1
|
Jiang S, Chen K, Wang Y, Zhang Y, Tang Y, Huang W, Xiong X, Chen S, Chen C, Wang L. A DNA phosphorothioation-based Dnd defense system provides resistance against various phages and is compatible with the Ssp defense system. mBio 2023; 14:e0093323. [PMID: 37260233 PMCID: PMC10470545 DOI: 10.1128/mbio.00933-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 04/27/2023] [Indexed: 06/02/2023] Open
Abstract
DndABCDE-catalyzed DNA phosphorothioation (PT), in which the nonbridging oxygen is swapped with a sulfur atom, was first identified in the bacterial genome. Usually, this modification gene cluster is paired with a restriction module consisting of DndF, DndG, and DndH. Although the mechanisms for the antiphage activity conferred by this Dnd-related restriction and modification (R-M) system have been well characterized, several features remain unclear, including the antiphage spectrum and potential interference with DNA methylation. Recently, a novel PT-related R-M system, composed of the modification module SspABCD paired with a single restriction enzyme, SspE, was revealed to be widespread in the bacterial kingdom, which aroused our interest in the interaction between Dnd- and Ssp-based R-M systems. In this study, we discussed the action of Dnd-related R-M systems against phages and demonstrated that the host could benefit from the protection provided by Dnd-related R-M systems against infection by various lytic phages as well as temperate phages. However, this defense barrier would fail against lysogenic phages. Interestingly, DNA methylation, even in the consensus sequence recognized by the Dnd system, could not weaken the restriction efficiency. Finally, we explored the interaction between Dnd- and Ssp-based R-M systems and found that these two systems were compatible. This study not only expands our knowledge of Dnd-associated R-M systems but also reveals a complex interaction between different defense barriers that coexist in the cell. IMPORTANCE Recently, we decoded the mechanism of Dnd-related R-M systems against genetic parasites. In the presence of exogenous DNA that lacks PT, the macromolecular machine consisting of DndF, DndG, and DndH undergoes conformational changes to perform DNA binding, translocation, and DNA nicking activities and scavenge the foreign DNA. However, several questions remain unanswered, including questions regarding the antiphage spectrum, potential interference by DNA methylation, and interplay with other PT-dependent R-M systems. Here, we revealed that the host could benefit from Dnd-related R-M systems for a broad range of antiphage activities, regardless of the presence of DNA methylation. Furthermore, we demonstrated that the convergence of Dnd- and Ssp-related R-M systems could confer to the host a stronger antiphage ability through the additive suppression of phage replication. This study not only deepens our understanding of PT-related defense barriers but also expands our knowledge of the arms race between bacteria and their predators.
Collapse
Affiliation(s)
- Susu Jiang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Ke Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yingying Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yueying Zhang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yaru Tang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wanqiu Huang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Xiaolin Xiong
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shi Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Chao Chen
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Lianrong Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
- Department of Respiratory Diseases, The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Domgaard H, Cahoon C, Armbrust MJ, Redman O, Jolley A, Thomas A, Jackson R. CasDinG is a 5'-3' dsDNA and RNA/DNA helicase with three accessory domains essential for type IV CRISPR immunity. Nucleic Acids Res 2023; 51:8115-8132. [PMID: 37395408 PMCID: PMC10450177 DOI: 10.1093/nar/gkad546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023] Open
Abstract
CRISPR-associated DinG protein (CasDinG) is essential to type IV-A CRISPR function. Here, we demonstrate that CasDinG from Pseudomonas aeruginosa strain 83 is an ATP-dependent 5'-3' DNA translocase that unwinds double-stranded (ds)DNA and RNA/DNA hybrids. The crystal structure of CasDinG reveals a superfamily 2 helicase core of two RecA-like domains with three accessory domains (N-terminal, arch, and vestigial FeS). To examine the in vivo function of these domains, we identified the preferred PAM sequence for the type IV-A system (5'-GNAWN-3' on the 5'-side of the target) with a plasmid library and performed plasmid clearance assays with domain deletion mutants. Plasmid clearance assays demonstrated that all three domains are essential for type IV-A immunity. Protein expression and biochemical assays suggested the vFeS domain is needed for protein stability and the arch for helicase activity. However, deletion of the N-terminal domain did not impair ATPase, ssDNA binding, or helicase activities, indicating a role distinct from canonical helicase activities that structure prediction tools suggest involves interaction with dsDNA. This work demonstrates CasDinG helicase activity is essential for type IV-A CRISPR immunity as well as the yet undetermined activity of the CasDinG N-terminal domain.
Collapse
Affiliation(s)
- Hannah Domgaard
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Christian Cahoon
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Matthew J Armbrust
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Olivine Redman
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Alivia Jolley
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Aaron Thomas
- Center for Integrated Biosystems, Utah State University, Logan, UT, USA
| | - Ryan N Jackson
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| |
Collapse
|
3
|
Wang X, Yu D, Chen L. Antimicrobial resistance and mechanisms of epigenetic regulation. Front Cell Infect Microbiol 2023; 13:1199646. [PMID: 37389209 PMCID: PMC10306973 DOI: 10.3389/fcimb.2023.1199646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 07/01/2023] Open
Abstract
The rampant use of antibiotics in animal husbandry, farming and clinical disease treatment has led to a significant issue with pathogen resistance worldwide over the past decades. The classical mechanisms of resistance typically investigate antimicrobial resistance resulting from natural resistance, mutation, gene transfer and other processes. However, the emergence and development of bacterial resistance cannot be fully explained from a genetic and biochemical standpoint. Evolution necessitates phenotypic variation, selection, and inheritance. There are indications that epigenetic modifications also play a role in antimicrobial resistance. This review will specifically focus on the effects of DNA modification, histone modification, rRNA methylation and the regulation of non-coding RNAs expression on antimicrobial resistance. In particular, we highlight critical work that how DNA methyltransferases and non-coding RNAs act as transcriptional regulators that allow bacteria to rapidly adapt to environmental changes and control their gene expressions to resist antibiotic stress. Additionally, it will delve into how Nucleolar-associated proteins in bacteria perform histone functions akin to eukaryotes. Epigenetics, a non-classical regulatory mechanism of bacterial resistance, may offer new avenues for antibiotic target selection and the development of novel antibiotics.
