.
Collapse
Affiliation(s)
- Alex Harwig
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Amroun A, Priet S, Querat G. Toscana virus cap-snatching and initiation of transcription. J Gen Virol 2017; 98:2676-2688. [PMID: 29022865 DOI: 10.1099/jgv.0.000941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toscana virus (TOSV) is an arthropod-borne phlebovirus within the family Phenuiviridae in the order Bunyavirales. It seems to be an important agent of human meningoencephalitis in the warm season in the Mediterranean area. Because the polymerase of Bunyavirales lacks a capping activity, it cleaves short-capped RNA leaders derived from the host cell, and uses them to initiate viral mRNA synthesis. To determine the size and nucleotide composition of the host-derived RNA leaders, and to elucidate the first steps of TOSV transcription initiation, we performed a high-throughput sequencing of the 5' end of TOSV mRNAs in infected cells at different times post-infection. Our results indicated that the viral polymerase cleaved the host-capped RNA leaders within a window of 11-16 nucleotides. A single population of cellular mRNAs could be cleaved at different sites to prime the synthesis of several viral mRNA species. The majority of the mRNA resulted from direct priming, but we observed mRNAs resulting from several rounds of prime-and-realign events. Our data suggest that the different rounds of the prime-and-realign mechanism result from the blocking of the template strand in a static position in the active site, leading to the slippage of the nascent strand by two nucleotides when the growing duplex is sorted out from the active site. To minimize this rate-limiting step, TOSV polymerase cleaves preferentially capped RNA leaders after GC, so as to greatly reduce the number of cycles of priming and realignment, and facilitate the separation of the growing duplex.
Collapse
Affiliation(s)
- Abdennour Amroun
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Stéphane Priet
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| | - Gilles Querat
- UMR 'Emergence des Pathologies Virales' (EPV: Aix-Marseille Université - IRD 190 - Inserm 1207 - EHESP - IHU Méditerranée Infection), Marseille, France
| |
Collapse
|
22
|
Sikora D, Rocheleau L, Brown EG, Pelchat M. Influenza A virus cap-snatches host RNAs based on their abundance early after infection. Virology 2017. [PMID: 28646652 DOI: 10.1016/j.virol.2017.06.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The influenza A virus RNA polymerase cleaves the 5' ends of host RNAs and uses these RNA fragments as primers for viral mRNA synthesis. We performed deep sequencing of the 5' host-derived ends of the eight viral mRNAs of influenza A/Puerto Rico/8/1934 (H1N1) virus in infected A549 cells, and compared the population to those of A/Hong Kong/1/1968 (H3N2) and A/WSN/1933 (H1N1). In the three strains, the viral RNAs target different populations of host RNAs. Host RNAs are cap-snatched based on their abundance, and we found that RNAs encoding proteins involved in metabolism are overrepresented in the cap-snatched populations. Because this overrepresentation could be a reflection of the host response early after infection, and thus of the increased availability of these transcripts, our results suggest that host RNAs are cap-snatched mainly based on their abundance without preferential targeting.
Collapse
Affiliation(s)
- Dorota Sikora
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Lynda Rocheleau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Earl G Brown
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5.
| |
Collapse
|
23
|
Ali R, Blackburn RM, Kozlakidis Z. Next-Generation Sequencing and Influenza Virus: A Short Review of the Published Implementation Attempts. HAYATI JOURNAL OF BIOSCIENCES 2016. [DOI: 10.1016/j.hjb.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
|
24
|
Stevaert A, Naesens L. The Influenza Virus Polymerase Complex: An Update on Its Structure, Functions, and Significance for Antiviral Drug Design. Med Res Rev 2016; 36:1127-1173. [PMID: 27569399 PMCID: PMC5108440 DOI: 10.1002/med.21401] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/18/2016] [Accepted: 06/24/2016] [Indexed: 12/11/2022]
Abstract
Influenza viruses cause seasonal epidemics and pandemic outbreaks associated with significant morbidity and mortality, and a huge cost. Since resistance to the existing anti‐influenza drugs is rising, innovative inhibitors with a different mode of action are urgently needed. The influenza polymerase complex is widely recognized as a key drug target, given its critical role in virus replication and high degree of conservation among influenza A (of human or zoonotic origin) and B viruses. We here review the major progress that has been made in recent years in unravelling the structure and functions of this protein complex, enabling structure‐aided drug design toward the core regions of the PA endonuclease, PB1 polymerase, or cap‐binding PB2 subunit. Alternatively, inhibitors may target a protein–protein interaction site, a cellular factor involved in viral RNA synthesis, the viral RNA itself, or the nucleoprotein component of the viral ribonucleoprotein. The latest advances made for these diverse pharmacological targets have yielded agents in advanced (i.e., favipiravir and VX‐787) or early clinical testing, besides several experimental inhibitors in various stages of development, which are all covered here.
