1
|
Shen S, Ding B, Yang M, Zhang J, Bai S, Ma S, Zhang L, Dong J, Dong L. Modification of Azo-Aminopyrimidines as Potent Multitarget Inhibitors of Insect Chitinolytic Enzymes O fChi-h and O fHex1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39569972 DOI: 10.1021/acs.jafc.4c06797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Multitarget inhibitors exhibit significant advantages in reducing the risk of drug resistance, enhancing therapeutic efficacy, and minimizing dosage, outperforming multicomponent combination drugs. On the basis of glycoside hydrolase family 18 (GH18) chitinases and GH20 β-N-acetylhexosaminidase using the same substrate-assisted catalytic mechanism and similar substrate binding modes, a series of novel azo-aminopyrimidine compounds have been designed and synthesized as multitarget inhibitors targeting chitinolytic enzymes OfChi-h and OfHex1. Compounds AAP4 (OfChi-h, Ki = 29.3 nM; OfHex1, Ki = 4.9 μM) and AAP16 (OfChi-h, Ki = 32.4 nM; OfHex1, Ki = 7.2 μM) were identified to be potent multitarget inhibitors of these enzymes, which were predicted to occupy the -1 subsite and engage in H-binding interactions with catalytic residues. AAP4 also displayed significant insecticidal activity against lepidopteran pests Ostrinia furnacalis through leaf dipping and pot experiments. In addition, the safety of AAP4 to corn and the natural enemy Trichogramma ostriniae was comprehensively evaluated. This present work indicates that azo-aminopyrimidines, as multitarget inhibitors against chitinolytic enzymes, can be further developed as safe and efficient pest control and management agents.
Collapse
Affiliation(s)
- Shengqiang Shen
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Baokang Ding
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Meiling Yang
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Jiahao Zhang
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Shenmeng Bai
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
| | - Shujie Ma
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Lihui Zhang
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Jingao Dong
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| | - Lili Dong
- College of Life Sciences/College of Plant Protection, Hebei Agricultural University, Baoding 071001, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
2
|
Tahir A, Siddiqi AR, Maryam A, Chaitanya Vedithi S, Blundell TL. Structure-guided computational insecticide discovery targeting β-N-acetyl-D-hexosaminidase of Ostrinia furnacalis. J Biomol Struct Dyn 2023; 42:11717-11730. [PMID: 37814544 PMCID: PMC11573315 DOI: 10.1080/07391102.2023.2264394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Ostrinia furnacalis is a species of moth in the Crambidae family that is harmful to maize and other corn crops in Southeast Asia and the Western Pacific regions. Ostrinia furnacalis causes devastating losses to economically important corn fields. The β-N-acetyl-D-hexosaminidase is an essential enzyme in O. furnacalis and its substrate binding +1 active site is different from that of the plants and humans β-N-acetyl-D-hexosaminidases. To develop environment-friendly insecticides against OfHex1, we conducted structure-guided computational insecticide discovery to identify potential inhibitors that can bind the active site and inhibit the substrate binding and activity of the enzyme. We adopted a three-pronged strategy to conduct virtual screening using Glide and virtual screening workflow (VSW) in Schrödinger Suite-2022-3, against crystal structures of OfHex1 (PDB Id:3NSN), its homologue in humans (PDB Id: 1NP0) and Alphafold model of β-N-acetyl-D-hexosaminidase from Trichogramma pretiosum, an egg parasitoid that protects the crops from O. furnacalis. A library of 20,313 commercially available and "insecticide-like" compounds was extracted from published literature. LigPrep enabled 44,943 ready-to-dock conformers generation. Glide docking revealed 18 OfHex1-specific hits that were absent in human and T. pretiosum screens. Reference docking was conducted using inhibitors/natural ligands in the crystal structures and hits with better docking scores than the reference were selected for MD simulations using Desmond to understand the stability of hit-target interactions. We noted five compounds that bound to OfHex1 TMX active-site based on their docking scores, consistent binding as noted by MD simulations and their insecticide/pesticide likeliness as noted by the Comprehensive Pesticide Likeness Analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adeena Tahir
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Abdul Rauf Siddiqi
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Arooma Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Sundeep Chaitanya Vedithi
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute (HLRI), Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Heart and Lung Research Institute (HLRI), Cambridge, United Kingdom
| |
Collapse
|
3
|
Jiang X, Yang Q. Recent advances in glycoside hydrolase family 20 and 84 inhibitors: Structures, inhibitory mechanisms and biological activities. Bioorg Chem 2023; 142:106870. [PMID: 39492366 DOI: 10.1016/j.bioorg.2023.106870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 11/05/2024]
Abstract
Glycoside hydrolase family 20 (GH20) β-N-acetyl-d-hexosaminidase (Hex) catalyzes the cleavage of glycosidic linkages in glycans, glycolipids and glycoproteins, and is involved in glycoprotein modification, metabolism of glycoconjugate and the degradation of chitin in fungal cell walls and arthropod exoskeletons. GH84 O-β-N-acetyl-d-glucosaminidase (OGA), which is mechanistically similar related to GH20, participates in the O-GlcNAcylation modification, hydrolyzing the O-GlcNAc moiety from protein acceptors. Hex and OGA are of interest due to their potential for the treatment of disorder diseases and plant protection. Hex inhibitors act as molecular chaperones to treat lysosomal storage disease and as growth regulators to arrest insect molting. Inhibition of OGA is a promising therapeutic approach to treat tau pathology in neurodegenerative diseases such as Alzheimer's disease. However, since Hex and OGA exhibit similar active sites, there are challenges in designing highly selective inhibitors. The elucidation of the structural basis of the catalytic mechanism and substrate binding mode of Hex and OGA has provided core information for virtual screening and rational design of inhibitors. A large number of high-potency and selective inhibitors have been developed in the last five years. In this review, we focus on the recent advances in the structural modification, inhibitory activity, binding mechanisms and biological evaluation of Hex and OGA inhibitors, which will facilitate the development of new drugs and agrochemicals.