Collapse
Affiliation(s)
- Xinrui Wang
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Donghong Yu
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Lu Chen
- Medical Research Center, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- National Health Commission Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|
4
|
The functional coupling between restriction and DNA phosphorothioate modification systems underlying the DndFGH restriction complex. Nat Catal 2022. [DOI: 10.1038/s41929-022-00884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Nicking mechanism underlying the DNA phosphorothioate-sensing antiphage defense by SspE. Nat Commun 2022; 13:6773. [PMID: 36351933 PMCID: PMC9646914 DOI: 10.1038/s41467-022-34505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
DNA phosphorothioate (PT) modification, with a nonbridging phosphate oxygen substituted by sulfur, represents a widespread epigenetic marker in prokaryotes and provides protection against genetic parasites. In the PT-based defense system Ssp, SspABCD confers a single-stranded PT modification of host DNA in the 5'-CPSCA-3' motif and SspE impedes phage propagation. SspE relies on PT modification in host DNA to exert antiphage activity. Here, structural and biochemical analyses reveal that SspE is preferentially recruited to PT sites mediated by the joint action of its N-terminal domain (NTD) hydrophobic cavity and C-terminal domain (CTD) DNA binding region. PT recognition enlarges the GTP-binding pocket, thereby increasing GTP hydrolysis activity, which subsequently triggers a conformational switch of SspE from a closed to an open state. The closed-to-open transition promotes the dissociation of SspE from self PT-DNA and turns on the DNA nicking nuclease activity of CTD, enabling SspE to accomplish self-nonself discrimination and limit phage predation, even when only a small fraction of modifiable consensus sequences is PT-protected in a bacterial genome.
Collapse
|
6
|
Structural and Functional Analysis of DndE Involved in DNA Phosphorothioation in the Haloalkaliphilic Archaea Natronorubrum bangense JCM10635. mBio 2022; 13:e0071622. [PMID: 35420474 PMCID: PMC9239217 DOI: 10.1128/mbio.00716-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorothioate (PT) modification, a sequence-specific modification that replaces the nonbridging oxygen atom with sulfur in a DNA phosphodiester through the gene products of dndABCDE or sspABCD, is widely distributed in prokaryotes. DNA PT modification functions together with gene products encoded by dndFGH, pbeABCD, or sspE to form defense systems that can protect against invasion by exogenous DNA particles. While the functions of the multiple enzymes in the PT system have been elucidated, the exact role of DndE in the PT process is still obscure. Here, we solved the crystal structure of DndE from the haloalkaliphilic archaeal strain Natronorubrum bangense JCM10635 at a resolution of 2.31 Å. Unlike the tetrameric conformation of DndE in Escherichia coli B7A, DndE from N. bangense JCM10635 exists in a monomeric conformation and can catalyze the conversion of supercoiled DNA to nicked or linearized products. Moreover, DndE exhibits preferential binding affinity to nicked DNA by virtue of the R19- and K23-containing positively charged surface. This work provides insight into how DndE functions in PT modification and the potential sulfur incorporation mechanism of DNA PT modification.
Collapse
|
7
|
Jian H, Xu G, Yi Y, Hao Y, Wang Y, Xiong L, Wang S, Liu S, Meng C, Wang J, Zhang Y, Chen C, Feng X, Luo H, Zhang H, Zhang X, Wang L, Wang Z, Deng Z, Xiao X. The origin and impeded dissemination of the DNA phosphorothioation system in prokaryotes. Nat Commun 2021; 12:6382. [PMID: 34737280 PMCID: PMC8569181 DOI: 10.1038/s41467-021-26636-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 10/18/2021] [Indexed: 12/13/2022] Open
Abstract
Phosphorothioate (PT) modification by the dnd gene cluster is the first identified DNA backbone modification and constitute an epigenetic system with multiple functions, including antioxidant ability, restriction modification, and virus resistance. Despite these advantages for hosting dnd systems, they are surprisingly distributed sporadically among contemporary prokaryotic genomes. To address this ecological paradox, we systematically investigate the occurrence and phylogeny of dnd systems, and they are suggested to have originated in ancient Cyanobacteria after the Great Oxygenation Event. Interestingly, the occurrence of dnd systems and prophages is significantly negatively correlated. Further, we experimentally confirm that PT modification activates the filamentous phage SW1 by altering the binding affinity of repressor and the transcription level of its encoding gene. Competition assays, concurrent epigenomic and transcriptomic sequencing subsequently show that PT modification affects the expression of a variety of metabolic genes, which reduces the competitive fitness of the marine bacterium Shewanella piezotolerans WP3. Our findings strongly suggest that a series of negative effects on microorganisms caused by dnd systems limit horizontal gene transfer, thus leading to their sporadic distribution. Overall, our study reveals putative evolutionary scenario of the dnd system and provides novel insights into the physiological and ecological influences of PT modification.
Collapse
Affiliation(s)
- Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Guanpeng Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yali Hao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Siyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shunzhang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Canxing Meng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiahua Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaoyuan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiang Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
8
|
|
9
|
Nguyen JM, Gilar M, Koshel B, Donegan M, MacLean J, Li Z, Lauber MA. Assessing the impact of nonspecific binding on oligonucleotide bioanalysis. Bioanalysis 2021; 13:1233-1244. [PMID: 34472373 DOI: 10.4155/bio-2021-0115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aim: Accurate and reliable quantification of oligonucleotides can be difficult, which has led to an increased focus on bioanalytical methods for more robust analyses. Recent advances toward mitigating sample losses on liquid chromatography (LC) systems have produced recovery advantages for oligonucleotide separations. Results & methodology: LC instruments and columns constructed from MP35N metal alloy and stainless steel columns were compared against LC hardware modified with hybrid inorganic-organic silica surfaces. Designed to minimize metal-analyte adsorption, these surfaces demonstrated a 73% increase in 25-mer phosphorothioate oligonucleotide recovery using ion-pairing reversed-phase LC versus standard LC surfaces, most particularly upon initial use. Conclusion: Hybrid silica chromatographic surfaces improve the performance, detection limits and reproducibility of oligonucleotide bioanalytical assays.
Collapse
Affiliation(s)
- Jennifer M Nguyen
- School of Science, University of Copenhagen, Rolighedsvej 30, 1958 Frederiksberg, Denmark
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Martin Gilar
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Brooke Koshel
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | | - Jason MacLean
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | - Zhimin Li
- Waters Corporation, 34 Maple Street, Milford, MA 01757, USA
| | | |
Collapse
|
10
|
Wei Y, Huang Q, Tian X, Zhang M, He J, Chen X, Chen C, Deng Z, Li Z, Chen S, Wang L. Single-molecule optical mapping of the distribution of DNA phosphorothioate epigenetics. Nucleic Acids Res 2021; 49:3672-3680. [PMID: 33764453 PMCID: PMC8053081 DOI: 10.1093/nar/gkab169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
DNA phosphorothioate (PT) modifications, with the nonbridging phosphate oxygen replaced by sulfur, governed by DndABCDE or SspABCD, are widely distributed in prokaryotes and have a highly unusual feature of occupying only a small portion of available consensus sequences in a genome. Despite the presence of plentiful non-PT-protected consensuses, DNA PT modification is still employed as a recognition tag by the restriction cognate, for example, DndFGH or SspE, to discriminate and destroy PT-lacking foreign DNA. This raises a fundamental question about how PT modifications are distributed along DNA molecules to keep the restriction components in check. Here, we present two single-molecule strategies that take advantage of the nucleophilicity of PT in combination with fluorescent markers for optical mapping of both single- and double-stranded PT modifications across individual DNA molecules. Surprisingly, PT profiles vary markedly from molecule to molecule, with different PT locations and spacing distances between PT pairs, even in the presence of DndFGH or SspE. The results revealed unprecedented PT modification features previously obscured by ensemble averaging, providing novel insights into the riddles regarding unusual target selection by PT modification and restriction components.
