1
|
Smith DD, Abbott DW, Wieden HJ. In silico based re-engineering of a computationally designed biosensor with altered signalling mode and improved dynamic range. Arch Biochem Biophys 2025; 764:110275. [PMID: 39694130 DOI: 10.1016/j.abb.2024.110275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
A current challenge in the rational design of biomolecular sensors is the ability to custom design binding affinities and detection mode in silico. To this end, we re-engineered a previously reported computationally-designed fluorescent maltooligosaccharide (MOS)-detecting biosensor to both alter its ligand-binding affinity and to analyse the underlying sensing mechanism. The dynamic range of the biosensor was expanded through the computer aided introduction of a series of amino acid substitutions in the starting protein scaffold (MalX from Streptococcus pneumoniae), which generated a biosensor set with binding affinities spanning over five orders of magnitude. The impact of the introduced substitutions on the underlying mode of signal generation was assessed in silico using our previously reported Computational Identification of Non-disruptive Conjugation sites (CINC) pipeline. CINC utilizes molecular dynamics simulations and an in-house developed algorithm to examine and exploit the structural dynamics of a protein at amino acid-level resolution. Using CINC, we demonstrate that re-engineering of the MOS-detecting biosensor set resulted in sensors with two distinct output modes which differed based on local conformational changes at the fluorescently modified reporter position. These output modes were classified as "ligand-sensing"-type biosensors (readout based on the tool sensing a unique conformation in the ligand-bound state), and "apo-sensing"-type biosensors (readout based on the tool sensing a unique conformation in the apo state). Together, these results demonstrate that structural dynamics at the individual amino acid residue level can be used as an engineer-able feature to rationally alter the fluorescence reporting properties of a biosensing device. Moving forward, the CINC workflow can also be adapted for the rational design of protein dynamic properties maximizing its utility as an in silico design platform for custom biomolecular tools.
Collapse
Affiliation(s)
- Dustin D Smith
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - D Wade Abbott
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada.
| |
Collapse
|
2
|
Lamichhane S, Rai RP, Khatri A, Adhikari R, Shrestha BG, Shrestha SK. Screening of phytochemicals as potential anti-breast cancer agents targeting HER2: an in-silico approach. J Biomol Struct Dyn 2023; 41:897-911. [PMID: 34957911 DOI: 10.1080/07391102.2021.2014972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Breast cancer is the most common cancer among women around the world. Human Epidermal growth factor Receptor-2 (HER2) is a membrane tyrosine kinase overexpressed in 30% of human breast cancers; thus, it serves as an important drug target. Currently available HER2 inhibitor lapatinib targets the ATP binding site of the cytoplasmic kinase domain, blocking autophosphorylation and activation of HER-2. However, it causes side effects like diarrhea, nausea, rash and possible liver toxicity. As phytochemicals have fewer side effects and are relatively affordable, they offer an effective alternative. Hence, we aimed to identify potential phytochemicals that could act as HER2 inhibitors employing computational methods such as molecular docking, molecular dynamic simulation, and ADMET prediction. Out of 1500 phytochemicals docked to the ATP binding site of the HER2 kinase domain, luxenchalcone, rhinacanthin Q, subtrifloralacton D, and 7,7″-dimethyllanaraflavone exhibited higher binding affinity than the reference inhibitor and satisfied the Lipinski's rule of five. Analysis of molecular dynamics simulation trajectory showed that Rhinacanthin Q, subtrifloralacton D, and 7,7″-dimethyllanaraflavone formed a stable and compact complex without vast conformational fluctuations. MM/PBSA binding free energy analysis revealed that Rhinacanthin Q, subtrifloralacton D, and 7,7″-dimethyllanaraflavone have high binding affinity to HER2. Therefore, Rhinacanthin Q, subtrifloralacton D, and 7,7″-dimethyllanaraflavone could be potential bioactive molecules to act as inhibitor of HER2 protein. Eventually, experimental studies are needed to evaluate the potentials of these phytochemicals further. The development of drug for HER2 positive breast cancer could be accelerated with the findings of our research. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Raj Prateek Rai
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | - Amar Khatri
- Department of Biotechnology, Kathmandu University, Dhulikhel, Nepal
| | | | | | | |
Collapse
|
3
|
Smith DD, Girodat D, Abbott DW, Wieden HJ. Construction of a highly selective and sensitive carbohydrate-detecting biosensor utilizing Computational Identification of Non-disruptive Conjugation sites (CINC) for flexible and streamlined biosensor design. Biosens Bioelectron 2022; 200:113899. [PMID: 34974264 DOI: 10.1016/j.bios.2021.113899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 01/30/2023]