Collapse
Affiliation(s)
- Xi Jiang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qing Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
4
|
Liang P, Li J, Chen W, Li J, Yang Q, Zhang J. Application of Natural Bioresources to Sustainable Agriculture: A C-Glycoside Insecticide Based on N-Acetyl-glucosamine for Regulating Insect Molting of Ostrinia furnacalis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5496-5506. [PMID: 37013678 DOI: 10.1021/acs.jafc.2c08760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In order to increase the application of natural bioresources in drug discovery and development, a study on N-acetyl-glucosamine (GlcNAc) derivatives of chitin as green pesticides was necessary. In this study, we designed and synthesized a series of novel C-glycoside naphthalimides using GlcNAc as a starting material. Compound 10l showed high inhibitory activity against OfHex1 (IC50 = 1.77 μM), with a nearly 30-fold increase in activity over our previously reported C-glycoside CAUZL-A (IC50 = 47.47 μM). By observing the morphology of the Ostrinia furnacalis, we found that the synthesized compounds significantly inhibited the molting process. In addition, we further explored the morphological changes of the inhibitor-treated O. furnacalis cuticle using scanning electron microscopy. This is the first study to validate the insecticidal mechanism of OfHex1 inhibitors at the microscale level. Several compounds also exhibited excellent larvicidal activity against Plutella xylostella. Moreover, the toxicity measurements and predictions indicated that the C-glycoside naphthalimides have little effect on the natural enemy Trichogramma ostriniae and rats. Together, our results highlight an approach for the design of green pesticides, taking advantage of natural bioresources to control pests in agriculture.
Collapse
Affiliation(s)
- Peibo Liang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Jingmin Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jianyang Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China
| | - Jianjun Zhang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
5
|
Zhao Z, Chen W, Wang S, Dong Y, Yang Q, Zhang J. Rational Design of N-Methylcarbamoylguanidinyl Derivatives as Highly Potent Dual-Target Chitin Hydrolase Inhibitors for Retarding Growth of Pest Insects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2817-2826. [PMID: 36735960 DOI: 10.1021/acs.jafc.2c07605] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chitin degradation is a vital process for the growth of insects. Chitin hydrolase OfChtI and β-N-acetylhexosaminidase OfHex1 are two key enzymes involved in hydrolyzing the chitin of insects' cuticles. Thus, they are considered promising targets for preventing and controlling agricultural pests. In this study, we designed and synthesized a series of compounds bearing N-methylcarbamoylguanidinyl and N-methoxycarbonylguanidinyl as dual-target inhibitors of OfChtI and OfHex1. The most potent dual-target inhibitor, compound 10d, exhibited half-maximal inhibitory concentration (IC50) values of 27.1 and 249.1 nM against OfChtI and OfHex1, respectively. Furthermore, the insecticidal activity studies showed that compounds 10a-c, 10k, and 10l bear significant effects on the growth and development of Plutella xylostella. This work provides a promising method for the development of novel chitin hydrolase inhibitors as potential pest control and management agents.