Collapse
Affiliation(s)
- Yue Wei
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China.,Department of Burn and Plastic Surgery, Division of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Qinqin Huang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Department of Molecular Pathology, The Second Affiliated Hospital, Academy of Medical Sciences of Zhengzhou University, Zhengzhou 450000, China
| | - Xihao Tian
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mingmin Zhang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Junkai He
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xingxiang Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Chao Chen
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| | - Shi Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Department of Burn and Plastic Surgery, Division of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Lianrong Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.,Department of Burn and Plastic Surgery, Division of Wound Repair, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei, China
| |
Collapse
|
11
|
Isaev AB, Musharova OS, Severinov KV. Microbial Arsenal of Antiviral Defenses - Part I. BIOCHEMISTRY (MOSCOW) 2021; 86:319-337. [PMID: 33838632 DOI: 10.1134/s0006297921030081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bacteriophages or phages are viruses that infect bacterial cells (for the scope of this review we will also consider viruses that infect Archaea). Constant threat of phage infection is a major force that shapes evolution of the microbial genomes. To withstand infection, bacteria had evolved numerous strategies to avoid recognition by phages or to directly interfere with phage propagation inside the cell. Classical molecular biology and genetic engineering have been deeply intertwined with the study of phages and host defenses. Nowadays, owing to the rise of phage therapy, broad application of CRISPR-Cas technologies, and development of bioinformatics approaches that facilitate discovery of new systems, phage biology experiences a revival. This review describes variety of strategies employed by microbes to counter phage infection, with a focus on novel systems discovered in recent years. First chapter covers defense associated with cell surface, role of small molecules, and innate immunity systems relying on DNA modification.
Collapse
Affiliation(s)
- Artem B Isaev
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia.
| | - Olga S Musharova
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Institute of Molecular Genetics, Moscow, 119334, Russia
| | - Konstantin V Severinov
- Skolkovo Institute of Science and Technology, Moscow, 143028, Russia. .,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Abstract
We recently found that SspABCD, catalyzing single-stranded (ss) DNA phosphorothioate (PT) modification, coupled with SspE provides protection against phage infection. SspE performs both PT-simulated NTPase and DNA-nicking nuclease activities to damage phage DNA, rendering SspA-E a PT-sensing defense system. Unlike nucleobase modifications in canonical restriction-modification systems, DNA phosphorothioate (PT) epigenetic modification occurs in the DNA sugar-phosphate backbone when the nonbridging oxygen is replaced by sulfur in a double-stranded (ds) or single-stranded (ss) manner governed by DndABCDE or SspABCD, respectively. SspABCD coupled with SspE constitutes a defense barrier in which SspE depends on sequence-specific PT modifications to exert its antiphage activity. Here, we identified a new type of ssDNA PT-based SspABCD-SspFGH defense system capable of providing protection against phages through a mode of action different from that of SspABCD-SspE. We provide further evidence that SspFGH damages non-PT-modified DNA and exerts antiphage activity by suppressing phage DNA replication. Despite their different defense mechanisms, SspFGH and SspE are compatible and pair simultaneously with one SspABCD module, greatly enhancing the protection against phages. Together with the observation that the sspBCD-sspFGH cassette is widely distributed in bacterial genomes, this study highlights the diversity of PT-based defense barriers and expands our knowledge of the arsenal of phage defense mechanisms.
Collapse
|
13
|
Yu H, Li J, Liu G, Zhao G, Wang Y, Hu W, Deng Z, Wu G, Gan J, Zhao YL, He X. DNA backbone interactions impact the sequence specificity of DNA sulfur-binding domains: revelations from structural analyses. Nucleic Acids Res 2020; 48:8755-8766. [PMID: 32621606 PMCID: PMC7470945 DOI: 10.1093/nar/gkaa574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/04/2022] Open
Abstract
The sulfur atom of phosphorothioated DNA (PT-DNA) is coordinated by a surface cavity in the conserved sulfur-binding domain (SBD) of type IV restriction enzymes. However, some SBDs cannot recognize the sulfur atom in some sequence contexts. To illustrate the structural determinants for sequence specificity, we resolved the structure of SBDSpr, from endonuclease SprMcrA, in complex with DNA of GPSGCC, GPSATC and GPSAAC contexts. Structural and computational analyses explained why it binds the above PT-DNAs with an affinity in a decreasing order. The structural analysis of SBDSpr–GPSGCC and SBDSco–GPSGCC, the latter only recognizes DNA of GPSGCC, revealed that a positively charged loop above the sulfur-coordination cavity electrostatically interacts with the neighboring DNA phosphate linkage. The structural analysis indicated that the DNA–protein hydrogen bonding pattern and weak non-bonded interaction played important roles in sequence specificity of SBD protein. Exchanges of the positively-charged amino acid residues with the negatively-charged residues in the loop would enable SBDSco to extend recognization for more PT-DNA sequences, implying that type IV endonucleases can be engineered to recognize PT-DNA in novel target sequences.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Guang Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yuli Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200433, People's Republic of China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
14
|
Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. Proc Natl Acad Sci U S A 2020; 117:14322-14330. [PMID: 32518115 DOI: 10.1073/pnas.2002933117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Phosphorothioate (PT) DNA modifications-in which a nonbonding phosphate oxygen is replaced with sulfur-represent a widespread, horizontally transferred epigenetic system in prokaryotes and have a highly unusual property of occupying only a small fraction of available consensus sequences in a genome. Using Salmonella enterica as a model, we asked a question of fundamental importance: How do the PT-modifying DndA-E proteins select their GPSAAC/GPSTTC targets? Here, we applied innovative analytical, sequencing, and computational tools to discover a novel behavior for DNA-binding proteins: The Dnd proteins are "parked" at the G6mATC Dam methyltransferase consensus sequence instead of the expected GAAC/GTTC motif, with removal of the 6mA permitting extensive PT modification of GATC sites. This shift in modification sites further revealed a surprising constancy in the density of PT modifications across the genome. Computational analysis showed that GAAC, GTTC, and GATC share common features of DNA shape, which suggests that PT epigenetics are regulated in a density-dependent manner partly by DNA shape-driven target selection in the genome.
