1
|
Mohammadi H, Zeidler A, Youngman RE, Fischer HE, Salmon PS. Pressure dependent structure of amorphous magnesium aluminosilicates: The effect of replacing magnesia by alumina at the enstatite composition. J Chem Phys 2024; 160:064501. [PMID: 38341794 DOI: 10.1063/5.0189392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/07/2024] [Indexed: 02/13/2024] Open
Abstract
The effect of replacing magnesia by alumina on the pressure-dependent structure of amorphous enstatite was investigated by applying in situ high-pressure neutron diffraction with magnesium isotope substitution to glassy (MgO)0.375(Al2O3)0.125(SiO2)0.5. The replacement leads to a factor of 2.4 increase in the rate-of-change of the Mg-O coordination number with pressure, which increases from 4.76(4) at ambient pressure to 6.51(4) at 8.2 GPa, and accompanies a larger probability of magnesium finding bridging oxygen atoms as nearest-neighbors. The Al-O coordination number increases from 4.17(7) to 5.24(8) over the same pressure interval at a rate that increases when the pressure is above ∼3.5 GPa. On recovering the glass to ambient conditions, the Mg-O and Al-O coordination numbers reduce to 5.32(4) and 4.42(6), respectively. The Al-O value is in accordance with the results from solid-state 27Al nuclear magnetic resonance spectroscopy, which show the presence of six-coordinated aluminum species that are absent in the uncompressed material. These findings explain the appearance of distinct pressure-dependent structural transformation regimes in the preparation of permanently densified magnesium aluminosilicate glasses. They also indicate an anomalous minimum in the pressure dependence of the bulk modulus with an onset that suggests a pressure-dependent threshold for transitioning between scratch-resistant and crack-resistant material properties.
Collapse
Affiliation(s)
| | - Anita Zeidler
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Randall E Youngman
- Science and Technology Division, Corning Incorporated, Corning, New York 14831, USA
| | - Henry E Fischer
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Philip S Salmon
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
2
|
Simoncelli M, Mauri F, Marzari N. Thermal conductivity of glasses: first-principles theory and applications. NPJ COMPUTATIONAL MATERIALS 2023; 9:106. [PMID: 38666060 PMCID: PMC11041661 DOI: 10.1038/s41524-023-01033-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/05/2023] [Indexed: 04/28/2024]
Abstract
Predicting the thermal conductivity of glasses from first principles has hitherto been a very complex problem. The established Allen-Feldman and Green-Kubo approaches employ approximations with limited validity-the former neglects anharmonicity, the latter misses the quantum Bose-Einstein statistics of vibrations-and require atomistic models that are very challenging for first-principles methods. Here, we present a protocol to determine from first principles the thermal conductivity κ(T) of glasses above the plateau (i.e., above the temperature-independent region appearing almost without exceptions in the κ(T) of all glasses at cryogenic temperatures). The protocol combines the Wigner formulation of thermal transport with convergence-acceleration techniques, and accounts comprehensively for the effects of structural disorder, anharmonicity, and Bose-Einstein statistics. We validate this approach in vitreous silica, showing that models containing less than 200 atoms can already reproduce κ(T) in the macroscopic limit. We discuss the effects of anharmonicity and the mechanisms determining the trend of κ(T) at high temperature, reproducing experiments at temperatures where radiative effects remain negligible.
Collapse
Affiliation(s)
- Michele Simoncelli
- Theory of Condensed Matter Group of the Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Francesco Mauri
- Dipartimento di Fisica, Università di Roma La Sapienza, Roma, Italy
| | - Nicola Marzari
- Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Li S, Kweon JJ, Lee S, Lee AC, Lee SK. Coordination Changes in Densified Aluminate Glass upon Compression up to 65 GPa: A View from Solid-State Nuclear Magnetic Resonance. J Phys Chem Lett 2023; 14:2078-2086. [PMID: 36799494 PMCID: PMC9986953 DOI: 10.1021/acs.jpclett.3c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Deciphering the structural evolution in irreversibly densified oxide glasses is crucial for fabricating functional glasses with tunable properties and elucidating the nature of pressure-induced anomalous plastic deformation in glasses. High-resolution NMR spectroscopy quantifies atomic-level structural information on densified glasses; however, its application is limited to the low-pressure range due to technical challenges. Here, we report the first high-resolution NMR spectra of oxide glass compressed by diamond anvil cells at room temperature, extending the pressure record of such studies from 24 to 65 GPa. The results constrain the densification path through coordination transformation of Al cations. Based on a statistical thermodynamic model, the stepwise changes in the Al fractions of oxide glasses and the effects of network polymerization on the densification paths are quantified. These results extend the knowledge on densification of the previously unattainable pressure conditions and contribute to understanding the origin of mechanical strengthening of the glasses.
Collapse
Affiliation(s)
- Shujia Li
- Laboratory
of Physics and Chemistry of Earth Materials, School of Earth and Environmental
Sciences, Seoul National University, Seoul 08826, South Korea
| | - Jin Jung Kweon
- Laboratory
of Physics and Chemistry of Earth Materials, School of Earth and Environmental
Sciences, Seoul National University, Seoul 08826, South Korea
| | - Seoyoung Lee
- Laboratory
of Physics and Chemistry of Earth Materials, School of Earth and Environmental
Sciences, Seoul National University, Seoul 08826, South Korea
| | - A Chim Lee
- Laboratory
of Physics and Chemistry of Earth Materials, School of Earth and Environmental
Sciences, Seoul National University, Seoul 08826, South Korea
| | - Sung Keun Lee
- Laboratory
of Physics and Chemistry of Earth Materials, School of Earth and Environmental
Sciences, Seoul National University, Seoul 08826, South Korea
- College
of Natural Sciences, Institute of Applied Physics, Seoul National University, Seoul 08826, South
Korea
| |
Collapse
|
4
|
Sun N, Mao Z, Zhang X, Tkachev SN, Lin JF. Hot dense silica glass with ultrahigh elastic moduli. Sci Rep 2022; 12:13946. [PMID: 35977985 PMCID: PMC9385850 DOI: 10.1038/s41598-022-18062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Silicate and oxide glasses are often chemically doped with a variety of cations to tune for desirable properties in technological applications, but their performances are often limited by relatively lower mechanical and elastic properties. Finding a new route to synthesize silica-based glasses with high elastic and mechanical properties needs to be explored. Here, we report a dense SiO2-glass with ultra-high elastic moduli using sound velocity measurements by Brillouin scattering up to 72 GPa at 300 K. High-temperature measurements were performed up to 63 GPa at 750 K and 59 GPa at 1000 K. Compared to compression at 300 K, elevated temperature helps compressed SiO2-glass effectively overcome the kinetic barrier to undergo permanent densification with enhanced coordination number and connectivity. This hot compressed SiO2-glass exhibits a substantially high bulk modulus of 361–429 GPa which is at least 2–3 times greater than the metallic, oxide, and silicate glasses at ambient conditions. Its Poisson’s ratio, an indicator for the packing efficiency, is comparable to the metallic glasses. Even after temperature quench and decompression to ambient conditions, the SiO2-glass retains some of its unique properties at compression and possesses a Poisson’s ratio of 0.248(11). In addition to chemical alternatives in glass syntheses, coupled compression and heating treatments can be an effective means to enhance mechanical and elastic properties in high-performance glasses.