Collapse
Affiliation(s)
- Zhixiang Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Wei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People's Republic of China
| | - Simin Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Yanhong Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518120, People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing100193, People's Republic of China
| |
Collapse
|
6
|
González-Cuesta M, Herrera-González I, García-Moreno MI, Ashmus RA, Vocadlo DJ, García Fernández JM, Nanba E, Higaki K, Ortiz Mellet C. sp 2-Iminosugars targeting human lysosomal β-hexosaminidase as pharmacological chaperone candidates for late-onset Tay-Sachs disease. J Enzyme Inhib Med Chem 2022; 37:1364-1374. [PMID: 35575117 PMCID: PMC9126592 DOI: 10.1080/14756366.2022.2073444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The late-onset form of Tay-Sachs disease displays when the activity levels of human β-hexosaminidase A (HexA) fall below 10% of normal, due to mutations that destabilise the native folded form of the enzyme and impair its trafficking to the lysosome. Competitive inhibitors of HexA can rescue disease-causative mutant HexA, bearing potential as pharmacological chaperones, but often also inhibit the enzyme O-glucosaminidase (GlcNAcase; OGA), a serious drawback for translation into the clinic. We have designed sp2-iminosugar glycomimetics related to GalNAc that feature a neutral piperidine-derived thiourea or a basic piperidine-thiazolidine bicyclic core and behave as selective nanomolar competitive inhibitors of human Hex A at pH 7 with a ten-fold lower inhibitory potency at pH 5, a good indication for pharmacological chaperoning. They increased the levels of lysosomal HexA activity in Tay-Sachs patient fibroblasts having the G269S mutation, the highest prevalent in late-onset Tay-Sachs disease.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - Irene Herrera-González
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - M Isabel García-Moreno
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - Roger A Ashmus
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - David J Vocadlo
- Department of Chemistry and Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Sevilla, Sevilla, Spain
| | - Eiji Nanba
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion, Tottori University, Yonago, Japan
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| |
Collapse
|
7
|
Chen T, Li WQ, Liu Z, Jiang W, Liu T, Yang Q, Zhu XL, Yang GF. Discovery of Biphenyl-Sulfonamides as Novel β- N-Acetyl-d-Hexosaminidase Inhibitors via Structure-Based Virtual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12039-12047. [PMID: 34587743 DOI: 10.1021/acs.jafc.1c01642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Novel insecticidal targets are always in demand due to the development of resistance. OfHex1, a β-N-acetyl-d-hexosaminidase identified in Ostrinia furnacalis (Asian corn borer), is involved in insect chitin catabolism and has proven an ideal target for insecticide development. In this study, structure-based virtual screening, structure simplification, and biological evaluation are used to show that compounds with a biphenyl-sulfonamide skeleton have great potential as OfHex1 inhibitors. Specifically, compounds 10k, 10u, and 10v have Ki values of 4.30, 3.72, and 4.56 μM, respectively, and thus, they are more potent than some reported nonglycosyl-based inhibitors such as phlegmacin B1 (Ki = 26 μM), berberine (Ki = 12 μM), 2 (Ki = 11.2 μM), and 3 (Ki = 28.9 μM). Furthermore, inhibitory kinetic assessments reveal that the target compounds are competitive inhibitors with respect substrate, and based on toxicity predictions, most of them have potent drug properties. The obtained results indicate that the biphenyl-sulfonamide skeleton characterized by simple chemical structure, synthetic tractability, potent activity, and low toxicity has potential for further development in pest management targeting OfHex1.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen-Qin Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Zheng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Wen Jiang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Tian Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, P.R. China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Chemical Biology Center, Central China Normal University, Wuhan 430079, P.R. China
| |
Collapse
|
8
|
Cheng J, Li X. Development and Application of Activity-based Fluorescent Probes for High-Throughput Screening. Curr Med Chem 2021; 29:1739-1756. [PMID: 34036907 DOI: 10.2174/0929867328666210525141728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
High-throughput screening facilitates the rapid identification of novel hit compounds; however, it remains challenging to design effective high-throughput assays, partially due to the difficulty of achieving sensitivity in the assay techniques. Among the various analytical methods that are used, fluorescence-based assays dominate owing to their high sensitivity and ease of operation. Recent advances in activity-based sensing/imaging have further expanded the availability of fluorescent probes as monitors for high-throughput screening of result outputs. In this study, we have reviewed various activity-based fluorescent probes used in high-throughput screening assays, emphasizing their structure-related working mechanisms. Moreover, we have explored the possibility of the development of additional and better probes to boost hit identification and drug development against various targets.