Collapse
|
15
|
Xiong X, Wu G, Wei Y, Liu L, Zhang Y, Su R, Jiang X, Li M, Gao H, Tian X, Zhang Y, Hu L, Chen S, Tang Y, Jiang S, Huang R, Li Z, Wang Y, Deng Z, Wang J, Dedon PC, Chen S, Wang L. SspABCD-SspE is a phosphorothioation-sensing bacterial defence system with broad anti-phage activities. Nat Microbiol 2020; 5:917-928. [PMID: 32251370 DOI: 10.1038/s41564-020-0700-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023]
Abstract
Bacteria have evolved diverse mechanisms to fend off predation by bacteriophages. We previously identified the Dnd system, which uses DndABCDE to insert sulfur into the DNA backbone as a double-stranded phosphorothioate (PT) modification, and DndFGH, a restriction component. Here, we describe an unusual SspABCD-SspE PT system in Vibrio cyclitrophicus, Escherichia coli and Streptomyces yokosukanensis, which has distinct genetic organization, biochemical functions and phenotypic behaviour. SspABCD confers single-stranded and high-frequency PTs with SspB acting as a nickase and possibly introducing nicks to facilitate sulfur incorporation. Strikingly, SspABCD coupled with SspE provides protection against phages in unusual ways: (1) SspE senses sequence-specific PTs by virtue of its PT-stimulated NTPase activity to exert its anti-phage activity, and (2) SspE inhibits phage propagation by introducing nicking damage to impair phage DNA replication. These results not only expand our knowledge about the diversity and functions of DNA PT modification but also enhance our understanding of the known arsenal of defence systems.
Collapse
Affiliation(s)
- Xiaolin Xiong
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Wei
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Liqiong Liu
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Yubing Zhang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Su
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xianyue Jiang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Mengxue Li
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Haiyan Gao
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xihao Tian
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yizhou Zhang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Li Hu
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Si Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - You Tang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Susu Jiang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ruolin Huang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yunfu Wang
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Wang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Shi Chen
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Lianrong Wang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China. .,Taihe Hospital, Hubei University of Medicine, Shiyan, China. .,Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Caneschi WL, Sanchez AB, Felestrino ÉB, Lemes CGDC, Cordeiro IF, Fonseca NP, Villa MM, Vieira IT, Moraes LÂG, Assis RDAB, do Carmo FF, Kamino LHY, Silva RS, Ferro JA, Ferro MIT, Ferreira RM, Santos VL, Silva UDCM, Almeida NF, Varani ADM, Garcia CCM, Setubal JC, Moreira LM. Serratia liquefaciens FG3 isolated from a metallophyte plant sheds light on the evolution and mechanisms of adaptive traits in extreme environments. Sci Rep 2019; 9:18006. [PMID: 31784663 PMCID: PMC6884506 DOI: 10.1038/s41598-019-54601-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/31/2019] [Indexed: 12/02/2022] Open
Abstract
Serratia liquefaciens strain FG3 (SlFG3), isolated from the flower of Stachytarpheta glabra in the Brazilian ferruginous fields, has distinctive genomic, adaptive, and biotechnological potential. Herein, using a combination of genomics and molecular approaches, we unlocked the evolution of the adaptive traits acquired by S1FG3, which exhibits the second largest chromosome containing the largest conjugative plasmids described for Serratia. Comparative analysis revealed the presence of 18 genomic islands and 311 unique protein families involved in distinct adaptive features. S1FG3 has a diversified repertoire of genes associated with Nonribosomal peptides (NRPs/PKS), a complete and functional cluster related to cellulose synthesis, and an extensive and functional repertoire of oxidative metabolism genes. In addition, S1FG3 possesses a complete pathway related to protocatecuate and chloroaromatic degradation, and a complete repertoire of genes related to DNA repair and protection that includes mechanisms related to UV light tolerance, redox process resistance, and a laterally acquired capacity to protect DNA using phosphorothioation. These findings summarize that SlFG3 is well-adapted to different biotic and abiotic stress situations imposed by extreme conditions associated with ferruginous fields, unlocking the impact of the lateral gene transfer to adjust the genome for extreme environments, and providing insight into the evolution of prokaryotes.
Collapse
Affiliation(s)
- Washington Luiz Caneschi
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Angélica Bianchini Sanchez
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Érica Barbosa Felestrino
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | | | - Isabella Ferreira Cordeiro
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Natasha Peixoto Fonseca
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Morghana Marina Villa
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Izadora Tabuso Vieira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Lauro Ângelo Gonçalves Moraes
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | | | | | | | - Robson Soares Silva
- Faculdade de Computação (FACOM), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Jesus Aparecido Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Maria Inês Tiraboschi Ferro
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Rafael Marini Ferreira
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Vera Lúcia Santos
- Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Nalvo Franco Almeida
- Faculdade de Computação (FACOM), Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | - Alessandro de Mello Varani
- Faculdade de Ciências Agrárias e Veterinárias de Jaboticabal, UNESP - Universidade Estadual Paulista, Departamento de Tecnologia, SP, Brazil
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - João Carlos Setubal
- Departamento de Bioquímica (DB), Instituto de Química (IQ), Universidade de São Paulo (USP), São Paulo, SP, Brazil
- Biocomplexity Institute, Virginia Tech, Blacksburg, VA, USA
| | - Leandro Marcio Moreira
- Núcleo de Pesquisas em Ciências Biológicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
- Departamento de Ciências Biológicas (DECBI), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
| |
Collapse
|
17
|
Jahanban-Esfahlan A, Seidi K, Jaymand M, Schmidt TL, Majdi H, Javaheri T, Jahanban-Esfahlan R, Zare P. Dynamic DNA nanostructures in biomedicine: Beauty, utility and limits. J Control Release 2019; 315:166-185. [PMID: 31669209 DOI: 10.1016/j.jconrel.2019.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/16/2023]
Abstract
DNA composite materials are at the forefront, especially for biomedical science, as they can increase the efficacy and safety of current therapies and drug delivery systems. The specificity and predictability of the Watson-Crick base pairing make DNA an excellent building material for the production of programmable and multifunctional objects. In addition, the principle of nucleic acid hybridization can be applied to realize mobile nanostructures, such as those reflected in DNA walkers that sort and collect cargo on DNA tracks, DNA robots performing tasks within living cells and/or DNA tweezers as ultra-sensitive biosensors. In this review, we present the diversity of dynamic DNA nanostructures functionalized with different biomolecules/functional units, imaging smart biomaterials capable of sensing, interacting, delivery and performing complex tasks within living cells/organisms.