Collapse
Affiliation(s)
- Ningyu Sun
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.,CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhu Mao
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China. .,CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, 230026, China. .,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Xinyue Zhang
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Sergey N Tkachev
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - Jung-Fu Lin
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
5
|
Dernov A, Tong Z, Kumar R, Agarwal P, Frauenheim T, Dumitrică T. Density Functional‐Based Tight‐Binding Simulations of Pristine and Aluminum‐Modified Silica. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andrei Dernov
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| | - Zhen Tong
- Shenzhen JL Computational Science and Applied Research Institute Shenzhen 518131 China
| | - Ravi Kumar
- Lam Research Corporation Tualatin OR 97062 USA
| | | | - Thomas Frauenheim
- Shenzhen JL Computational Science and Applied Research Institute Shenzhen 518131 China
- Bremen Center for Computational Materials Science University of Bremen 2835 Bremen Germany
| | - Traian Dumitrică
- Department of Mechanical Engineering University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
6
|
Beltukov YM, Conyuh DA, Solov'yov IA. Local elastic properties of polystyrene nanocomposites increase significantly due to nonaffine deformations. Phys Rev E 2022; 105:L012501. [PMID: 35193276 DOI: 10.1103/physreve.105.l012501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/17/2021] [Indexed: 11/07/2022]
Abstract
We investigate the local elastic properties of polystyrene doped with SiO_{2} nanoparticles by analyzing the local density fluctuations. The density fluctuations were established from coarse-grained molecular dynamics simulations performed with the MARTINI force field. A significant increase in polystyrene stiffness was revealed within a characteristic range of 1.4 nm from the nanoparticle, while polystyrene density saturates to the bulk value at significantly shorter distances. The enhancement of the local elastic properties of the polymer was attributed to the effect of nonaffine deformations at the length scale below 1 nm, which was further confirmed through the random matrix model with variable strength of disorder.
Collapse
Affiliation(s)
- Yaroslav M Beltukov
- Ioffe Institute, Politechnicheskaya Strasse 26, 194021 St. Petersburg, Russia
| | - Dmitry A Conyuh
- Ioffe Institute, Politechnicheskaya Strasse 26, 194021 St. Petersburg, Russia
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Strasse 9-11, 26129 Oldenburg, Germany, and Ioffe Institute, Politechnicheskaya Strasse 26, 194021 St. Petersburg, Russia
| |
Collapse
|
7
|
Crust breakage in production of fine particles using pulse combustion drying: Experimental and numerical investigations. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Coupling Raman, Brillouin and Nd 3+ Photo Luminescence Spectroscopy to Distinguish the Effect of Uniaxial Stress from Cooling Rate on Soda-Lime Silicate Glass. MATERIALS 2021; 14:ma14133584. [PMID: 34206984 PMCID: PMC8269609 DOI: 10.3390/ma14133584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022]
Abstract
Evolution of spectroscopic properties of a soda–lime silicate glass with different thermal history and under applied uniaxial stress was investigated using Raman and Brillouin spectroscopies as well as Nd3+ photoluminescence techniques. Samples of soda–lime silicate with a cooling rate from 6 × 10−4 to 650 K/min were prepared either by controlled cooling from the melt using a differential scanning calorimeter or by a conventional annealing procedure. Uniaxial stress effects in a range from 0 to −1.3 GPa were investigated in situ by compression of the glass cylinders. The spectroscopic observations of rearrangements in the network structure were related to the set cooling rates or the applied uniaxial stress to calculate an interrelated set of calibrations. Comparing the results from Raman and Brillouin spectroscopy with Nd3+ photoluminescence analysis, we find a linear dependence that can be used to identify uniaxial stress and cooling rate in any given combination concurrently. The interrelated calibrations and linear dependence models are established and evaluated, and equations relating the change of glass network due to effects of cooling rate or uniaxial stress are given.
Collapse
|
9
|
Utilizing Rare-Earth-Elements Luminescence and Vibrational-Spectroscopies to Follow High Pressure Densification of Soda-Lime Glass. MATERIALS 2021; 14:ma14081831. [PMID: 33917249 PMCID: PMC8067970 DOI: 10.3390/ma14081831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/26/2023]
Abstract
A new series of soda–lime glass naturally doped with Nd and doped with 0.2 wt% of Eu2O3 was densified in a multi-anvil press up to 21 GPa. The densities of the millimetric samples were precisely measured using a floatation method in a heavy liquid made with sodium polytungstate. The obtained densification curve is significantly different from the calibration previously reported, reaching a maximum densification saturation of 3.55 ± 0.14%. This difference could be due to better hydrostatic conditions realized in this new study. The densified samples were characterized using Raman and Brillouin spectroscopy, as well as the emission of both Eu3+ and Nd3+. The evolution of the spectra was evaluated using integration methods to reduce error bars. The relative precision of the calibration curves is discussed. The evolution of Nd3+ transition was found to be the most sensitive calibration. Linear dependence with the density was found for all observables, with exception for Brillouin spectroscopy showing a divergent behavior. The Brillouin shift shows an unreported minimum for a densification ~0.4%.