Abstract
Fluorescently-labeled solute-binding proteins that alter their fluorescence output in response to ligand binding have been utilized as biosensors for a variety of applications. Coupling protein ligand binding to altered fluorescence output often requires trial and error-based testing of both multiple labeling positions and fluorophores to produce a functional biosensor with the desired properties. This approach is laborious and can lead to reduced ligand binding affinity or altered ligand specificity. Here we report the Computational Identification of Non-disruptive Conjugation sites (CINC) for streamlined identification of fluorophore conjugation sites. By exploiting the structural dynamics properties of proteins, CINC identifies positions where conjugation of a fluorophore results in a fluorescence change upon ligand binding without disrupting protein function. We show that a CINC-developed maltooligosaccharide (MOS)-detecting biosensor is capable of rapid (kon = 20 μM-1s-1), sensitive (sub-μM KD) and selective MOS detection. The MOS-detecting biosensor is modular with respect to the spectroscopic properties and demonstrates portability to detecting MOS released via α-amylase-catalyzed depolymerization of starch using both a stopped-flow and a microplate reader assay. Our MOS-detecting biosensor represents a first-in-class probe whose design was guided by changes in localized dynamics of individual amino acid positions, supporting expansion of the CINC pipeline as an indispensable tool for a wide range of protein engineering applications.
Collapse
Affiliation(s)
- Dustin D Smith
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - Dylan Girodat
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada
| | - D Wade Abbott
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), University of Lethbridge, Lethbridge, AB, Canada; Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB, Canada; Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
4
|
Development of a Real-Time Pectic Oligosaccharide-Detecting Biosensor Using the Rapid and Flexible Computational Identification of Non-Disruptive Conjugation Sites (CINC) Biosensor Design Platform. SENSORS 2022; 22:s22030948. [PMID: 35161692 PMCID: PMC8839585 DOI: 10.3390/s22030948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
Abstract
Fluorescently labeled, solute-binding proteins that change their fluorescent output in response to ligand binding are frequently used as biosensors for a wide range of applications. We have previously developed a "Computational Identification of Non-disruptive Conjugation sites" (CINC) approach, an in silico pipeline utilizing molecular dynamics simulations for the rapid design and construction of novel protein-fluorophore conjugate-type biosensors. Here, we report an improved in silico scoring algorithm for use in CINC and its use in the construction of an oligogalacturonide-detecting biosensor set. Using both 4,5-unsaturated and saturated oligogalacturonides, we demonstrate that signal transmission from the ligand-binding pocket of the starting protein scaffold to the CINC-selected reporter positions is effective for multiple different ligands. The utility of an oligogalacturonide-detecting biosensor is shown in Carbohydrate Active Enzyme (CAZyme) activity assays, where the biosensor is used to follow product release upon polygalacturonic acid (PGA) depolymerization in real time. The oligogalacturonide-detecting biosensor set represents a novel enabling tool integral to our rapidly expanding platform for biosensor-based carbohydrate detection, and moving forward, the CINC pipeline will continue to enable the rational design of biomolecular tools to detect additional chemically distinct oligosaccharides and other solutes.
Collapse
|
5
|
Paleskava A, Kaiumov MY, Kirillov SV, Konevega AL. Peculiarities in Activation of Hydrolytic Activity of Elongation Factors. BIOCHEMISTRY (MOSCOW) 2021; 85:1422-1433. [PMID: 33280582 DOI: 10.1134/s0006297920110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational GTPases (trGTPases) belong to the family of G proteins and play key roles at all stages of protein biosynthesis on the ribosome. Unidirectional and cyclic functioning of G proteins is ensured by their ability to switch between the active and inactive states due to GTP hydrolysis accelerated by the auxiliary GTPase-activating proteins. Although trGTPases interact with the ribosomes in different conformational states, they bind to the same conserved region, which, unlike in classical GTPase-activating proteins, is represented by ribosomal RNA. The resulting catalytic sites have almost identical structure in all elongation factors suggesting a common mechanism of GTP hydrolysis. However, fine details of the activated state formation and significantly different rates of GTP hydrolysis indicate the existence of distinctive features upon GTP hydrolysis catalyzed by the different factors. Here, we present a contemporary view on the mechanism of GTPase activation and GTP hydrolysis by the elongation factors EF-Tu, EF-G, and SelB based on the analysis of structural, biochemical, and bioinformatics data.