Collapse
Affiliation(s)
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Thorsten L Schmidt
- Physics Department, 103 Smith Hall, Kent State University, Kent, OH, 44240, USA
| | - Hasan Majdi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| |
Collapse
|
18
|
Yao P, Liu Y, Wang C, Lan W, Wang C, Cao C. Investigating the interactions between DNA and DndE during DNA phosphorothioation. FEBS Lett 2019; 593:2790-2799. [PMID: 31276192 DOI: 10.1002/1873-3468.13529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 01/08/2023]
Abstract
The DNA phosphorothioate modification is a novel physiological variation in bacteria. DndE controls this modification by binding to dsDNA via a mechanism that remains unclear. Structural analysis of the wild-type DndE tetramer suggests that a positively charged region in its center is important for DNA binding. In the present study, we replaced residues G21 and G24 in this region with lysines, which increases the DNA binding affinity but does not affect the DNA degradation phenotype. Structural analysis of the mutant indicates that it forms a new tetrameric conformation and that DndE interacts with DNA as a monomer rather than as a tetramer. A structural model of the DndE-DNA complex, based on its structural homolog P22 Arc repressor, indicates that two flexible loops in DndE are determinants of DNA binding.
Collapse
Affiliation(s)
- Penfei Yao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yaping Liu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengkun Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
19
|
Xiong L, Liu S, Chen S, Xiao Y, Zhu B, Gao Y, Zhang Y, Chen B, Luo J, Deng Z, Chen X, Wang L, Chen S. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat Commun 2019; 10:1688. [PMID: 30975999 PMCID: PMC6459918 DOI: 10.1038/s41467-019-09390-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/07/2019] [Indexed: 01/21/2023] Open
Abstract
Archaea and Bacteria have evolved different defence strategies that target virtually all steps of the viral life cycle. The diversified virion morphotypes and genome contents of archaeal viruses result in a highly complex array of archaea-virus interactions. However, our understanding of archaeal antiviral activities lags far behind our knowledges of those in bacteria. Here we report a new archaeal defence system that involves DndCDEA-specific DNA phosphorothioate (PT) modification and the PbeABCD-mediated halt of virus propagation via inhibition of DNA replication. In contrast to the breakage of invasive DNA by DndFGH in bacteria, DndCDEA-PbeABCD does not degrade or cleave viral DNA. The PbeABCD-mediated PT defence system is widespread and exhibits extensive interdomain and intradomain gene transfer events. Our results suggest that DndCDEA-PbeABCD is a new type of PT-based virus resistance system, expanding the known arsenal of defence systems as well as our understanding of host-virus interactions.
Collapse
Affiliation(s)
- Lei Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Siyi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Si Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Yao Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Bochen Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Yali Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Yujing Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Beibei Chen
- College of Life Sciences, Wuhan University, 430071, Wuhan, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Xiangdong Chen
- College of Life Sciences, Wuhan University, 430071, Wuhan, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China.
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
20
|
Xia S, Chen J, Liu L, Wei Y, Deng Z, Wang L, Chen S. Tight control of genomic phosphorothioate modification by the ATP-modulated autoregulation and reusability of DndB. Mol Microbiol 2019; 111:938-950. [PMID: 30552823 DOI: 10.1111/mmi.14186] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
DNA phosphorothioate (PT) modification was recently identified to occur naturally in diverse bacteria and to be governed by DndABCDE proteins. The nuclease resistance as well as the redox and nucleophilic properties of PT sulfur make PT modification a versatile player in restriction-modification (R-M) defense, epigenetic regulation, environmental fitness and the maintenance of cellular redox homeostasis. In this study, we discovered that tight control of PT levels is mediated by the ATPase activity of DndB. The ATP-binding activity of DndB stimulates the dissociation of the DndB-DNA complex, allowing transcriptional initiation, whereas its ATP hydrolysis activity promotes the conversion of DndB-ATP to free DndB that is capable of rebinding to promoter DNA for transcriptional inhibition. Since sulfur incorporation is an ATP-consuming process, these activities provide an economical way to fine-tune PT modification in an ATP-sensing manner. To our knowledge, this ATP-mediated regulation is a rare example among DNA epigenetic modification systems; the features of autoregulation and the repeated usage of DndB allow the dedicated regulation of PT levels in response to cellular ATP concentrations, providing insight into PT function and its role in physiology.
Collapse
Affiliation(s)
- Sisi Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jun Chen
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Liqiong Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Wei
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| |
Collapse
|
21
|
Chi H, Wang X, Shao Y, Qin Y, Deng Z, Wang L, Chen S. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol 2019; 4:25-33. [PMID: 30560208 PMCID: PMC6290258 DOI: 10.1016/j.synbio.2018.12.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022] Open
Abstract
Engineering and modifying synthetic microbial chassis is one of the best ways not only to unravel the fundamental principles of life but also to enhance applications in the health, medicine, agricultural, veterinary, and food industries. The two primary strategies for constructing a microbial chassis are the top-down approach (genome reduction) and the bottom-up approach (genome synthesis). Research programs on this topic have been funded in several countries. The 'Minimum genome factory' (MGF) project was launched in 2001 in Japan with the goal of constructing microorganisms with smaller genomes for industrial use. One of the best examples of the results of this project is E. coli MGF-01, which has a reduced-genome size and exhibits better growth and higher threonine production characteristics than the parental strain [1]. The 'cell factory' project was carried out from 1998 to 2002 in the Fifth Framework Program of the EU (European Union), which tried to comprehensively understand microorganisms used in the application field. One of the outstanding results of this project was the elucidation of proteins secreted by Bacillus subtilis, which was summarized as the 'secretome' [2]. The GTL (Genomes to Life) program began in 2002 in the United States. In this program, researchers aimed to create artificial cells both in silico and in vitro, such as the successful design and synthesis of a minimal bacterial genome by John Craig Venter's group [3]. This review provides an update on recent advances in engineering, modification and application of synthetic microbial chassis, with particular emphasis on the value of learning about chassis as a way to better understand life and improve applications.