Collapse
|
10
|
Moriel A. Internally Stressed and Positionally Disordered Minimal Complexes Yield Glasslike Nonphononic Excitations. PHYSICAL REVIEW LETTERS 2021; 126:088004. [PMID: 33709765 DOI: 10.1103/physrevlett.126.088004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Glasses, unlike their crystalline counterparts, exhibit low-frequency nonphononic excitations whose frequencies ω follow a universal D(ω)∼ω^{4} density of states. The process of glass formation generates positional disorder intertwined with mechanical frustration, posing fundamental challenges in understanding the origins of glassy nonphononic excitations. Here we suggest that minimal complexes-mechanically frustrated and positionally disordered local structures-embody the minimal physical ingredients needed to generate glasslike excitations. We investigate the individual effects of mechanical frustration and positional disorder on the vibrational spectrum of isolated minimal complexes, and demonstrate that ensembles of marginally stable minimal complexes yield D(ω)∼ω^{4}. Furthermore, glasslike excitations emerge by embedding a single minimal complex within a perfect lattice. Consequently, minimal complexes offer a conceptual framework to understand glasslike excitations from first principles, as well as a practical computational method for introducing them into solids.
Collapse
Affiliation(s)
- Avraham Moriel
- Chemical & Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Lee SK, Lee AC, Kweon JJ. Probing Medium-Range Order in Oxide Glasses at High Pressure. J Phys Chem Lett 2021; 12:1330-1338. [PMID: 33502857 DOI: 10.1021/acs.jpclett.1c00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Densification in glassy networks has traditionally been described in terms of short-range structures, such as how atoms are coordinated and how the coordination polyhedron is linked in the second coordination environment. While changes in medium-range structures beyond the second coordination shells may play an important role, experimental verification of the densification beyond short-range structures is among the remaining challenges in the physical sciences. Here, a correlation NMR experiment for prototypical borate glasses under compression up to 9 GPa offers insights into the pressure-induced evolution of proximity among cations on a medium-range scale. Whereas amorphous networks at ambient pressure may favor the formation of medium-range clusters consisting primarily of similar coordination species, such segregation between distinct coordination environments tends to decrease with increasing pressure, promoting a more homogeneous distribution of dissimilar structural units. Together with an increase in the average coordination number, densification of glass accompanies a preferential rearrangement toward a random distribution, which may increase the configurational entropy. The results highlight the direct link between the pressure-induced increase in medium-range disorder and the densification of glasses under extreme compression.
Collapse
|
12
|
Structure Dependence of Poisson's Ratio in Cesium Silicate and Borate Glasses. MATERIALS 2020; 13:ma13122837. [PMID: 32599913 PMCID: PMC7345141 DOI: 10.3390/ma13122837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
In glass materials, Poisson’s ratio (ν) has been proposed to be correlated with a variety of features, including atomic packing density (Cg), liquid fragility (m), and network connectivity. To further investigate these correlations in oxide glasses, here, we study cesium borate and cesium silicate glasses with varying modifier/former ratio given the difference in network former coordination and because cesium results in relatively high ν compared to the smaller alkali modifiers. Within the binary glass series, we find positive correlations between ν on one hand and m and Cg on the other hand. The network former is found to greatly influence the correlation between ν and the number of bridging oxygens (nBO), with a negative correlation for silicate glasses and positive correlation for borate glasses. An analysis based on topological constraint theory shows that this difference cannot be explained by the effect of superstructural units on the network connectivity in lithium borate glasses. Considering a wider range of oxide glasses from the literature, we find that ν generally decreases with increasing network connectivity, but with notable exceptions for heavy alkali borate glasses and calcium alumino tectosilicate glasses.
Collapse
|
13
|
Lee SK, Mun KY, Kim YH, Lhee J, Okuchi T, Lin JF. Degree of Permanent Densification in Oxide Glasses upon Extreme Compression up to 24 GPa at Room Temperature. J Phys Chem Lett 2020; 11:2917-2924. [PMID: 32223166 DOI: 10.1021/acs.jpclett.0c00709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During the decompression of plastically deformed glasses at room temperature, some aspects of irreversible densification may be preserved. This densification has been primarily attributed to topological changes in glass networks. The changes in short-range structures like cation coordination numbers are often assumed to be relaxed upon decompression. Here the NMR results for aluminosilicate glass upon permanent densification up to 24 GPa reveal noticeable changes in the Al coordination number under pressure conditions as low as ∼6 GPa. A drastic increase in the highly coordinated Al fraction is evident over only a relatively narrow pressure range of up to ∼12 GPa, above which the coordination change becomes negligible up to 24 GPa. In contrast, Si coordination environments do not change, highlighting preferential coordination transformation during deformation. The observed trend in the coordination environment shows a remarkable similarity to the pressure-induced changes in the residual glass density, yielding a predictive relationship between the irreversible densification and the detailed structures under extreme compression. The results open a way to access the nature of plastic deformation in complex glasses at room temperature.
Collapse
Affiliation(s)
- Sung Keun Lee
- Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Kwan Young Mun
- Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Yong-Hyun Kim
- Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Juho Lhee
- Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Takuo Okuchi
- Institute for Planetary Materials, Okayama University, Misasa 682-0193, Japan
| | - Jung-Fu Lin
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Mysterious long-living ultrahigh-pressure or secondary impact crisis. Sci Rep 2020; 10:2591. [PMID: 32054955 PMCID: PMC7018738 DOI: 10.1038/s41598-020-59520-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 01/27/2020] [Indexed: 11/09/2022] Open
Abstract
High-pressure glass has attracted interest in terms of both its fundamental state under extreme conditions and its possible applications as an advanced material. In this context, natural impact glasses are of considerable interest because they are formed under ultrahigh-pressure and high-temperature (UHPHT) conditions in larger volumes than laboratory fabrication can produce. Studying the UHPHT glasses of the unique giant Kara astrobleme (Russia), we found that the specific geological position of the UHPHT melt glass veins points to an origin from a secondary ultrahigh-pressure (UHP) melt according to the characteristics of the host suevites, which suggest later bottom flow. Here, we propose a fundamentally novel model involving an upward-injected UHP melt complex with complicated multi-level and multi-process differentiation based on observations of the UHP silica glass, single-crystal coesite and related UHP smectite that crystallized from an impact-generated hydrous melt. This model proposes a secondary UHP crisis during the modification stage of the Kara crater formation. The results are very important for addressing fundamental problems in fields as diverse as condensed matter states under extreme pressure and temperature (PT) conditions, material and geological reconstructions of impact structures, water conditions in mineral substances under UHP conditions in the deep Earth, and the duration and magnitude of the catastrophic effects of large asteroid impacts.
