1
|
Liu J, Wang Y, Liu Y, Wu Y, Bian B, Shang J, Li R. Recent Progress in Wearable Near-Sensor and In-Sensor Intelligent Perception Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:2180. [PMID: 38610389 PMCID: PMC11014300 DOI: 10.3390/s24072180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
As the Internet of Things (IoT) becomes more widespread, wearable smart systems will begin to be used in a variety of applications in people's daily lives, not only requiring the devices to have excellent flexibility and biocompatibility, but also taking into account redundant data and communication delays due to the use of a large number of sensors. Fortunately, the emerging paradigms of near-sensor and in-sensor computing, together with the proposal of flexible neuromorphic devices, provides a viable solution for the application of intelligent low-power wearable devices. Therefore, wearable smart systems based on new computing paradigms are of great research value. This review discusses the research status of a flexible five-sense sensing system based on near-sensor and in-sensor architectures, considering material design, structural design and circuit design. Furthermore, we summarize challenging problems that need to be solved and provide an outlook on the potential applications of intelligent wearable devices.
Collapse
Affiliation(s)
- Jialin Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
| | - Yitao Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
| | - Baoru Bian
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
- Materials and Optoelectronics Research Center, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runwei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, China Academy of Sciences, Ningbo 315201, China; (J.L.); (Y.W.); (Y.L.); (Y.W.); (B.B.)
- College of Materials Science and Opto-Electronic Technology, University of China Academy of Sciences, Beijing 100049, China
- Materials and Optoelectronics Research Center, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Huang M, Schwacke M, Onen M, Del Alamo J, Li J, Yildiz B. Electrochemical Ionic Synapses: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205169. [PMID: 36300807 DOI: 10.1002/adma.202205169] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Artificial neural networks based on crossbar arrays of analog programmable resistors can address the high energy challenge of conventional hardware in artificial intelligence applications. However, state-of-the-art two-terminal resistive switching devices based on conductive filament formation suffer from high variability and poor controllability. Electrochemical ionic synapses are three-terminal devices that operate by electrochemical and dynamic insertion/extraction of ions that control the electronic conductivity of a channel in a single solid-solution phase. They are promising candidates for programmable resistors in crossbar arrays because they have shown uniform and deterministic control of electronic conductivity based on ion doping, with very low energy consumption. Here, the desirable specifications of these programmable resistors are presented. Then, an overview of the current progress of devices based on Li+ , O2- , and H+ ions and material systems is provided. Achieving nanosecond speed, low operation voltage (≈1 V), low energy consumption, with complementary metal-oxide-semiconductor compatibility all simultaneously remains a challenge. Toward this goal, a physical model of the device is constructed to provide guidelines for the desired material properties to overcome the remaining challenges. Finally, an outlook is provided, including strategies to advance materials toward the desirable properties and the future opportunities for electrochemical ionic synapses.
Collapse
Affiliation(s)
- Mantao Huang
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Miranda Schwacke
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Murat Onen
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jesús Del Alamo
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ju Li
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Bilge Yildiz
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Saketh
Ram M, Svensson J, Wernersson LE. Effects of Interface Oxidation on Noise Properties and Performance in III-V Vertical Nanowire Memristors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19085-19091. [PMID: 37026413 PMCID: PMC10119853 DOI: 10.1021/acsami.2c21669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Memristors implemented as resistive random-access memories (RRAMs) owing to their low power consumption, scalability, and speed are promising candidates for in-memory computing and neuromorphic applications. Moreover, a vertical 3D implementation of RRAMs enables high-density crossbar arrays at a minimal footprint. Co-integrated III-V vertical gate-all-around MOSFET selectors in a one-transistor-one-resistor (1T1R) configuration have recently been demonstrated where an interlayer (IL)-oxide has been shown to enable high RRAM endurance needed for applications like machine learning. In this work, we evaluate the role of the IL-oxide directly on InAs vertical nanowires using low-frequency noise characterization. We show that the low-frequency noise or the 1/f-noise in InAs vertical RRAMs can be reduced by more than 3 orders of magnitude by engineering the InAs/high-k interface. We also report that the noise properties of the vertical 1T1R do not degrade significantly after RRAM integration making them attractive to be used in emerging electronic circuits.
Collapse
|
4
|
Nandakumar S, Kulkarni SR, Babu AV, Rajendran B. Building Brain-Inspired Computing Systems: Examining the Role of Nanoscale Devices. IEEE NANOTECHNOLOGY MAGAZINE 2018. [DOI: 10.1109/mnano.2018.2845078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Ji X, Song L, He W, Huang K, Yan Z, Zhong S, Zhang Y, Zhao R. Super Nonlinear Electrodeposition-Diffusion-Controlled Thin-Film Selector. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10165-10172. [PMID: 29488370 DOI: 10.1021/acsami.7b17235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Selector elements with high nonlinearity are an indispensable part in constructing high density, large-scale, 3D stackable emerging nonvolatile memory and neuromorphic network. Although significant efforts have been devoted to developing novel thin-film selectors, it remains a great challenge in achieving good switching performance in the selectors to satisfy the stringent electrical criteria of diverse memory elements. In this work, we utilized high-defect-density chalcogenide glass (Ge2Sb2Te5) in conjunction with high mobility Ag element (Ag-GST) to achieve a super nonlinear selective switching. A novel electrodeposition-diffusion dynamic selector based on Ag-GST exhibits superior selecting performance including excellent nonlinearity (<5 mV/dev), ultra-low leakage (<10 fA), and bidirectional operation. With the solid microstructure evidence and dynamic analyses, we attributed the selective switching to the competition between the electrodeposition and diffusion of Ag atoms in the glassy GST matrix under electric field. A switching model is proposed, and the in-depth understanding of the selective switching mechanism offers an insight of switching dynamics for the electrodeposition-diffusion-controlled thin-film selector. This work opens a new direction of selector designs by combining high mobility elements and high-defect-density chalcogenide glasses, which can be extended to other materials with similar properties.
Collapse
Affiliation(s)
- Xinglong Ji
- Department of Engineering Product Design , Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Li Song
- Department of Engineering Product Design , Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Wei He
- Department of Engineering Product Design , Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Kejie Huang
- College of Information Science Electronic Engineering , Zhejiang University , Hangzhou 310027 , China
| | - Zhiyuan Yan
- Department of Engineering Product Design , Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Shuai Zhong
- Department of Engineering Product Design , Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Yishu Zhang
- Department of Engineering Product Design , Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| | - Rong Zhao
- Department of Engineering Product Design , Singapore University of Technology and Design , 8 Somapah Road , 487372 , Singapore
| |
Collapse
|