Collapse
Affiliation(s)
- Haotian Chi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoli Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yue Shao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Ying Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| |
Collapse
|
22
|
Petkowski JJ, Bains W, Seager S. Natural Products Containing 'Rare' Organophosphorus Functional Groups. Molecules 2019; 24:E866. [PMID: 30823503 PMCID: PMC6429109 DOI: 10.3390/molecules24050866] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Phosphorous-containing molecules are essential constituents of all living cells. While the phosphate functional group is very common in small molecule natural products, nucleic acids, and as chemical modification in protein and peptides, phosphorous can form P⁻N (phosphoramidate), P⁻S (phosphorothioate), and P⁻C (e.g., phosphonate and phosphinate) linkages. While rare, these moieties play critical roles in many processes and in all forms of life. In this review we thoroughly categorize P⁻N, P⁻S, and P⁻C natural organophosphorus compounds. Information on biological source, biological activity, and biosynthesis is included, if known. This review also summarizes the role of phosphorylation on unusual amino acids in proteins (N- and S-phosphorylation) and reviews the natural phosphorothioate (P⁻S) and phosphoramidate (P⁻N) modifications of DNA and nucleotides with an emphasis on their role in the metabolism of the cell. We challenge the commonly held notion that nonphosphate organophosphorus functional groups are an oddity of biochemistry, with no central role in the metabolism of the cell. We postulate that the extent of utilization of some phosphorus groups by life, especially those containing P⁻N bonds, is likely severely underestimated and has been largely overlooked, mainly due to the technological limitations in their detection and analysis.
Collapse
Affiliation(s)
- Janusz J Petkowski
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| | - William Bains
- Rufus Scientific, 37 The Moor, Melbourn, Royston, Herts SG8 6ED, UK.
| | - Sara Seager
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Physics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Structural basis for the recognition of sulfur in phosphorothioated DNA. Nat Commun 2018; 9:4689. [PMID: 30409991 PMCID: PMC6224610 DOI: 10.1038/s41467-018-07093-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 10/12/2018] [Indexed: 12/23/2022] Open
Abstract
There have been very few reports on protein domains that specifically recognize sulfur. Here we present the crystal structure of the sulfur-binding domain (SBD) from the DNA phosphorothioation (PT)-dependent restriction endonuclease ScoMcrA. SBD contains a hydrophobic surface cavity that is formed by the aromatic ring of Y164, the pyrolidine ring of P165, and the non-polar side chains of four other residues that serve as lid, base, and wall of the cavity. The SBD and PT-DNA undergo conformational changes upon binding. The S187RGRR191 loop inserts into the DNA major groove to make contacts with the bases of the GPSGCC core sequence. Mutating key residues of SBD impairs PT-DNA association. More than 1000 sequenced microbial species from fourteen phyla contain SBD homologs. We show that three of these homologs bind PT-DNA in vitro and restrict PT-DNA gene transfer in vivo. These results show that SBD-like PT-DNA readers exist widely in prokaryotes.
Collapse
|
24
|
Dai D, Pu T, Liang J, Wang Z, Tang A. Regulation of dndB Gene Expression in Streptomyces lividans. Front Microbiol 2018; 9:2387. [PMID: 30349518 PMCID: PMC6186775 DOI: 10.3389/fmicb.2018.02387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022] Open
Abstract
DNA sulfur modification is a unique modification occurring in the sugar-phosphate backbone of DNA, with a nonbridging oxygen atom substituted with sulfur in a sequence-specific and Rp stereo-specific manner. Bioinformatics, RNA-seq, and in vitro transcriptional analyses have shown that DNA sulfur modification may be involved in epigenetic regulation. However, the in vivo evidence supporting this assertion is not convincing. Here, we aimed to characterize two sulfur-modified sites near the dndB promoter region in Streptomyces lividans. Single mutation of either site had no effect on dndB transcription, whereas double mutation of both sites significantly elevated dndB expression. These findings suggested that DNA sulfur modification affected gene expression, and the role of DNA sulfur modification in epigenetic regulation depended on the number of sulfur-modified sites. We also identified an inverted repeat, the R repeat sequence, and showed that this sequence participated in the positive regulation of dndB gene expression.
Collapse
Affiliation(s)
- Daofeng Dai
- Health Science Center, The First Affiliated Hospital of Shenzhen University, and Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| | - Tianning Pu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aifa Tang
- Health Science Center, The First Affiliated Hospital of Shenzhen University, and Institute of Translational Medicine, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
25
|
Yu H, Liu G, Zhao G, Hu W, Wu G, Deng Z, He X. Identification of a conserved DNA sulfur recognition domain by characterizing the phosphorothioate-specific endonuclease SprMcrA from Streptomyces pristinaespiralis. Mol Microbiol 2018; 110:484-497. [PMID: 30184284 DOI: 10.1111/mmi.14118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2018] [Indexed: 12/28/2022]
Abstract
Streptomyces species have been valuable models for understanding the phenomenon of DNA phosphorothioation in which sulfur replaces a non-bridging oxygen in the phosphate backbone of DNA. We previously reported that the restriction endonuclease ScoMcrA from Streptomyces coelicolor cleaves phosphorothioate DNA and Dcm-methylated DNA at sites 16-28 nucleotides away from the modification sites. However, cleavage of modified DNA by ScoMcrA is always incomplete and accompanied by severe promiscuous activity on unmodified DNA. These features complicate the studies of recognition and cleavage of phosphorothioate DNA. For these reasons, we here characterized SprMcrA from Streptomyces pristinaespiralis, a much smaller homolog of ScoMcrA with a rare HRH motif, a variant of the HNH motif that forms the catalytic center of these endonucleases. The sulfur-binding domain of SprMcrA and its phosphorothioation recognition site were determined. Compared to ScoMcrA, SprMcrA has higher specificity in discerning phosphorothioate DNA from unmodified DNA, and this enzyme generally cuts both strands at a distance of 11-14 nucleotides from the 5' side of the recognition site. The HRH/HNH motif has its own sequence specificity in DNA hydrolysis, leading to failure of cleavage at some phosphorothioated sites. An R248N mutation of the central residue in HRH resulted in 30-fold enhancement in cleavage activity of phosphorothioate DNA and altered the cleavage efficiency at some sites, whereas mutation of both His residues abolished restriction activity. This is the first report of a recognition domain for phosphorothioate DNA and phosphorothioate-dependent and sequence-specific restriction activity.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Gong Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenyue Hu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Liu L, Zhang Y, Jiang D, Du S, Deng Z, Wang L, Chen S. Recent Advances in the Genomic Profiling of Bacterial Epigenetic Modifications. Biotechnol J 2018; 14:e1800001. [PMID: 29878585 DOI: 10.1002/biot.201800001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/03/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Liqiong Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Yizhou Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
| | - Dongxu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Shiming Du
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- State Key Laboratory of Microbial Metabolism; School of Life Sciences and Biotechnology; Shanghai Jiao Tong University; Shanghai 200240 China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery; Ministry of Education; School of Pharmaceutical Sciences; Zhongnan Hospital; Wuhan University; Wuhan 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan 442000 Hubei China
| |
Collapse
|
27
|
Occurrence, evolution, and functions of DNA phosphorothioate epigenetics in bacteria. Proc Natl Acad Sci U S A 2018. [PMID: 29531068 DOI: 10.1073/pnas.1721916115] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The chemical diversity of physiological DNA modifications has expanded with the identification of phosphorothioate (PT) modification in which the nonbridging oxygen in the sugar-phosphate backbone of DNA is replaced by sulfur. Together with DndFGH as cognate restriction enzymes, DNA PT modification, which is catalyzed by the DndABCDE proteins, functions as a bacterial restriction-modification (R-M) system that protects cells against invading foreign DNA. However, the occurrence of dnd systems across a large number of bacterial genomes and their functions other than R-M are poorly understood. Here, a genomic survey revealed the prevalence of bacterial dnd systems: 1,349 bacterial dnd systems were observed to occur sporadically across diverse phylogenetic groups, and nearly half of these occur in the form of a solitary dndBCDE gene cluster that lacks the dndFGH restriction counterparts. A phylogenetic analysis of 734 complete PT R-M pairs revealed the coevolution of M and R components, despite the observation that several PT R-M pairs appeared to be assembled from M and R parts acquired from distantly related organisms. Concurrent epigenomic analysis, transcriptome analysis, and metabolome characterization showed that a solitary PT modification contributed to the overall cellular redox state, the loss of which perturbed the cellular redox balance and induced Pseudomonas fluorescens to reconfigure its metabolism to fend off oxidative stress. An in vitro transcriptional assay revealed altered transcriptional efficiency in the presence of PT DNA modification, implicating its function in epigenetic regulation. These data suggest the versatility of PT in addition to its involvement in R-M protection.