Collapse
|
15
|
Quintero F, Penide J, Riveiro A, del Val J, Comesaña R, Lusquiños F, Pou J. Continuous fiberizing by laser melting (Cofiblas): Production of highly flexible glass nanofibers with effectively unlimited length. SCIENCE ADVANCES 2020; 6:eaax7210. [PMID: 32083175 PMCID: PMC7007259 DOI: 10.1126/sciadv.aax7210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
The development of nanofibers is expected to foster the creation of outstanding lightweight nanocomposites and flexible and transparent composites for applications such as optoelectronics. However, the reduced length of existing nanofibers and nanotubes limits mechanical strengthening and effective manufacturing. Here, we present an innovative method that produces glass nanofibers with lengths that are, effectively, unlimited by the process. The method uses a combination of a high-power laser with a supersonic gas jet. We describe the experimental setup and the physical processes involved, and, with the aid of a mathematical simulation, identify and discuss the key parameters which determine its distinctive features and feasibility. This method enabled the production of virtually unlimited long, solid, and nonporous glass nanofibers that display outstanding flexibility and could be separately arranged and weaved.
Collapse
Affiliation(s)
- F. Quintero
- Applied Physics Department, Universidade de Vigo, E.E.I., c/ Maxwell s/n, 36310 Vigo, Spain
| | - J. Penide
- Applied Physics Department, Universidade de Vigo, E.E.I., c/ Maxwell s/n, 36310 Vigo, Spain
| | - A. Riveiro
- Applied Physics Department, Universidade de Vigo, E.E.I., c/ Maxwell s/n, 36310 Vigo, Spain
| | - J. del Val
- Applied Physics Department, Universidade de Vigo, E.E.I., c/ Maxwell s/n, 36310 Vigo, Spain
| | - R. Comesaña
- Department of Materials Engineering, Applied Mechanics and Construction, Universidade de Vigo, E.E.I., c/ Maxwell s/n, 36310 Vigo, Spain
| | - F. Lusquiños
- Applied Physics Department, Universidade de Vigo, E.E.I., c/ Maxwell s/n, 36310 Vigo, Spain
| | - J. Pou
- Applied Physics Department, Universidade de Vigo, E.E.I., c/ Maxwell s/n, 36310 Vigo, Spain
| |
Collapse
|
16
|
Vo T, Reeder B, Damone A, Newell P. Effect of Domain Size, Boundary, and Loading Conditions on Mechanical Properties of Amorphous Silica: A Reactive Molecular Dynamics Study. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E54. [PMID: 31881644 PMCID: PMC7022248 DOI: 10.3390/nano10010054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/15/2022]
Abstract
Mechanical properties are very important when choosing a material for a specific application. They help to determine the range of usefulness of a material, establish the service life, and classify and identify materials. The size effect on mechanical properties has been well established numerically and experimentally. However, the role of the size effect combined with boundary and loading conditions on mechanical properties remains unknown. In this paper, by using molecular dynamics (MD) simulations with the state-of-the-art ReaxFF force field, we study mechanical properties of amorphous silica (e.g., Young's modulus, Poisson's ratio) as a function of domain size, full-/semi-periodic boundary condition, and tensile/compressive loading. We found that the domain-size effect on Young's modulus and Poisson's ratio is much more significant in semi-periodic domains compared to full-periodic domains. The results, for the first time, revealed the bimodular and anisotropic nature of amorphous silica at the atomic level. We also defined a "safe zone" regarding the domain size, where the bulk properties of amorphous silica can be reproducible, while the computational cost and accuracy are in balance.
Collapse
Affiliation(s)
- Truong Vo
- Department of Mechanical Engineering, The University of Utah, UT 84112, USA; (T.V.); (B.R.)
| | - Brett Reeder
- Department of Mechanical Engineering, The University of Utah, UT 84112, USA; (T.V.); (B.R.)
| | - Angelo Damone
- Department of Mechanical and Process Engineering, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Pania Newell
- Department of Mechanical Engineering, The University of Utah, UT 84112, USA; (T.V.); (B.R.)
| |
Collapse
|
17
|
Moriel A, Kapteijns G, Rainone C, Zylberg J, Lerner E, Bouchbinder E. Wave attenuation in glasses: Rayleigh and generalized-Rayleigh scattering scaling. J Chem Phys 2019; 151:104503. [DOI: 10.1063/1.5111192] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Avraham Moriel
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Geert Kapteijns
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Corrado Rainone
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jacques Zylberg
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
18
|
Baggioli M, Zaccone A. Universal Origin of Boson Peak Vibrational Anomalies in Ordered Crystals and in Amorphous Materials. PHYSICAL REVIEW LETTERS 2019; 122:145501. [PMID: 31050477 DOI: 10.1103/physrevlett.122.145501] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/11/2019] [Indexed: 06/09/2023]
Abstract
The vibrational spectra of solids, both ordered and amorphous, in the low-energy regime, control the thermal and transport properties of materials, from heat capacity to heat conduction, electron-phonon couplings, conventional superconductivity, etc. The old Debye model of vibrational spectra at low energy gives the vibrational density of states (VDOS) as proportional to the frequency squared, but in many materials the spectrum departs from this law which results in a peak upon normalizing the VDOS by frequency squared, which is known as the "boson peak." A description of the VDOS of solids (both crystals and glasses) is presented starting from first principles. Without using any assumptions whatsoever of disorder in the material, it is shown that the boson peak in the VDOS of both ordered crystals and glasses arises naturally from the competition between elastic mode propagation and diffusive damping. The theory explains the recent experimental observations of boson peak in perfectly ordered crystals, which cannot be explained based on previous theoretical frameworks. The theory also explains, for the first time, how the vibrational spectrum changes with the atomic density of the solid, and explains recent experimental observations of this effect.