Collapse
Affiliation(s)
- Juan Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
9
|
Shen S, Dong L, Lu H, Dong Y, Yang Q, Zhang J. Synthesis of ureido thioglycosides as novel insect β‑N‑acetylhexosaminidase OfHex1 inhibitors. Bioorg Med Chem 2020; 28:115602. [PMID: 32631559 DOI: 10.1016/j.bmc.2020.115602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 02/05/2023]
Abstract
The insect β-N-acetylhexosaminidase OfHex1 from Ostrinia furnacalis (one of the most destructive agricultural pests) has been considered as a promising pesticide target. In this study, a series of novel and readily available ureido thioglycosides were designed and synthesized based on the catalytic mechanism and the co-crystal structures of OfHex1 with substrates. After evaluation via enzyme inhibition experiments, thioglycosides 11c and 15k were found to have inhibitory activities against OfHex1 with the Ki values of 25.6 µM and 53.8 µM, respectively. In addition, all these ureido thioglycosides exhibited high selectivity toward OfHex1 over hOGA and HsHexB (Ki > 100 μM). Furthermore, to investigate the inhibitory mechanism, the possible binding modes of 11c and 15k with OfHex1 were deduced based on molecular docking analysis. This work may provide useful structural starting points for further rational design of potent inhibitors of OfHex1.
Collapse
Affiliation(s)
- Shengqiang Shen
- Department of Pesticide Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Lili Dong
- Department of Pesticide Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huizhe Lu
- Department of Pesticide Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yanhong Dong
- Department of Pesticide Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qing Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Jianjun Zhang
- Department of Pesticide Chemistry, College of Science, China Agricultural University, Beijing, China.
| |
Collapse
|
10
|
Dong L, Shen S, Xu Y, Wang L, Yang Q, Zhang J, Lu H. Identification of novel insect β-N-acetylhexosaminidase OfHex1 inhibitors based on virtual screening, biological evaluation, and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:1735-1743. [PMID: 32193983 DOI: 10.1080/07391102.2020.1743758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chitin can be widely found in the fungal cell wall, nematode eggshells, and the exoskeleton of arthropods; however, it is completely absent from higher plants and mammals. The process of chitin degradation is essential for both growth and maturation of insects. Thus, inhibiting chitin degradation is a promising strategy for the control and management of pests. The chitinolytic β-N-acetyl-D-hexosaminidase OfHex1 of Ostrinia furnacalis (one of the most destructive pests) has been suggested as a potential target for the design of eco-friendly pesticides. This study presents the sequential virtual screening of the ZINC library with 8 million compounds, targeting OfHex1. After confirmation via enzyme inhibition experiments, compound 5 exhibited potential inhibitory activity against OfHex1 with a Ki of 28.9 ± 0.5 μM and significant selectivity (IC50 > 100 μM against HsHexB and hOGA). Molecular dynamics simulations combined with binding free energy and free energy decomposition calculations were conducted to investigate the molecular basis underlying the potency of these inhibitors toward OfHex1. The present work provides useful information for the future rational design of novel and potent OfHex1 inhibitorsCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lili Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shengqiang Shen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yefei Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Leng Wang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qing Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Huang J, Zhao P, Jin X, Wang Y, Yuan H, Zhu X. Enzymatic biofuel cells based on protein engineering: recent advances and future prospects. Biomater Sci 2020; 8:5230-5240. [DOI: 10.1039/d0bm00925c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Enzymatic biofuel cells (EBFCs), as one of the most promising sustainable and green energy sources, have attracted significant interest.
Collapse
Affiliation(s)
- Jie Huang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Peng Zhao
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xin Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yiwen Wang
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Haotian Yuan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
12
|
Shen S, Dong L, Chen W, Wu R, Lu H, Yang Q, Zhang J. Synthesis, Optimization, and Evaluation of Glycosylated Naphthalimide Derivatives as Efficient and Selective Insect β- N-Acetylhexosaminidase OfHex1 Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6387-6396. [PMID: 31090403 DOI: 10.1021/acs.jafc.9b02281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Insect chitinolytic β- N-acetylhexosaminidase OfHex1, from the agricultural pest Ostrinia furnacalis (Guenée), is considered as a potential target for green pesticide design. In this study, rational molecular design and optimization led to the synthesis of compounds 15r ( Ki = 5.3 μM) and 15y ( Ki = 2.7 μM) that had superior activity against OfHex1 than previously reported lead compounds. Both compounds 15r and 15y had high selectivity toward OfHex1 over human β- N-acetylhexosaminidase B (HsHexB) and human O-GlcNAcase (hOGA). In addition, to investigate the basis for the potency of glycosylated naphthalimides against OfHex1, molecular docking and molecular dynamics simulations were performed to study possible binding modes. Furthermore, the in vivo biological activity of target compounds with efficient OfHex1 inhibitory potency was assayed against Myzus persicae, Plutella xylostella, and O. furnacalis. This present work indicates that glycosylated naphthalimides can be further developed as potential pest control and management agents targeting OfHex1.
