1
|
Two odorant receptors regulate 1-octen-3-ol induced oviposition behavior in the oriental fruit fly. Commun Biol 2023; 6:176. [PMID: 36792777 PMCID: PMC9932091 DOI: 10.1038/s42003-023-04551-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a notorious pest of fruit crops. Gravid females locate suitable oviposition sites by detecting host plant volatiles. Here, we demonstrate that 1-octen-3-ol, a volatile from mango, guides the oviposition behavior of female flies. Two odorant receptors (BdorOR7a-6 and BdorOR13a) are identified as key receptors for 1-octen-3-ol perception by qPCR analysis, heterologous expression in Xenopus laevis oocytes and HEK 293 cells followed by in vitro binding assays, as well as CRISPR/Cas9 genome editing in B. dorsalis. Molecular docking and site-directed mutagenesis are used to determine major binding sites for 1-octen-3-ol. Our results demonstrate the potential of 1-octen-3-ol to attract gravid females and molecular mechanism of its perception in B. dorsalis. BdorOR7a-6 and BdorOR13a can therefore be used as molecular targets for the development of female attractants. Furthermore, our site-directed mutagenesis data will facilitate the chemical engineering of 1-octen-3-ol to generate more efficient attractants.
Collapse
|
2
|
Revadi SV, Giannuzzi VA, Rossi V, Hunger GM, Conchou L, Rondoni G, Conti E, Anderson P, Walker WB, Jacquin-Joly E, Koutroumpa F, Becher PG. Stage-specific expression of an odorant receptor underlies olfactory behavioral plasticity in Spodoptera littoralis larvae. BMC Biol 2021; 19:231. [PMID: 34706739 PMCID: PMC8555055 DOI: 10.1186/s12915-021-01159-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Background The detection of environmental cues and signals via the sensory system directs behavioral choices in diverse organisms. Insect larvae rely on input from the chemosensory system, mainly olfaction, for locating food sources. In several lepidopteran species, foraging behavior and food preferences change across larval instars; however, the molecular mechanisms underlying such behavioral plasticity during larval development are not fully understood. Here, we hypothesize that expression patterns of odorant receptors (ORs) change during development, as a possible mechanism influencing instar-specific olfactory-guided behavior and food preferences. Results We investigated the expression patterns of ORs in larvae of the cotton leafworm Spodoptera littoralis between the first and fourth instar and revealed that some of the ORs show instar-specific expression. We functionally characterized one OR expressed in the first instar, SlitOR40, as responding to the plant volatile, β-caryophyllene and its isomer α-humulene. In agreement with the proposed hypothesis, we showed that first but not fourth instar larvae responded behaviorally to β-caryophyllene and α-humulene. Moreover, knocking out this odorant receptor via CRISPR-Cas9, we confirmed that instar-specific responses towards its cognate ligands rely on the expression of SlitOR40. Conclusion Our results provide evidence that larvae of S. littoralis change their peripheral olfactory system during development. Furthermore, our data demonstrate an unprecedented instar-specific behavioral plasticity mediated by an OR, and knocking out this OR disrupts larval behavioral plasticity. The ecological relevance of such behavioral plasticity for S. littoralis remains to be elucidated, but our results demonstrate an olfactory mechanism underlying this plasticity in foraging behavior during larval development. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01159-1.
Collapse
Affiliation(s)
- Santosh V Revadi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden. .,INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France.
| | - Vito Antonio Giannuzzi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Valeria Rossi
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Gert Martin Hunger
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| | - Lucie Conchou
- AGRIODOR, 6 rue Pierre Joseph Colin, 35000, Rennes, France
| | - Gabriele Rondoni
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Eric Conti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, 06121, Perugia, Italy
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| | - William B Walker
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden.,United States Department of Agriculture - Agricultural Research Service, Temperate Tree Fruit and Vegetable Research Unit, 5230 Konnowac Pass Road, Wapato, WA, 98951, USA
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Fotini Koutroumpa
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Diderot, Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Route de Saint-Cyr, 78026, Versailles Cedex, France
| | - Paul G Becher
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Box 190, 23422, Lomma, Sweden
| |
Collapse
|
3
|
Li H, Ren L, Xie M, Gao Y, He M, Hassan B, Lu Y, Cheng D. Egg-Surface Bacteria Are Indirectly Associated with Oviposition Aversion in Bactrocera dorsalis. Curr Biol 2020; 30:4432-4440.e4. [PMID: 32946751 DOI: 10.1016/j.cub.2020.08.080] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 01/04/2023]
Abstract
Finding a suitable oviposition site is a challenging task for a gravid female fly, because the hatched maggots have limited mobility, making it difficult to find an alternative host. The oriental fruit fly, Bactrocera dorsalis, oviposits on many types of fruits. Maggots hatching in a fruit that is already occupied by conspecific worms will face food competition. Here, we showed that maggot-occupied fruits deter B. dorsalis oviposition and that this deterrence is based on the increased β-caryophyllene concentration in fruits. Using a combination of bacterial identification, volatile content quantification, and behavioral analyses, we demonstrated that the egg-surface bacteria of B. dorsalis, including Providencia sp. and Klebsiella sp., are responsible for this increase in the β-caryophyllene contents of host fruits. Our research shows a type of tritrophic interaction between micro-organisms, insects, and insect hosts, which will provide considerable insight into the evolution of insect behavioral responses to volatile compounds.
Collapse
Affiliation(s)
- Huijing Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Lu Ren
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Mingxue Xie
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Yang Gao
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Muyang He
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Babar Hassan
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China
| | - Yongyue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China.
| | - Daifeng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
4
|
Forewarned is forearmed: Queensland fruit flies detect olfactory cues from predators and respond with predator-specific behaviour. Sci Rep 2020; 10:7297. [PMID: 32350381 PMCID: PMC7190731 DOI: 10.1038/s41598-020-64138-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 11/15/2022] Open
Abstract
Animals can gain significant advantages from abilities to detect cues from predators, assess risks, and respond adaptively to reduce the likelihood of injurious interactions. In contrast, predator cue-induced changes in behaviour may interfere with fitness-associated activities such as exploration, foraging and reproduction. Despite the ecological importance of predator-prey interactions in insects, remarkably little is known about the abilities of insects to detect and respond to olfactory cues from predators, or the potential costs of such responses. We here demonstrate that a tephritid fruit fly, the Queensland fruit fly Bactrocera tryoni, is able to detect and respond differentially to volatile olfactory cues from four potential predators (three spiders and an ant) that vary in prevalence and diurnal activity. Male and female flies increased or decreased motility (velocity, active time, distance moved), or exhibited no change in motility, depending on which predator volatiles they encountered. Further, flies significantly reduced foraging, oviposition and mating propensity in the presence of volatiles from any of the predators. This study is the first report of predator-specific responses to olfactory cues in a tephritid fruit fly, and highlights that such anti-predator responses can impose costs on general activity and reproductive behaviour.
Collapse
|