Collapse
Affiliation(s)
- Matteo Baggioli
- Instituto de Fisica Teorica UAM/CSIC, c/Nicolas Cabrera 13-15, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Crete Center for Theoretical Physics, Institute for Theoretical and Computational Physics, Department of Physics, University of Crete, 71003 Heraklion, Greece
| | - Alessio Zaccone
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133 Milan, Italy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB30HE Cambridge, United Kingdom
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB30AS Cambridge, United Kingdom
| |
Collapse
|
19
|
Genix AC, Bocharova V, Kisliuk A, Carroll B, Zhao S, Oberdisse J, Sokolov AP. Enhancing the Mechanical Properties of Glassy Nanocomposites by Tuning Polymer Molecular Weight. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33601-33610. [PMID: 30203957 DOI: 10.1021/acsami.8b13109] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The addition of nanoparticles to a polymer matrix is a well-known process to improve the mechanical properties of polymers. Many studies of mechanical reinforcement in polymer nanocomposites (PNCs) focus on rubbery matrices; however, much less effort concentrates on the factors controlling the mechanical performance of the technologically important glassy PNCs. This paper presents a study of the effect of the polymer molecular weight (MW) on the overall mechanical properties of glassy PNCs with attractive interaction by using Brillouin light scattering. We found that the mechanical moduli (bulk and shear) have a nonmonotonic dependence on MW that cannot be predicted by simple rule of mixtures. The moduli increase with increasing MW up to 100 kg/mol followed by a drop at higher MW. We demonstrate that the change in the mechanical properties of PNCs can be associated with the properties of the interfacial polymer layer. The latter depend on the interfacial chain packing and stretching, as well as polymer bridging, which vary differently with the MW of the polymer. These competing contributions lead to the observed nonmonotonic variations of the glassy PNC moduli with MW. Our work provides a simple, cost-effective, and efficient way to control the mechanical properties of glassy PNCs by tuning the polymer chain length. Our finding can be beneficial for the rational design of PNCs with desired mechanical performance.
Collapse
Affiliation(s)
- Anne-Caroline Genix
- Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS , F-34095 Montpellier , France
| | - Vera Bocharova
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS , F-34095 Montpellier , France
| | - Alexander Kisliuk
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS , F-34095 Montpellier , France
| | - Bobby Carroll
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS , F-34095 Montpellier , France
| | - Sheng Zhao
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Julian Oberdisse
- Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Alexei P Sokolov
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS , F-34095 Montpellier , France
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
20
|
Benzine O, Bruns S, Pan Z, Durst K, Wondraczek L. Local Deformation of Glasses is Mediated by Rigidity Fluctuation on Nanometer Scale. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800916. [PMID: 30356973 PMCID: PMC6193166 DOI: 10.1002/advs.201800916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Indexed: 05/06/2023]
Abstract
Microscopic deformation processes determine defect formation on glass surfaces and, thus, the material's resistance to mechanical failure. While the macroscopic strength of most glasses is not directly dependent on material composition, local deformation and flaw initiation are strongly affected by chemistry and atomic arrangement. Aside from empirical insight, however, the structural origin of the fundamental deformation modes remains largely unknown. Experimental methods that probe parameters on short or intermediate length-scale such as atom-atom or superstructural correlations are typically applied in the absence of alternatives. Drawing on recent experimental advances, spatially resolved Raman spectroscopy is now used in the THz-gap for mapping local changes in the low-frequency vibrational density of states. From direct observation of deformation-induced variations on the characteristic length-scale of molecular heterogeneity, it is revealed that rigidity fluctuation mediates the deformation process of inorganic glasses. Molecular field approximations, which are based solely on the observation of short-range (interatomic) interactions, fail in the prediction of mechanical behavior. Instead, glasses appear to respond to local mechanical contact in a way that is similar to that of granular media with high intergranular cohesion.
Collapse
Affiliation(s)
- Omar Benzine
- Otto Schott Institute of Materials ResearchUniversity of JenaFraunhoferstrasse 607743JenaGermany
| | - Sebastian Bruns
- Department of Materials SciencePhysical MetallurgyTechnical University of DarmstadtAlarich‐Weiss‐Straße 264287DarmstadtGermany
| | - Zhiwen Pan
- Otto Schott Institute of Materials ResearchUniversity of JenaFraunhoferstrasse 607743JenaGermany
| | - Karsten Durst
- Department of Materials SciencePhysical MetallurgyTechnical University of DarmstadtAlarich‐Weiss‐Straße 264287DarmstadtGermany
| | - Lothar Wondraczek
- Otto Schott Institute of Materials ResearchUniversity of JenaFraunhoferstrasse 607743JenaGermany
- Abbe Center of PhotonicsUniversity of JenaAlbert‐Einstein‐Strasse 607745JenaGermany
| |
Collapse
|
21
|
Guerette M, Ackerson MR, Thomas J, Watson EB, Huang L. Thermally induced amorphous to amorphous transition in hot-compressed silica glass. J Chem Phys 2018; 148:194501. [PMID: 30307254 DOI: 10.1063/1.5025592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In situ Raman and Brillouin light scattering techniques were used to study thermally induced high-density amorphous (HDA) to low-density amorphous (LDA) transition in silica glass densified in hot compression (up to 8 GPa at 1100 °C). Hot-compressed silica samples are shown to retain structural and mechanical stability through 600 °C or greater, with reduced sensitivity in elastic response to temperature as compared with pristine silica glass. Given sufficient thermal energy to overcome the energy barrier, the compacted structure of the HDA silica reverts back to the LDA state. The onset temperature for the HDA to LDA transition depends on the degree of densification during hot compression, commencing at lower temperatures for samples with higher density, but all finishing within a temperature range of 250-300 °C. Our studies show that the HDA to LDA transition at high temperatures in hot-compressed samples is different from the gradual changes starting from room temperature in cold-compressed silica glass, indicating greater structural homogeneity achieved by hot compression. Furthermore, the structure and properties of hot-compressed silica glass change continuously during the thermally induced HDA to LDA transition, in contrast to the abrupt and first-order-like polyamorphic transitions in amorphous ice. Different HDA to LDA transition mechanisms in amorphous silica and amorphous ice are explained by their different energy landscapes.