Collapse
|
28
|
Kellner S, DeMott MS, Cheng CP, Russell BS, Cao B, You D, Dedon PC. Oxidation of phosphorothioate DNA modifications leads to lethal genomic instability. Nat Chem Biol 2017; 13:888-894. [PMID: 28604692 PMCID: PMC5577368 DOI: 10.1038/nchembio.2407] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 03/30/2017] [Indexed: 12/12/2022]
Abstract
Genomic modification with sulfur as phosphorothioate (PT) is widespread among prokaryotes, including human pathogens. Apart from its physiological functions, the redox and nucleophilic properties of PT sulfur suggest effects on bacterial fitness in stressful environments. Here we show that PTs are dynamic and labile DNA modifications that cause genomic instability during oxidative stress. Using coupled isotopic labeling-mass spectrometry, we observed sulfur replacement in PTs at a rate of ~2%/h in unstressed Escherichia coli and Salmonella enterica. While PT levels were unaffected by exposure to hydrogen peroxide (H2O2) or hypochlorous acid (HOCl), PT turnover increased to 3.8–10%/h for HOCl and was unchanged for H2O2, consistent with repair of HOCl-induced sulfur damage. PT-dependent HOCl sensitivity extended to cytotoxicity and DNA strand-breaks, which occurred at orders-of-magnitude lower doses of HOCl than H2O2. The genotoxicity of HOCl in PT-containing bacteria suggests reduced fitness in competition with HOCl-producing organisms and during human infections.
Collapse
Affiliation(s)
- Stefanie Kellner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael S DeMott
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ching Pin Cheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Brandon S Russell
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Bo Cao
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Delin You
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Peter C Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Singapore-MIT Alliance for Research and Technology, Singapore
| |
Collapse
|
29
|
Ahlgren NA, Chen Y, Needham DM, Parada AE, Sachdeva R, Trinh V, Chen T, Fuhrman JA. Genome and epigenome of a novel marine Thaumarchaeota strain suggest viral infection, phosphorothioation DNA modification and multiple restriction systems. Environ Microbiol 2017; 19:2434-2452. [PMID: 28418097 DOI: 10.1111/1462-2920.13768] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/08/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
Abstract
Marine Thaumarchaeota are abundant ammonia-oxidizers but have few representative laboratory-cultured strains. We report the cultivation of Candidatus Nitrosomarinus catalina SPOT01, a novel strain that is less warm-temperature tolerant than other cultivated Thaumarchaeota. Using metagenomic recruitment, strain SPOT01 comprises a major portion of Thaumarchaeota (4-54%) in temperate Pacific waters. Its complete 1.36 Mbp genome possesses several distinguishing features: putative phosphorothioation (PT) DNA modification genes; a region containing probable viral genes; and putative urea utilization genes. The PT modification genes and an adjacent putative restriction enzyme (RE) operon likely form a restriction modification (RM) system for defence from foreign DNA. PacBio sequencing showed >98% methylation at two motifs, and inferred PT guanine modification of 19% of possible TGCA sites. Metagenomic recruitment also reveals the putative virus region and PT modification and RE genes are present in 18-26%, 9-14% and <1.5% of natural populations at 150 m with ≥85% identity to strain SPOT01. The presence of multiple probable RM systems in a highly streamlined genome suggests a surprising importance for defence from foreign DNA for dilute populations that infrequently encounter viruses or other cells. This new strain provides new insights into the ecology, including viral interactions, of this important group of marine microbes.
Collapse
Affiliation(s)
- Nathan A Ahlgren
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yangyang Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - David M Needham
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Alma E Parada
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rohan Sachdeva
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Vickie Trinh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ting Chen
- Bioinformatics Division, TNLIST, Department of Computer Science and Technology, Tsinghua University, Beijing, China
| | - Jed A Fuhrman
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Convergence of DNA methylation and phosphorothioation epigenetics in bacterial genomes. Proc Natl Acad Sci U S A 2017; 114:4501-4506. [PMID: 28400512 DOI: 10.1073/pnas.1702450114] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Explosive growth in the study of microbial epigenetics has revealed a diversity of chemical structures and biological functions of DNA modifications in restriction-modification (R-M) and basic genetic processes. Here, we describe the discovery of shared consensus sequences for two seemingly unrelated DNA modification systems, 6mA methylation and phosphorothioation (PT), in which sulfur replaces a nonbridging oxygen in the DNA backbone. Mass spectrometric analysis of DNA from Escherichia coli B7A and Salmonella enterica serovar Cerro 87, strains possessing PT-based R-M genes, revealed d(GPS6mA) dinucleotides in the GPS6mAAC consensus representing ∼5% of the 1,100 to 1,300 PT-modified d(GPSA) motifs per genome, with 6mA arising from a yet-to-be-identified methyltransferase. To further explore PT and 6mA in another consensus sequence, GPS6mATC, we engineered a strain of E. coli HST04 to express Dnd genes from Hahella chejuensis KCTC2396 (PT in GPSATC) and Dam methyltransferase from E. coli DH10B (6mA in G6mATC). Based on this model, in vitro studies revealed reduced Dam activity in GPSATC-containing oligonucleotides whereas single-molecule real-time sequencing of HST04 DNA revealed 6mA in all 2,058 GPSATC sites (5% of 37,698 total GATC sites). This model system also revealed temperature-sensitive restriction by DndFGH in KCTC2396 and B7A, which was exploited to discover that 6mA can substitute for PT to confer resistance to restriction by the DndFGH system. These results point to complex but unappreciated interactions between DNA modification systems and raise the possibility of coevolution of interacting systems to facilitate the function of each.