Collapse
Affiliation(s)
- Shengqiang Shen
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Lili Dong
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Wei Chen
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Renjie Wu
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Qing Yang
- Institute of Plant Protection , Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science , China Agricultural University , Beijing 100193 , People's Republic of China
| |
Collapse
|
13
|
Dong L, Shen S, Lu H, Jin S, Zhang J. Novel Glycosylated Naphthalimide-Based Activatable Fluorescent Probe: A Tool for the Assessment of Hexosaminidase Activity and Intracellular Hexosaminidase Imaging. ACS Sens 2019; 4:1222-1229. [PMID: 31001975 DOI: 10.1021/acssensors.8b01617] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of effective detection methods for hexosaminidase is of great importance for the rapid screening of potential inhibitors in vitro and for the early diagnosis of related diseases ex vivo. In this study, the activatable fluorescent probes that are based on naphthalimide decorated with ethylene glycol units were synthesized using N-acetyl-β-d-glucosaminide as a hexosaminidase-responsive group. When exposed to this enzyme, the glucoside-linked naphthalimide moiety of 1c can be cleaved quickly with significant changes in both color (from colorless to yellow) and fluorescence (from blue to green). Probe 1c shows better water-solubility and fluorescence properties than common substrate 4-methylumbelliferyl N-acetyl-β-d-glucosaminide. Furthermore, the response mechanism of 1c to hexosaminidase was evaluated using HPLC analysis and TD-DFT calculations. Molecular docking was performed to investigate the interaction mode. In addition, 1c has successfully achieved the straightforward rapid discovery of effective hexosaminidase inhibitors. Fluorescence imaging experiments indicate that 1c has good cell safety and can be employed as a useful tool for detecting intracellular hexosaminidase activity.
Collapse
Affiliation(s)
- Lili Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Shengqiang Shen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Shuhui Jin
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, P.R. China
| |
Collapse
|
14
|
Naphthalimide and quinoline derivatives as inhibitors for insect N-acetyl-β-d-hexosaminidase. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Hu S, Dong Y, Zhao X, Zhang L. Insights into the structure-affinity relationships and solvation effects between OfHex1 and inhibitors using molecular dynamics simulations. J Mol Graph Model 2019; 90:1-8. [PMID: 30939332 DOI: 10.1016/j.jmgm.2019.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 11/19/2022]
Abstract
OfHex1 is a potential target for the rational design of pesticides. TMG-chitotriomycin is one of the most highly specific known inhibitors of chitinolytic β-GlcNAcases from bacteria, fungi and insects. TMG-chitotriomycin and its analogues show different activities to OfHex1, dependent on the number of GlcNAc units. Subsequently, it is essential to explore how these GlcNAc unit number changes cause alterations in activity. In this study, we examined the free energy patterns and per residue decomposition of binding within the complexes of OfHex1 and a series of inhibitors, utilizing restricted molecular dynamics (MD) and water-mediated MM/GBSA calculations. The results indicated Glu328 could form a stronger polar interaction with OfHex1 inhibitors, while Trp448 and Trp490 had important non-polar contributions. Interestingly, the conformation of Trp448 was different in the open or closed state, when OfHex1 bound different inhibitors. Moreover, the water molecule that mediates the GlcNAc Ⅱ and Trp490 may be critical to stabilizing the hydrophobic interaction. Further study showed that isomerization of TMG-chitotriomycin analogs did not decrease binding affinity, however, there was a highly positive correlation between the calculated binding affinities and the experimental activity data (r2 = 0.92) when water molecules were explicitly taken into account. Moreover, the water molecules that mediated GlcNAc II and Trp490 might be critical to the stabilization of the hydrophobic interaction and cause the activity difference between TMG-(GlcNAc)2 and TMG-(GlcNAc).
Collapse
Affiliation(s)
- Song Hu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Yawen Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Xiao Zhao
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Li Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Computational Study for the Unbinding Routes of β- N-Acetyl-d-Hexosaminidase Inhibitor: Insight from Steered Molecular Dynamics Simulations. Int J Mol Sci 2019; 20:ijms20061516. [PMID: 30917577 PMCID: PMC6471479 DOI: 10.3390/ijms20061516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
β-N-Acetyl-d-hexosaminidase from Ostrinia furnacalis (OfHex1) is a new target for the design of insecticides. Although some of its inhibitors have been found, there is still no commercial drug available at present. The residence time of the ligand may be important for its pharmacodynamic effect. However, the unbinding routes of ligands from OfHex1 still remain largely unexplored. In the present study, we first simulated the six dissociation routes of N,N,N-trimethyl-d-glucosamine-chitotriomycin (TMG-chitotriomycin, a highly selective inhibitor of OfHex1) from the active pocket of OfHex1 by steered molecular dynamics simulations. By comparing the potential of mean forces (PMFs) of six routes, Route 1 was considered as the most possible route with the lowest energy barrier. Furthermore, the structures of six different states for Route 1 were snapshotted, and the key amino acid residues affecting the dissociated time were analyzed in the unbinding pathway. Moreover, we also analyzed the "open⁻close" mechanism of Glu368 and Trp448 and found that their conformational changes directly affected the dissociation of TMG-chitotriomycin. Our findings would be helpful to understanding and identifying novel inhibitors against OfHex1 from virtual screening or lead-optimization.