Collapse
Affiliation(s)
- Michael Guerette
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Michael R Ackerson
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Jay Thomas
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - E Bruce Watson
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Liping Huang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
22
|
Shumilova TG, Lutoev VP, Isaenko SI, Kovalchuk NS, Makeev BA, Lysiuk AY, Zubov AA, Ernstson K. Spectroscopic features of ultrahigh-pressure impact glasses of the Kara astrobleme. Sci Rep 2018; 8:6923. [PMID: 29720696 PMCID: PMC5932052 DOI: 10.1038/s41598-018-25037-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/13/2018] [Indexed: 11/22/2022] Open
Abstract
The state of substances under ultrahigh pressures and temperatures (UHPHT) now raises a special interest as a matter existing under extreme conditions and as potential new material. Under laboratory conditions only small amounts of micrometer-sized matter are produced at a pressure up to 100 GPa and at room temperature. Simultaneous combination of ultrahigh pressures and temperatures in a lab still requires serious technological effort. Here we describe the composition and structure of the UHPHT vein-like impact glass discovered by us in 2015 on the territory of the Kara astrobleme (Russia) and compare its properties with impact glass from the Ries crater (Germany). A complex of structural and spectroscopic methods presents unusual high pressure marks of structural elements in 8-fold co-ordination that had been described earlier neither in synthetic nor natural glasses. The Kara natural UHPHT glasses being about 70 Ma old have well preserved initial structure, presenting some heterogeneity as a result of partial liquation and crystallization differentiation where an amorphous component is proposed to originate from low level polymerization. Homogeneous parts of the UHPHT glasses can be used to deepened fundamental investigation of a substance under extreme PT conditions and to technological studies for novel material creations.
Collapse
Affiliation(s)
- T G Shumilova
- Institute of Geology, Komi Scientific Center of Ural Division of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982, Russia. .,Hawaii Institute of Geophysics and Planetology, University of Hawaii at Manoa, 1680 East-West Road, Honolulu, HI, 96822, USA.
| | - V P Lutoev
- Institute of Geology, Komi Scientific Center of Ural Division of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982, Russia
| | - S I Isaenko
- Institute of Geology, Komi Scientific Center of Ural Division of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982, Russia
| | - N S Kovalchuk
- Institute of Geology, Komi Scientific Center of Ural Division of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982, Russia
| | - B A Makeev
- Institute of Geology, Komi Scientific Center of Ural Division of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982, Russia
| | - A Yu Lysiuk
- Institute of Geology, Komi Scientific Center of Ural Division of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982, Russia
| | - A A Zubov
- Institute of Geology, Komi Scientific Center of Ural Division of Russian Academy of Sciences, Pervomayskaya st. 54, Syktyvkar, 167982, Russia
| | - K Ernstson
- Faculty of Philosophy I, University of Würzburg, Würzburg, Germany
| |
Collapse
|
23
|
Nietiadi ML, Umstätter P, Tjong T, Rosandi Y, Millán EN, Bringa EM, Urbassek HM. The bouncing threshold in silica nanograin collisions. Phys Chem Chem Phys 2018; 19:16555-16562. [PMID: 28612852 DOI: 10.1039/c7cp02106b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using molecular dynamics simulations, we study collisions between amorphous silica nanoparticles. Our silica model contains uncontaminated surfaces, that is, the effect of surface hydroxylation or of adsorbed water layers is excluded. For central collisions, we characterize the boundary between sticking and bouncing collisions as a function of impact velocity and particle size and quantify the coefficient of restitution. We show that the traditional Johnson-Kendall-Roberts (JKR) model provides a valid description of the ingoing trajectory of two grains up to the moment of maximum compression. The distance of closest approach is slightly underestimated by the JKR model, due to the appearance of plasticity in the grains, which shows up in the form of localized shear transformation zones. The JKR model strongly underestimates the contact radius and the collision duration during the outgoing trajectory, evidencing that the breaking of covalent bonds during grain separation is not well described by this model. The adhesive neck formed between the two grains finally collapses while creating narrow filaments joining the grains, which eventually tear.
Collapse
Affiliation(s)
- Maureen L Nietiadi
- Fachbereich Physik und Forschungszentrum OPTIMAS, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang W, Christensen R, Curtis B, Martin SW, Kieffer J. A new model linking elastic properties and ionic conductivity of mixed network former glasses. Phys Chem Chem Phys 2018; 20:1629-1641. [DOI: 10.1039/c7cp04534d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A new statistical thermodynamic model has been developed to describe the activated process of cation hopping in mixed network former glasses based on the systematic comparison between the adiabatic elastic moduli measured using Brillouin light scattering and the ionic conductivity measured using dielectric impedance spectroscopy.
Collapse
Affiliation(s)
- Weimin Wang
- Materials Science and Engineering
- The University of Michigan
- Ann Arbor
- USA
| | | | - Brittany Curtis
- Materials Science and Engineering
- Iowa State University
- Ames
- USA
| | - Steve W. Martin
- Materials Science and Engineering
- Iowa State University
- Ames
- USA
| | - John Kieffer
- Materials Science and Engineering
- The University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
25
|
Petitgirard S, Malfait WJ, Journaux B, Collings IE, Jennings ES, Blanchard I, Kantor I, Kurnosov A, Cotte M, Dane T, Burghammer M, Rubie DC. SiO_{2} Glass Density to Lower-Mantle Pressures. PHYSICAL REVIEW LETTERS 2017; 119:215701. [PMID: 29219420 DOI: 10.1103/physrevlett.119.215701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 06/07/2023]
Abstract
The convection or settling of matter in the deep Earth's interior is mostly constrained by density variations between the different reservoirs. Knowledge of the density contrast between solid and molten silicates is thus of prime importance to understand and model the dynamic behavior of the past and present Earth. SiO_{2} is the main constituent of Earth's mantle and is the reference model system for the behavior of silicate melts at high pressure. Here, we apply our recently developed x-ray absorption technique to the density of SiO_{2} glass up to 110 GPa, doubling the pressure range for such measurements. Our density data validate recent molecular dynamics simulations and are in good agreement with previous experimental studies conducted at lower pressure. Silica glass rapidly densifies up to 40 GPa, but the density trend then flattens to become asymptotic to the density of SiO_{2} minerals above 60 GPa. The density data present two discontinuities at ∼17 and ∼60 GPa that can be related to a silicon coordination increase from 4 to a mixed 5/6 coordination and from 5/6 to sixfold, respectively. SiO_{2} glass becomes denser than MgSiO_{3} glass at ∼40 GPa, and its density becomes identical to that of MgSiO_{3} glass above 80 GPa. Our results on SiO_{2} glass may suggest that a variation of SiO_{2} content in a basaltic or pyrolitic melt with pressure has at most a minor effect on the final melt density, and iron partitioning between the melts and residual solids is the predominant factor that controls melt buoyancy in the lowermost mantle.