Collapse
|
31
|
Zou X, Wang L, Li Z, Luo J, Wang Y, Deng Z, Du S, Chen S. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics. Med Res Rev 2017; 38:229-260. [PMID: 28295439 DOI: 10.1002/med.21439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/06/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Xuan Zou
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Lianrong Wang
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Zhiqiang Li
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Jie Luo
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Yunfu Wang
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Zixin Deng
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Shiming Du
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Shi Chen
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| |
Collapse
|
32
|
Mechanistic Investigation on ROS Resistance of Phosphorothioated DNA. Sci Rep 2017; 7:42823. [PMID: 28216673 PMCID: PMC5316992 DOI: 10.1038/srep42823] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/16/2017] [Indexed: 11/23/2022] Open
Abstract
Phosphorothioated DNA (PT-DNA) exhibits a mild anti-oxidant property both in vivo and in vitro. It was found that 8-OHdG and ROS levels were significantly lower in dnd+ (i.e. S+) E. coli., compared to a dnd− (i.e. S−) strain. Furthermore, different from traditional antioxidants, phosphorothioate compound presents an unexpectedly high capacity to quench hydroxyl radical. Oxidative product analysis by liquid chromatography-mass spectrometry and quantum mechanistic computation supported its unique anti-oxidant characteristic of the hydroxyl selectivity: phosphorothioate donates an electron to either hydroxyl radical or guanine radical derived from hydroxyl radical, leading to a PS• radical; a complex of PS• radical and OH− (i.e. the reductive product of hydroxyl radical) releases a highly reductive HS• radical, which scavenges more equivalents of oxidants in the way to high-covalent sulphur compounds such as sulphur, sulphite and sulphate. The PS-PO conversion (PS and PO denote phosphorus-sulphur and phosphorus-oxygen compounds, respectively) made a switch of extremely oxidative OH• to highly reductive HS• species, endowing PT-DNA with the observed high capacity in hydroxyl-radical neutralization. This plausible mechanism provides partial rationale as to why bacteria develop the resource-demanding PT modification on guanine-neighboring phosphates in genome.
Collapse
|
33
|
Dai D, Du A, Xiong K, Pu T, Zhou X, Deng Z, Liang J, He X, Wang Z. DNA Phosphorothioate Modification Plays a Role in Peroxides Resistance in Streptomyces lividans. Front Microbiol 2016; 7:1380. [PMID: 27630631 PMCID: PMC5005934 DOI: 10.3389/fmicb.2016.01380] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
DNA phosphorothioation, conferred by dnd genes, was originally discovered in the soil-dwelling bacterium Streptomyces lividans, and thereafter found to exist in various bacterial genera. However, the physiological significance of this sulfur modification of the DNA backbone remains unknown in S. lividans. Our studies indicate that DNA phosphorothioation has a major role in resistance to oxidative stress in the strain. Although Streptomyces species express multiple catalase/peroxidase and organic hydroperoxide resistance genes to protect them against peroxide damage, a wild type strain of S. lividans exhibited two-fold to 10-fold higher survival, compared to a dnd− mutant, following treatment with peroxides. RNA-seq experiments revealed that, catalase and organic hydroperoxide resistance gene expression were not up-regulated in the wild type strain, suggesting that the resistance to oxidative stress was not due to the up-regulation of these genes by DNA phosphorothioation. Quantitative RT-PCR analysis was conducted to trace the expression of the catalase and the organic hydroperoxide resistance genes after peroxides treatments. A bunch of these genes were activated in the dnd− mutant rather than the wild type strain in response to peroxides. Moreover, the organic hydroperoxide peracetic acid was scavenged more rapidly in the presence than in the absence of phosphorothioate modification, both in vivo and in vitro. The dnd gene cluster can be up-regulated by the disulfide stressor diamide. Overall, our observations suggest that DNA phosphorothioate modification functions as a peroxide resistance system in S. lividans.
Collapse
Affiliation(s)
- Daofeng Dai
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Aiqin Du
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Kangli Xiong
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Tianning Pu
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xiufen Zhou
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Jingdan Liang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Xinyi He
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| | - Zhijun Wang
- State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University Shanghai, China
| |
Collapse
|
34
|
He W, Huang T, Tang Y, Liu Y, Wu X, Chen S, Chan W, Wang Y, Liu X, Chen S, Wang L. Regulation of DNA phosphorothioate modification in Salmonella enterica by DndB. Sci Rep 2015; 5:12368. [PMID: 26190504 PMCID: PMC4507180 DOI: 10.1038/srep12368] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/24/2015] [Indexed: 01/30/2023] Open
Abstract
DNA phosphorothioate (PT) modification, in which the non-bridging oxygen of the sugar-phosphate backbone is substituted by sulfur, occurs naturally in diverse bacteria and archaea and is regulated by the DndABCDE proteins. DndABCDE and the restriction cognate DndFGHI constitute a new type of defense system that prevents the invasion of foreign DNA in Salmonella enterica serovar Cerro 87. GAAC/GTTC consensus contexts across genomes were found to possess partial PT modifications even in the presence of restriction activity, indicating the regulation of PT. The abundance of PT in cells must be controlled to suit cellular activities. However, the regulatory mechanism of PT modification has not been characterized. The result here indicated that genomic PT modification in S. enterica is controlled by the transcriptional regulator DndB, which binds to two regions in the promoter, each possessing a 5'-TACGN(10)CGTA-3' palindromic motif, to regulate the transcription of dndCDE and its own gene. Site-directed mutagenesis showed that the Cys29 residue of DndB plays a key role in its DNA-binding activity or conformation. Proteomic analysis identified changes to a number of cellular proteins upon up-regulation and loss of PT. Considering the genetic conservation of dnd operons, regulation of PT by DndB might be widespread in diverse organisms.
Collapse
Affiliation(s)
- Wei He
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Teng Huang
- 1] Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China [2] Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - You Tang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yanhua Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaolin Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Si Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wan Chan
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yajie Wang
- 1] Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China [2] Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaoyun Liu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|