Collapse
Affiliation(s)
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven, Leuven, Belgium.
| |
Collapse
|
25
|
Te Velthuis AJW, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol 2016; 14:479-93. [PMID: 27396566 DOI: 10.1038/nrmicro.2016.87] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The genomes of influenza viruses consist of multiple segments of single-stranded negative-sense RNA. Each of these segments is bound by the heterotrimeric viral RNA-dependent RNA polymerase and multiple copies of nucleoprotein, which form viral ribonucleoprotein (vRNP) complexes. It is in the context of these vRNPs that the viral RNA polymerase carries out transcription of viral genes and replication of the viral RNA genome. In this Review, we discuss our current knowledge of the structure of the influenza virus RNA polymerase, and insights that have been gained into the molecular mechanisms of viral transcription and replication, and their regulation by viral and host factors. Furthermore, we discuss how advances in our understanding of the structure and function of polymerases could help in identifying new antiviral targets.
Collapse
Affiliation(s)
- Aartjan J W Te Velthuis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| |
Collapse
|
26
|
Liu X, Xiong G, Qiu P, Du Z, Kormelink R, Zheng L, Zhang J, Ding X, Yang L, Zhang S, Wu Z. Inherent properties not conserved in other tenuiviruses increase priming and realignment cycles during transcription of Rice stripe virus. Virology 2016; 496:287-298. [PMID: 27393974 DOI: 10.1016/j.virol.2016.06.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 11/29/2022]
Abstract
Two tenuiviruses Rice stripe virus (RSV) and Rice grassy stunt virus (RGSV) were found to co-infect rice with the same reovirus Rice ragged stunt virus (RRSV). During the co-infection, both tenuiviruses recruited 10-21 nucleotides sized capped-RNA leaders from the RRSV. A total of 245 and 102 RRSV-RGSV and RRSV-RSV chimeric mRNA clones, respectively, were sequenced. An analysis of the sequences suggested a scenario consistent with previously reported data on related viruses, in which capped leader RNAs having a 3' end complementary to the viral template are preferred and upon base pairing the leaders prime processive transcription directly or after one to several cycles of priming and realignment (repetitive prime-and-realign). Interestingly, RSV appeared to have a higher tendency to use repetitive prime-and-realign than RGSV even with the same leader derived from the same RRSV RNA. Combining with relevant data reported previously, this points towards an intrinsic feature of RSV.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Guihong Xiong
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ping Qiu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhenguo Du
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Luping Zheng
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xinlun Ding
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Liang Yang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Songbai Zhang
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zujian Wu
- Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
27
|
RNA-Free and Ribonucleoprotein-Associated Influenza Virus Polymerases Directly Bind the Serine-5-Phosphorylated Carboxyl-Terminal Domain of Host RNA Polymerase II. J Virol 2016; 90:6014-6021. [PMID: 27099314 PMCID: PMC4907247 DOI: 10.1128/jvi.00494-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/13/2016] [Indexed: 11/20/2022] Open
Abstract
Influenza viruses subvert the transcriptional machinery of their hosts to synthesize their own viral mRNA. Ongoing transcription by cellular RNA polymerase II (Pol II) is required for viral mRNA synthesis. By a process known as cap snatching, the virus steals short 5′ capped RNA fragments from host capped RNAs and uses them to prime viral transcription. An interaction between the influenza A virus RNA polymerase and the C-terminal domain (CTD) of the large subunit of Pol II has been established, but the molecular details of this interaction remain unknown. We show here that the influenza virus ribonucleoprotein (vRNP) complex binds to the CTD of transcriptionally engaged Pol II. Furthermore, we provide evidence that the viral polymerase binds directly to the serine-5-phosphorylated form of the Pol II CTD, both in the presence and in the absence of viral RNA, and show that this interaction is conserved in evolutionarily distant influenza viruses. We propose a model in which direct binding of the viral RNA polymerase in the context of vRNPs to Pol II early in infection facilitates cap snatching, while we suggest that binding of free viral polymerase to Pol II late in infection may trigger Pol II degradation. IMPORTANCE Influenza viruses cause yearly epidemics and occasional pandemics that pose a threat to human health, as well as represent a large economic burden to health care systems globally. Existing vaccines are not always effective, as they may not exactly match the circulating viruses. Furthermore, there are a limited number of antivirals available, and development of resistance to these is a concern. New measures to combat influenza are needed, but before they can be developed, it is necessary to better understand the molecular interactions between influenza viruses and their host cells. By providing further insights into the molecular details of how influenza viruses hijack the host transcriptional machinery, we aim to uncover novel targets for the development of antivirals.
