1
|
Ding S, Zhang R, Zhang P, Shi J, Liu L, Li J, Zhang R, Wu F, Zhou P. The application of quantitative telomerase activity measurement as an important indicator to monitor the cardiomyocyte differentiation process of human induced pluripotent stem cells under defined conditions. Biochem Biophys Res Commun 2023; 687:149150. [PMID: 37939503 DOI: 10.1016/j.bbrc.2023.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023]
Abstract
The construction of an in vitro differentiation system for human induced pluripotent stem cells (hiPSCs) has made exciting progress, but it is still of great significance to clarify the differentiation process. The use of conventional genetic and protein-labeled microscopes to observe or detect different stages of hiPSC differentiation is not specific enough and is cumbersome and time-consuming. In this study, in addition to analyzing the expression of gene/protein-related markers, we used a previously reported simple and excellent quantitative method of cellular telomerase activity based on a quartz crystal microbalance (TREAQ) device to monitor the dynamic changes in cellular telomerase activity in hiPSCs during myocardial differentiation under chemically defined conditions. Finally, by integrating these results, we analyzed the relationship between telomerase activity and the expression of marker genes/proteins as well as the cell type at each study time point. This dynamic quantitative measurement of cellular telomerase activity should be a promising indicator for monitoring dynamic changes in a stage of hiPSC differentiation and inducing cell types. This study provided a quantitative, dynamic and simple monitoring index for the in vitro differentiation process of hiPSC-CMs, which was a certain reference value for the optimization and improvement of the induction system.
Collapse
Affiliation(s)
- Shaoli Ding
- Department of Pain Treatment, Gansu Provincial Hospital, Lanzhou, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Rongzhi Zhang
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Pengxia Zhang
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Jiamin Shi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lu Liu
- Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Jiamin Li
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Rui Zhang
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
| | - Fujian Wu
- Translational Medicine Collaborative Innovation Center, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen, 518055, Guangdong, China.
| | - Ping Zhou
- School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Zhou P, Shi JM, Song JE, Han Y, Li HJ, Song YM, Feng F, Wang JL, Zhang R, Lan F. Establishing a deeper understanding of the osteogenic differentiation of monolayer cultured human pluripotent stem cells using novel and detailed analyses. Stem Cell Res Ther 2021; 12:41. [PMID: 33413612 PMCID: PMC7792045 DOI: 10.1186/s13287-020-02085-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/07/2020] [Indexed: 12/14/2022] Open
Abstract
Background Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed. Methods Monolayer cultured human embryonic stem cells and human-induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week. Results The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrate the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded. Conclusions Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a stepwise induction system in the future.
Collapse
Affiliation(s)
- Ping Zhou
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Jia-Min Shi
- College of Life Sciences, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Jing-E Song
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Yu Han
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Hong-Jiao Li
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Ya-Meng Song
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Fang Feng
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Jian-Lin Wang
- College of Life Sciences, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Rui Zhang
- School and Hospital of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China. .,College of Life Sciences, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, Gansu Province, People's Republic of China.
| | - Feng Lan
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China.
| |
Collapse
|
3
|
Determining Osteogenic Differentiation Efficacy of Pluripotent Stem Cells by Telomerase Activity. Tissue Eng Regen Med 2018; 15:751-760. [PMID: 30603593 DOI: 10.1007/s13770-018-0138-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Background Bone tissue engineering based on pluripotent stem cells (PSCs) is a new approach to deal with bone defects. Protocols have been developed to generate osteoblasts from PSCs. However, the low efficiency of this process is still an important issue that needs to be resolved. Many studies have aimed to improve efficiency, but developing accurate methods to determine efficacy is also critical. Studies using pluripotency to estimate efficacy are rare. Telomerase is highly associated with pluripotency. Methods We have described a quantitative method to measure telomerase activity, telomeric repeat elongation assay based on quartz crystal microbalance (QCM). To investigate whether this method could be used to determine the efficiency of in vitro osteogenic differentiation based on pluripotency, we measured the pluripotency pattern of cultures through stemness gene expression, proliferation ability and telomerase activity, measured by QCM. Results We showed that the pluripotency pattern determined by QCM was similar to the patterns of proliferation ability and gene expression, which showed a slight upregulation at the late stages, within the context of the general downregulation tendency during differentiation. Additionally, a comprehensive gene expression pattern covering nearly every stage of differentiation was identified. Conclusion Therefore, this assay may be powerful tools for determining the efficiency of differentiation systems based on pluripotency. In this study, we not only introduce a new method for determining efficiency based on pluripotency, but also provide more information about the characteristics of osteogenic differentiation which help facilitate future development of more efficient protocols.