Collapse
Affiliation(s)
| | - Wim J Malfait
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, 8600 Dübendorf, Switzerland
| | - Baptiste Journaux
- Institut des Géosciences de l'Environnement-UMR 5001, Université Grenoble Alpes CS 40700, 38 058 Grenoble Cedex 9, France
| | - Ines E Collings
- Laboratory of Crystallography, University of Bayreuth, Bayreuth D-95440, Germany
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Eleanor S Jennings
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | - Ingrid Blanchard
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | | | - Alexander Kurnosov
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | - Marine Cotte
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8220, Laboratoire d'archéologie moléculaire et structurale (LAMS), 4 Place Jussieu 75005 Paris, France
| | - Thomas Dane
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - David C Rubie
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
26
|
Cao X, Pan G, Huang P, Guo D, Xie G. Silica-Coated Core-Shell Structured Polystyrene Nanospheres and Their Size-Dependent Mechanical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8225-8232. [PMID: 28745892 DOI: 10.1021/acs.langmuir.7b01777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The core-shell structured PS/SiO2 composite nanospheres were synthesized on the basis of a modified Stöber method. The mechanical properties of monodisperse nanospheres were characterized with nanoindentation on the basis of the atomic force microscopy (AFM). The surface morphologies of PS/SiO2 composite nanospheres was scanned with the tapping mode of AFM, and the force-distance curves were measured with the contact mode of AFM. Different contact models were compared for the analyses of experimental data. The elastic moduli of PS/SiO2 composite nanosphere (4-40 GPa) and PS nanosphere (∼3.4 GPa) were obtained with the Hertz and Johnson-Kendall-Roberts (JKR) models, respectively, and the JKR model was proven to be more appropriate for calculating the elastic modulus of PS/SiO2 nanospheres. The elastic modulus of SiO2 shell gradually approached a constant value (∼46 GPa) with the increase of SiO2 shell thickness. A core-shell model was proposed for describing the relationship between PS/SiO2 composite nanosphere's elastic modulus and shell thickness. The mechanical properties of the composite nanospheres were reasonably explained on the basis of the growth mechanism of PS/SiO2 composite nanospheres, in particular the SiO2 shell's formation process. Available research data of PS/SiO2 composite nanospheres in this work can provide valuable guidance for their effective application in surface engineering, micro/nanomanufacturing, lubrication, and so on.
Collapse
Affiliation(s)
- Xu Cao
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Guoshun Pan
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
- Guangdong Provincial Key Laboratory of Optomechatronics , Shenzhen 518057, China
| | - Peng Huang
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Dan Guo
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Guoxin Xie
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| |
Collapse
|
27
|
Trease NM, Clark TM, Grandinetti PJ, Stebbins JF, Sen S. Bond length-bond angle correlation in densified silica—Results from 17O NMR spectroscopy. J Chem Phys 2017. [DOI: 10.1063/1.4983041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicole M. Trease
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210-1106, USA
| | - Ted M. Clark
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210-1106, USA
| | - Philip J. Grandinetti
- Department of Chemistry, Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210-1106, USA
| | - Jonathan F. Stebbins
- School of Earth Sciences, Stanford University, Stanford, California 94305-2115, USA
| | - Sabyasachi Sen
- Department of Materials Science and Engineering, University of California, Davis, California 95616-5270, USA
| |
Collapse
|
28
|
Molnár G, Ganster P, Tanguy A. Effect of composition and pressure on the shear strength of sodium silicate glasses: An atomic scale simulation study. Phys Rev E 2017; 95:043001. [PMID: 28505810 DOI: 10.1103/physreve.95.043001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Indexed: 06/07/2023]
Abstract
The elastoplastic behavior of sodium silicate glasses is studied at different scales as a function of composition and pressure, with the help of quasistatic atomistic simulations. The samples are first compressed and then sheared at constant pressure to calculate yield strength and permanent plastic deformations. Changes occurring in the global response are then compared to the analysis of local plastic rearrangements and strain heterogeneities. It is shown that the plastic response results from the succession of well-identified localized irreversible deformations occurring in a nanometer-size area. The size and the number of these local rearrangements, as well as the amount of internal deviatoric and volumetric plastic deformation, are sensitive to the composition and to the pressure. In the early stages of the deformation, plastic rearrangements are driven by sodium mobility. Consequently, the elastic yield strength decreases when the sodium content increases, and the same when pressure increases. Finally, good correlation was found between global and local stress-strain relationships, reinforcing again the role of sodium ions as local initiators of the plastic behavior observed at larger scales.
Collapse
Affiliation(s)
- Gergely Molnár
- LaMCos, INSA-Lyon, CNRS UMR5259, Université de Lyon, F-69621 Villeurbanne, France
| | - Patrick Ganster
- Ecole de Mines de Saint-Étienne, Centre SMS, Laboratoire Georges Friedel CNRS-UMR5307, F-42023 Saint-Éstienne, France
| | - Anne Tanguy
- LaMCos, INSA-Lyon, CNRS UMR5259, Université de Lyon, F-69621 Villeurbanne, France
| |
Collapse
|
29
|
Shojaee SA, Qi Y, Wang YQ, Mehner A, Lucca DA. Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films. Sci Rep 2017; 7:40100. [PMID: 28071696 PMCID: PMC5223171 DOI: 10.1038/srep40100] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/30/2016] [Indexed: 11/12/2022] Open
Abstract
Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. In this study, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. The results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. It was found that carbon was present in a non-graphitic sp2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. A combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films.