Collapse
|
28
|
Gu W, Gallagher GR, Dai W, Liu P, Li R, Trombly MI, Gammon DB, Mello CC, Wang JP, Finberg RW. Influenza A virus preferentially snatches noncoding RNA caps. RNA (NEW YORK, N.Y.) 2015; 21:2067-2075. [PMID: 26428694 PMCID: PMC4647461 DOI: 10.1261/rna.054221.115] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 06/05/2023]
Abstract
Influenza A virus (IAV) lacks the enzyme for adding 5' caps to its RNAs and snatches the 5' ends of host capped RNAs to prime transcription. Neither the preference of the host RNA sequences snatched nor the effect of cap-snatching on host processes is completely defined. Previous studies of influenza cap-snatching used poly(A)-selected RNAs from infected cells or relied on annotated host genes to define the snatched host RNAs, and thus lack details on many noncoding host RNAs including snRNAs, snoRNAs, and promoter-associated capped small (cs)RNAs, which are made by "paused" Pol II during transcription initiation. In this study, we used a nonbiased technique, CapSeq, to identify host and viral-capped RNAs including nonpolyadenylated RNAs in the same samples, and investigated the substrate-product correlation between the host RNAs and the viral RNAs. We demonstrated that noncoding host RNAs, particularly U1 and U2, are the preferred cap-snatching source over mRNAs or pre-mRNAs. We also found that csRNAs are highly snatched by IAV. Because the functions of csRNAs remain mostly unknown, especially in somatic cells, our finding reveals that csRNAs at least play roles in the process of IAV infection. Our findings support a model where nascent RNAs including csRNAs are the preferred targets for cap-snatching by IAV and raise questions about how IAV might use snatching preferences to modulate host-mRNA splicing and transcription.
Collapse
MESH Headings
- Base Sequence
- Cell Line, Tumor
- Gene Expression Regulation, Viral
- Genes, Viral
- Humans
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/metabolism
- RNA Caps/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
Collapse
Affiliation(s)
- Weifeng Gu
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | - Glen R Gallagher
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Weiwei Dai
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ping Liu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Ruidong Li
- Department of Cell Biology and Neuroscience, University of California, Riverside, California 92521, USA
| | - Melanie I Trombly
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Don B Gammon
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Craig C Mello
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Jennifer P Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Robert W Finberg
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
29
|
A Nucleolar Protein, Ribosomal RNA Processing 1 Homolog B (RRP1B), Enhances the Recruitment of Cellular mRNA in Influenza Virus Transcription. J Virol 2015; 89:11245-55. [PMID: 26311876 DOI: 10.1128/jvi.01487-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/21/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Influenza A virus (IAV) undergoes RNA transcription by a unique capped-mRNA-dependent transcription, which is carried out by the viral RNA-dependent RNA polymerase (RdRp), consisting of the viral PA, PB1, and PB2 proteins. However, how the viral RdRp utilizes cellular factors for virus transcription is not clear. Previously, we conducted a genome-wide pooled short hairpin RNA (shRNA) screen to identify host factors important for influenza A virus replication. Ribosomal RNA processing 1 homolog B (RRP1B) was identified as one of the candidates. RRP1B is a nucleolar protein involved in ribosomal biogenesis. Upon IAV infection, part of RRP1B was translocated from the nucleolus to the nucleoplasm, where viral RNA synthesis likely takes place. The depletion of RRP1B significantly reduced IAV mRNA transcription in a minireplicon assay and in virus-infected cells. Furthermore, we showed that RRP1B interacted with PB1 and PB2 of the RdRp and formed a coimmunoprecipitable complex with RdRp. The depletion of RRP1B reduced the amount of capped mRNA in the RdRp complex. Taken together, these findings indicate that RRP1B is a host factor essential for IAV transcription and provide a target for new antivirals. IMPORTANCE Influenza virus is an important human pathogen that causes significant morbidity and mortality and threatens the human population with epidemics and pandemics every year. Due to the high mutation rate of the virus, antiviral drugs targeting viral proteins might ultimately lose their effectiveness. An alternative strategy that explores the genetic stability of host factors indispensable for influenza virus replication would thus be desirable. Here, we characterized the rRNA processing 1 homolog B (RRP1B) protein as an important cellular factor for influenza A virus transcription. We showed that silencing RRP1B hampered viral RNA-dependent RNA polymerase (RdRp) activity, which is responsible for virus transcription and replication. Furthermore, we reported that RRP1B is crucial for RdRp binding to cellular capped mRNA, which is a critical step of virus transcription. Our study not only provides a deeper understanding of influenza virus-host interplay, but also suggests a potential target for antiviral drug development.