Collapse
|
4
|
|
5
|
Jin Y, Xie Y, Wu K, Huang Y, Wang F, Zhao R. Probing the Dynamic Interaction between Damaged DNA and a Cellular Responsive Protein Using a Piezoelectric Mass Biosensor. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8490-8497. [PMID: 28218519 DOI: 10.1021/acsami.6b15077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The binding events between damaged DNA and recognition biomolecules are of great interest for understanding the activity of DNA-damaging drugs and the related DNA repair networks. Herein, a simple and sensitive sensor system was tailored for real-time probing of the dynamic molecular recognition between cisplatin-damaged-DNA (cisPt-DNA) and a cellular responsive protein, high-mobility-group box 1 (HMGB1). By integration of flow injection analysis (FIA) with quartz crystal microbalance (QCM), the interaction time-course of cisPt-DNA and HMGB1 domain A (HMGB1a) was investigated. The highly specific sensing interface was carefully designed and fabricated using cisPt-DNA as recognition element. A hybrid self-assembled monolayer consisting of cysteamine and mercaptohexanol was introduced to resist nonspecific adsorption. The calculated kinetic parameters (kass and kdiss) and the dissociation constant (KD) demonstrated the rapid recognition and tight binding of HMGB1a toward cisPt-DNA. Molecular docking was employed to simulate the complex formed by cisPt-DNA and HMGB1a. The tight binding of such a DNA-damage responsive complex is appealing for the downstream molecular recognition event related to the resistance to DNA repair. This continuous-flow QCM biosensor is an ideal tool for studying specific interactions between drug-damaged-DNAs and their recognition proteins in a physiological-relevant environment, and will provide a potential sensor platform for rapid screening and evaluating metal anticancer drugs.
Collapse
Affiliation(s)
- Yulong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yunfeng Xie
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Yanyan Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
6
|
Zhou P, Wu F, Zhou T, Cai X, Zhang S, Zhang X, Li Q, Li Y, Zheng Y, Wang M, Lan F, Pan G, Pei D, Wei S. Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions. Biomaterials 2016; 87:1-17. [PMID: 26897536 DOI: 10.1016/j.biomaterials.2016.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/04/2016] [Indexed: 01/03/2023]
|
7
|
Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol 2016; 13:707-19. [PMID: 26786236 DOI: 10.1080/15476286.2015.1134413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation.
Collapse
Affiliation(s)
- Jonathan H Teichroeb
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Joohwan Kim
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Dean H Betts
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada.,b Children's Health Research Institute, Lawson Health Research Institute , London , Ontario , Canada
| |
Collapse
|
8
|
Huang Y, Zhang Q, Liu G, Zhao R. A continuous-flow mass biosensor for the real-time dynamic analysis of protease inhibition. Chem Commun (Camb) 2015; 51:6601-4. [DOI: 10.1039/c5cc00885a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A flow injection analysis–quartz crystal microbalance (FIA–QCM) biosensor system was introduced for probing the dynamic interactions during protease inhibition.
Collapse
Affiliation(s)
- Yanyan Huang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Qundan Zhang
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Guoquan Liu
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Rui Zhao
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Analytical Chemistry for Living Biosystems
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|