Collapse
|
17
|
Shen S, Dong L, Chen W, Zeng X, Lu H, Yang Q, Zhang J. Modification of the Thioglycosyl-Naphthalimides as Potent and Selective Human O-GlcNAcase Inhibitors. ACS Med Chem Lett 2018; 9:1241-1246. [PMID: 30613333 DOI: 10.1021/acsmedchemlett.8b00406] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/15/2018] [Indexed: 12/11/2022] Open
Abstract
β-N-Acetylhexosaminidases are widely distributed exoglycosidases and have attracted significant attention due to their important roles in the field of pesticide and drug discovery. Remarkably, human O-GlcNAcase (hOGA) and human β-N-acetylhexosaminidase (HsHex) possess the same catalytic mechanism but play different physiological actions in vivo. In this Letter, we aim to improve the inhibitory potency and selectivity of previously reported thioglycosyl-naphthalimides against hOGA. The rational compound design led to the synthesis of 13r bearing a 4-piperidylnaphthalimide moiety as a highly potent hOGA inhibitor (K i = 0.6 μM against hOGA) with good selectivity (K i > 100 μM against HsHexB). Furthermore, to investigate the basis for the potency and selectivity of 13r against hOGA, the possible inhibitory mechanisms of selected inhibitors (15b, 13b, and 13r) against hOGA and HsHexB were studied using molecular docking and MD simulations. These 4-substituted naphthalimide thioglycosides may potentially serve as useful tools for the further study of the function of hOGA.
Collapse
Affiliation(s)
- Shengqiang Shen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lili Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangdi Zeng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Qing Yang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116023, China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Dong L, Shen S, Chen W, Lu H, Xu D, Jin S, Yang Q, Zhang J. Glycosyl triazoles as novel insect β-N-acetylhexosaminidase OfHex1 inhibitors: Design, synthesis, molecular docking and MD simulations. Bioorg Med Chem 2018; 27:2315-2322. [PMID: 30528165 DOI: 10.1016/j.bmc.2018.11.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022]
Abstract
The insect enzyme GH20 β-N-acetyl-d-hexosaminidase OfHex1 represents an important chitinolytic enzyme found in the agricultural pest Ostrinia furnacalis (Guenée) and inhibition of this enzyme has been considered a promising strategy for the development of eco-friendly pesticides. In this article, based on the structure of the catalytic domains of OfHex1, a series of novel glycosyl triazoles were designed and synthesized via Cu-catalyzed azide-alkyne [3+2] cycloaddition reaction. To investigate the potency and selectivity of these glycosyl triazoles, the inhibition activities towards OfHex1 and HsHexB (human β-N-acetylhexosaminidase B) were studied. Particularly compound 17c (OfHex1, Ki = 28.68 μM; HsHexB, Ki > 100 μM) exhibited a suitable activity and selectivity against OfHex1. Furthermore, the possible inhibitory mechanisms of 17c with OfHex1 were studied using molecular docking and MD simulations. The structure-activity relationship results as well as the formed binding patterns may provide promising insights into the further development of novel OfHex1 inhibitors.