Collapse
|
30
|
Koppstein D, Ashour J, Bartel DP. Sequencing the cap-snatching repertoire of H1N1 influenza provides insight into the mechanism of viral transcription initiation. Nucleic Acids Res 2015; 43:5052-64. [PMID: 25901029 PMCID: PMC4446424 DOI: 10.1093/nar/gkv333] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/01/2015] [Indexed: 12/15/2022] Open
Abstract
The influenza polymerase cleaves host RNAs ∼10–13 nucleotides downstream of their 5′ ends and uses this capped fragment to prime viral mRNA synthesis. To better understand this process of cap snatching, we used high-throughput sequencing to determine the 5′ ends of A/WSN/33 (H1N1) influenza mRNAs. The sequences provided clear evidence for nascent-chain realignment during transcription initiation and revealed a strong influence of the viral template on the frequency of realignment. After accounting for the extra nucleotides inserted through realignment, analysis of the capped fragments indicated that the different viral mRNAs were each prepended with a common set of sequences and that the polymerase often cleaved host RNAs after a purine and often primed transcription on a single base pair to either the terminal or penultimate residue of the viral template. We also developed a bioinformatic approach to identify the targeted host transcripts despite limited information content within snatched fragments and found that small nuclear RNAs and small nucleolar RNAs contributed the most abundant capped leaders. These results provide insight into the mechanism of viral transcription initiation and reveal the diversity of the cap-snatched repertoire, showing that noncoding transcripts as well as mRNAs are used to make influenza mRNAs.
Collapse
Affiliation(s)
- David Koppstein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA Howard Hughes Medical Institute, Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA
| | - Joseph Ashour
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - David P Bartel
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Whitehead Institute of Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA Howard Hughes Medical Institute, Whitehead Institute of Biomedical Research, Cambridge, MA 02142, USA
| |
Collapse
|
31
|
siRNAs targeting PB2 and NP genes potentially inhibit replication of Highly Pathogenic H5N1 Avian Influenza Virus. J Biosci 2015; 40:233-40. [DOI: 10.1007/s12038-015-9524-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crépin T, Hart D, Lunardi T, Nanao M, Ruigrok RWH, Cusack S. Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 2014; 516:361-6. [PMID: 25409151 DOI: 10.1038/nature14009] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/29/2014] [Indexed: 12/11/2022]
Abstract
Influenza virus polymerase uses a capped primer, derived by 'cap-snatching' from host pre-messenger RNA, to transcribe its RNA genome into mRNA and a stuttering mechanism to generate the poly(A) tail. By contrast, genome replication is unprimed and generates exact full-length copies of the template. Here we use crystal structures of bat influenza A and human influenza B polymerases (FluA and FluB), bound to the viral RNA promoter, to give mechanistic insight into these distinct processes. In the FluA structure, a loop analogous to the priming loop of flavivirus polymerases suggests that influenza could initiate unprimed template replication by a similar mechanism. Comparing the FluA and FluB structures suggests that cap-snatching involves in situ rotation of the PB2 cap-binding domain to direct the capped primer first towards the endonuclease and then into the polymerase active site. The polymerase probably undergoes considerable conformational changes to convert the observed pre-initiation state into the active initiation and elongation states.
Collapse
Affiliation(s)
- Stefan Reich
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Delphine Guilligay
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Alexander Pflug
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Hélène Malet
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Imre Berger
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Thibaut Crépin
- University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Darren Hart
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Thomas Lunardi
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Max Nanao
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Rob W H Ruigrok
- University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stephen Cusack
- 1] European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France [2] University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| |
Collapse
|