Collapse
Affiliation(s)
- S A Shojaee
- School of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| | - Y Qi
- School of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| | - Y Q Wang
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A Mehner
- Stiftung Institut für Werkstofftechnik, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - D A Lucca
- School of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
30
|
Jia YF, Cui YY, Xuan FZ, Yang F. Comparison between single loading–unloading indentation and continuous stiffness indentation. RSC Adv 2017. [DOI: 10.1039/c7ra06491h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SEM images of indents and variation of a “constant” value of indentation hardness of fused silica with the indentation strain rate.
Collapse
Affiliation(s)
- Yun-Fei Jia
- Key Laboratory of Pressure System and Safety
- MOE
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Yuan-Yuan Cui
- Key Laboratory of Pressure System and Safety
- MOE
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Fu-Zhen Xuan
- Key Laboratory of Pressure System and Safety
- MOE
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Fuqian Yang
- Materials Program
- Department of Chemical and Materials Engineering
- University of Kentucky
- Lexington
- USA
| |
Collapse
|
31
|
Wang W, Christensen R, Curtis B, Hynek D, Keizer S, Wang J, Feller S, Martin SW, Kieffer J. Elastic properties and short-range structural order in mixed network former glasses. Phys Chem Chem Phys 2017; 19:15942-15952. [DOI: 10.1039/c6cp08939a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new statistical thermodynamic model has been developed to describe the speciation of network former elements in ternary oxide glasses, which uses data from NMR spectroscopy and the adiabatic elastic moduli measured using Brillouin light scattering as input.
Collapse
Affiliation(s)
- Weimin Wang
- Materials Science and Engineering
- University of Michigan
- Ann Arbor
- USA
| | | | - Brittany Curtis
- Materials Science and Engineering
- Iowa State University
- Ames
- USA
| | | | | | | | | | - Steve W. Martin
- Materials Science and Engineering
- Iowa State University
- Ames
- USA
| | - John Kieffer
- Materials Science and Engineering
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
32
|
Muniz RF, de Ligny D, Martinet C, Sandrini M, Medina AN, Rohling JH, Baesso ML, Lima SM, Andrade LHC, Guyot Y. In situ structural analysis of calcium aluminosilicate glasses under high pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:315402. [PMID: 27300313 DOI: 10.1088/0953-8984/28/31/315402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In situ micro-Raman spectroscopy was used to investigate the structural evolution of OH(-)-free calcium aluminosilicate glasses, under high pressure and at room temperature. Evaluation was made of the role of the SiO2 concentration in percalcic join systems, for Al/(Al + Si) in the approximate range from 0.9 to 0.2. Under high pressure, the intensity of the main band related to the bending mode of bridging oxygen ([Formula: see text][T-O-T], where T = Si or Al) decreased gradually, suggesting that the bonds were severely altered or even destroyed. In Si-rich glasses, compression induced a transformation of Q (n) species to Q (n-1). In the case of Al-rich glass, the Al in the smallest Q (n) units evolved from tetrahedral to higher-coordinated Al (([5])Al and ([6])Al). Permanent structural changes were observed in samples recovered from the highest pressure of around 15 GPa and, particularly for Si-rich samples, the recovered structure showed an increase of three-membered rings in the Si/Al tetrahedral network.
Collapse
Affiliation(s)
- R F Muniz
- Institut Lumière Matière, UMR 5306 CNRS-Université Lyon 1, Université de Lyon, Villeurbanne, France. Departamento de Física, Universidade Estadual de Maringá, Maringá-PR, 87020-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Danilov IV, Gromnitskaya EL, Brazhkin VV. Vivid Manifestation of Nonergodicity in Glassy Propylene Carbonate at High Pressures. J Phys Chem B 2016; 120:7593-7. [PMID: 27399845 DOI: 10.1021/acs.jpcb.6b05188] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As glasses are nonergodic systems, their properties should depend not only on external macroparameters, such as P and T, but also on the time of observation and thermobaric history. In this work, comparative ultrasonic studies of two groups of molecular propylene carbonate glasses obtained by quenching from a liquid at pressures of 0.1 and 1 GPa have been performed. Although the difference in the densities of the different groups of glasses is small (3-5%), they have significantly different elastic properties: the difference in the respective bulk moduli is 10-20%, and the difference in the respective shear moduli is 35-40% (!). This is due to the "closure of nanopores" in the glass obtained at 1 GPa. The pressure and temperature derivatives of the elastic moduli for these groups of glasses are also noticeably different. The glass-transition temperatures of glasses from different groups differ by 3-4 K. The character of absorption of ultrasound waves near the glass-transition temperature also differs for different groups of glasses. The differences in the behaviors of these groups of glasses disappear gradually above the glass-transition temperature, in the region of a liquid phase. Glasses with a wide diversity of physical properties can be obtained using various paths on the (T,P) diagram.
Collapse
Affiliation(s)
- Igor V Danilov
- Institute for High Pressure Physics, Russian Academy of Sciences , Troitsk, Moscow 142190, Russia.,Moscow Institute of Physics and Technology , Dolgoprudny, Moscow Region 141700, Russia
| | - Elena L Gromnitskaya
- Institute for High Pressure Physics, Russian Academy of Sciences , Troitsk, Moscow 142190, Russia
| | - Vadim V Brazhkin
- Institute for High Pressure Physics, Russian Academy of Sciences , Troitsk, Moscow 142190, Russia
| |
Collapse
|
34
|
Izvekov S, Rice BM. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies. J Chem Phys 2015; 143:244506. [DOI: 10.1063/1.4937394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sergei Izvekov
- Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| | - Betsy M. Rice
- Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| |
Collapse
|
35
|
Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression. Sci Rep 2015; 5:15343. [PMID: 26469314 PMCID: PMC4606793 DOI: 10.1038/srep15343] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022] Open
Abstract
Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.
Collapse
|
36
|
Kilymis DA, Delaye JM, Ispas S. Behavior of sodium borosilicate glasses under compression using molecular dynamics. J Chem Phys 2015; 143:094503. [DOI: 10.1063/1.4929785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. A. Kilymis
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| | - J.-M. Delaye
- CEA, DEN, DTCD, SECM, F-30207 Bagnols-sur-Cèze, France
| | - S. Ispas
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, F-34095 Montpellier, France
| |
Collapse
|