Collapse
Affiliation(s)
- Lili Dong
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shengqiang Shen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Wei Chen
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Huizhe Lu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Dongdong Xu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Shuhui Jin
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Qing Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China; Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianjun Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Yang H, Liu T, Qi H, Huang Z, Hao Z, Ying J, Yang Q, Qian X. Design and synthesis of thiazolylhydrazone derivatives as inhibitors of chitinolytic N-acetyl-β-d-hexosaminidase. Bioorg Med Chem 2018; 26:5420-5426. [DOI: 10.1016/j.bmc.2018.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/12/2018] [Accepted: 09/15/2018] [Indexed: 01/31/2023]
|
20
|
Duan Y, Liu T, Zhou Y, Dou T, Yang Q. Glycoside hydrolase family 18 and 20 enzymes are novel targets of the traditional medicine berberine. J Biol Chem 2018; 293:15429-15438. [PMID: 30135205 DOI: 10.1074/jbc.ra118.004351] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/03/2018] [Indexed: 02/01/2023] Open
Abstract
Berberine is a traditional medicine that has multiple medicinal and agricultural applications. However, little is known about whether berberine can be a bioactive molecule toward carbohydrate-active enzymes, which play numerous vital roles in the life process. In this study, berberine and its analogs were discovered to be competitive inhibitors of glycoside hydrolase family 20 β-N-acetyl-d-hexosaminidase (GH20 Hex) and GH18 chitinase from both humans and the insect pest Ostrinia furnacalis Berberine and its analog SYSU-1 inhibit insect GH20 Hex from O. furnacalis (OfHex1), with Ki values of 12 and 8.5 μm, respectively. Co-crystallization of berberine and its analog SYSU-1 in complex with OfHex1 revealed that the positively charged conjugate plane of berberine forms π-π stacking interactions with Trp490, which are vital to its inhibitory activity. Moreover, the 1,3-dioxole group of berberine binds an unexplored pocket formed by Trp322, Trp483, and Val484, which also contributes to its inhibitory activity. Berberine was also found to be an inhibitor of human GH20 Hex (HsHexB), human GH18 chitinase (HsCht and acidic mammalian chitinase), and insect GH18 chitinase (OfChtI). Besides GH18 and GH20 enzymes, berberine was shown to weakly inhibit human GH84 O-GlcNAcase (HsOGA) and Saccharomyces cerevisiae GH63 α-glucosidase I (ScGluI). By analyzing the published crystal structures, berberine was revealed to bind with its targets in an identical mechanism, namely via π-π stacking and electrostatic interactions with the aromatic and acidic residues in the binding pockets. This paper reports new molecular targets of berberine and may provide a berberine-based scaffold for developing multitarget drugs.
Collapse
Affiliation(s)
- Yanwei Duan
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024
| | - Tian Liu
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024,
| | - Yong Zhou
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024
| | - Tongyi Dou
- the School of Life Science and Medicine, Dalian University of Technology, Panjin 124221, and
| | - Qing Yang
- From the State Key Laboratory of Fine Chemical Engineering, School of Life Science and Biotechnology and School of Software, Dalian University of Technology, Dalian 116024, .,the Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
21
|
Revisiting glycoside hydrolase family 20 β-N-acetyl-d-hexosaminidases: Crystal structures, physiological substrates and specific inhibitors. Biotechnol Adv 2018; 36:1127-1138. [DOI: 10.1016/j.biotechadv.2018.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022]
|
22
|
Shen S, Chen W, Dong L, Yang Q, Lu H, Zhang J. Design and synthesis of naphthalimide group-bearing thioglycosides as novel β-N-acetylhexosaminidases inhibitors. J Enzyme Inhib Med Chem 2018; 33:445-452. [PMID: 29390898 PMCID: PMC6009855 DOI: 10.1080/14756366.2017.1419217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
GH20 human β-N-acetylhexosaminidases (hsHex) and GH84 human O-GlcNAcase (hOGA) are involved in numerous pathological processes and emerged as promising targets for drug discovery. Based on the catalytic mechanism and structure of the catalytic domains of these β-N-acetylhexosaminidases, a series of novel naphthalimide moiety-bearing thioglycosides with different flexible linkers were designed, and their inhibitory potency against hsHexB and hOGA was evaluated. The strongest potency was found for compound 15j (Ki = 0.91 µM against hsHexB; Ki > 100 µM against hOGA) and compound 15b (Ki = 3.76 µM against hOGA; Ki = 30.42 µM against hsHexB), which also exhibited significant selectivity between these two enzymes. Besides, inhibitors 15j and 15b exhibited an inverse binding patterns in docking studies. The determined structure–activity relationship as well as the established binding models provide the direction for further structure optimizations and the development of specific β-N-acetylhexosaminidase inhibitors.
Collapse
Affiliation(s)
- Shengqiang Shen
- a Department of Applied Chemistry , College of Science, China Agricultural University , Beijing , China
| | - Wei Chen
- b School of Life Science and Biotechnology , Dalian University of Technology , Dalian , China
| | - Lili Dong
- a Department of Applied Chemistry , College of Science, China Agricultural University , Beijing , China
| | - Qing Yang
- b School of Life Science and Biotechnology , Dalian University of Technology , Dalian , China
| | - Huizhe Lu
- a Department of Applied Chemistry , College of Science, China Agricultural University , Beijing , China
| | - Jianjun Zhang
- a Department of Applied Chemistry , College of Science, China Agricultural University , Beijing , China
| |
Collapse
|
23
|
Mitchell MO. Discovering protein-ligand chalcogen bonding in the protein data bank using endocyclic sulfur-containing heterocycles as ligand search subsets. J Mol Model 2017; 23:287. [PMID: 28942498 DOI: 10.1007/s00894-017-3452-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/05/2017] [Indexed: 01/27/2023]
Abstract
The chalcogen bond, the noncovalent, electrostatic attraction between covalently bonded atoms in group 16 and Lewis bases, is present in protein-ligand interactions based on X-ray structures deposited in the Protein Data Bank (PDB). Discovering protein-ligand chalcogen bonding in the PDB employed a strategy that focused on searching the database for protein complexes of five-membered, heterocyclic ligands containing endocyclic sulfur with endo electron-withdrawing groups (isothiazoles; thiazoles; 1,2,3-, 1,2.4-, 1,2,5-, 1,3,4-thiadiazoles) and thiophenes with exo electron-withdrawing groups, e.g., 2-chloro, 2-bromo, 2-amino, 2-alkylthio. Out of 930 ligands investigated, 33 or 3.5% have protein-ligand S---O interactions of which 31 are chalcogen bonds and two appear to be S---HO hydrogen bonds. The bond angles for some of the chalcogen bonds found in the PDB are less than 90°, and an electrostatic model is proposed to explain this phenomenon.
Collapse
Affiliation(s)
- Miguel O Mitchell
- American Institutes for Research, 1000 Thomas Jefferson St. NW, Washington, DC, 20007-3835, USA.
| |
Collapse
|
24
|
Efficient stereoselective synthesis of 2-acetamido-1,2-dideoxyallonojirimycin (DAJNAc) and sp(2)-iminosugar conjugates: Novel hexosaminidase inhibitors with discrimination capabilities between the mature and precursor forms of the enzyme. Eur J Med Chem 2015; 121:926-938. [PMID: 26564401 DOI: 10.1016/j.ejmech.2015.10.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/07/2015] [Accepted: 10/21/2015] [Indexed: 11/21/2022]
Abstract
Due to their capacity to inhibit hexosaminidases, 2-acetamido-1,2-dideoxy-iminosugars have been widely studied as potential therapeutic agents for various diseases. An efficient stereoselective synthesis of 2-acetamido-1,2-dideoxyallonojirimycin (DAJNAc), the most potent inhibitor of human placenta β-N-acetylglucosaminidase (β-hexosaminidase) among the epimeric series, is here described. This novel procedure can be easily scaled up, providing enough material for structural modifications and further biological tests. Thus, two series of sp(2)-iminosugar conjugates derived from DAJNAc have been prepared, namely monocyclic DAJNAc-thioureas and bicyclic 2-iminothiazolidines, and their glycosidase inhibitory activity evaluated. The data evidence the utmost importance of developing diversity-oriented synthetic strategies allowing optimization of electrostatic and hydrophobic interactions to achieve high inhibitory potencies and selectivities among isoenzymes. Notably, strong differences in the inhibition potency of the compounds towards β-hexosaminidase from human placenta (mature) or cultured fibroblasts (precursor form) were encountered. The ensemble of data suggests that the ratio between them, and not the inhibition potency towards the placenta enzyme, is a good indication of the chaperoning potential of TaySachs disease-associated mutant hexosaminidase.
Collapse
|
25
|
Liu T, Xia M, Zhang H, Zhou H, Wang J, Shen X, Yang Q. Exploring NAG-thiazoline and its derivatives as inhibitors of chitinolytic β-acetylglucosaminidases. FEBS Lett 2014; 589:110-6. [PMID: 25436416 DOI: 10.1016/j.febslet.2014.11.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
NAG-thiazoline (NGT) and its derivatives are well-known inhibitors against most β-acetylglucosaminidases (β-GlcNAcases) except for insect and bacterial chitinolytic β-GlcNAcases, including the molting-indispensable OfHex1 from the insect Ostrinia furnacalis. Here, we report the co-crystal structure of OfHex1 in complex with NGT. This structure reveals a large active pocket in OfHex1 that may account for the poor inhibitory activity of NGT. To test this hypothesis, a bulky substituent was designed and synthesized on the thiazoline ring of NGT. The resulting compound (NMAGT) was determined to be a submicromolar inhibitor of OfHex1 with a Ki value of 0.13 μM, which is 600-fold lower than Ki value of NGT. Molecular dynamics simulation analysis supported the good fit of NMAGT to the active pocket.
Collapse
Affiliation(s)
- Tian Liu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Meng Xia
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Haitao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200237, China
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Food and Environmental Science and Technology, Dalian University of Technology, Panjin 124000, China
| | - Jing Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Xu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200237, China
| | - Qing Yang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|