Collapse
Affiliation(s)
- A Paleskava
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - M Yu Kaiumov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - S V Kirillov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia
| | - A L Konevega
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC "Kurchatov Institute", Gatchina, Leningrad Region, 188300, Russia.
| |
Collapse
|
6
|
Mondal SK, Sen MK. Loss of phosphatase activity in PTEN (phosphatase and tensin homolog deleted on chromosome ten) results in endometrial carcinoma in humans: An in-silico study. Heliyon 2020; 6:e03106. [PMID: 32042934 PMCID: PMC7002800 DOI: 10.1016/j.heliyon.2019.e03106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 01/11/2023] Open
Abstract
The tumour suppressor gene, PTEN (Phosphatase and Tensin homolog deleted on chromosome Ten), can act as both protein phosphatase and lipid phosphatase, is known to play a vital role in Pi3k signalling pathway. In humans, it is located at 10q23. Loss of its phosphatase and catalytic activity is associated with various types of cancers. This study focuses on evolution, understanding the somatic missense mutation in a particular residue of PTEN and understanding the molecular mechanism that leads to endometrial carcinoma through molecular docking. Mutational analysis of H123 position indicates that the missense mutation at first position of the codon CAC by G or T, result in aspartic acid or tyrosine instead of histidine and can have negative effect on the function of PTEN. Alongside, structural analysis showed mutated PTEN has lower stability than the normal. Additionally, SNPs dataset for endometrial carcinoma suggests H123 as strongly mutated residue. The mutation in phosphatase domain of PTEN along with its effect and interaction with substrate TLA1352 were systematically studied through molecular docking. Molecular interaction study reveals that the optimal substrate binding site in PTEN is unable to interact with the substrate in the mutated condition. This observation drew attention on the impact of mutation on disease biology and enabled us to conduct follow-up studies to retrieve novel molecular targets, such as mutated protein domain and modified Asp and Tyr sites, to design effective therapies to either prevent endometrial carcinoma or impede its progression.
Collapse
Affiliation(s)
- Sunil Kanti Mondal
- Department of Biotechnology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Madhab Kumar Sen
- Department of Agricultural Biotechnology, Ramakrishna Mission Vivekananda Education & Research Institution, Narendrapur, Kolkata, 700103, West Bengal, India.,Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
7
|
Tanzawa T, Kato K, Girodat D, Ose T, Kumakura Y, Wieden HJ, Uchiumi T, Tanaka I, Yao M. The C-terminal helix of ribosomal P stalk recognizes a hydrophobic groove of elongation factor 2 in a novel fashion. Nucleic Acids Res 2019; 46:3232-3244. [PMID: 29471537 PMCID: PMC5887453 DOI: 10.1093/nar/gky115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/09/2018] [Indexed: 01/17/2023] Open
Abstract
Archaea and eukaryotes have ribosomal P stalks composed of anchor protein P0 and aP1 homodimers (archaea) or P1•P2 heterodimers (eukaryotes). These P stalks recruit translational GTPases to the GTPase-associated center in ribosomes to provide energy during translation. The C-terminus of the P stalk is known to selectively recognize GTPases. Here we investigated the interaction between the P stalk and elongation factor 2 by determining the structures of Pyrococcus horikoshii EF-2 (PhoEF-2) in the Apo-form, GDP-form, GMPPCP-form (GTP-form), and GMPPCP-form bound with 11 C-terminal residues of P1 (P1C11). Helical structured P1C11 binds to a hydrophobic groove between domain G and subdomain G′ of PhoEF-2, where is completely different from that of aEF-1α in terms of both position and sequence, implying that such interaction characteristic may be requested by how GTPases perform their functions on the ribosome. Combining PhoEF-2 P1-binding assays with a structural comparison of current PhoEF-2 structures and molecular dynamics model of a P1C11-bound GDP form, the conformational changes of the P1C11-binding groove in each form suggest that in response to the translation process, the groove has three states: closed, open, and release for recruiting and releasing GTPases.
Collapse
Affiliation(s)
- Takehito Tanzawa
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Koji Kato
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Dylan Girodat
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Toyoyuki Ose
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yuki Kumakura
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge AB T1K 3M4, Canada
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Min Yao
- Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan.,Faculty of Advanced Life Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
8
|
Girodat D, Mercier E, Gzyl KE, Wieden HJ. Elongation Factor Tu's Nucleotide Binding Is Governed by a Thermodynamic Landscape Unique among Bacterial Translation Factors. J Am Chem Soc 2019; 141:10236-10246. [PMID: 31058500 DOI: 10.1021/jacs.9b01522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular switches such as GTPases are powerful devices turning "on" or "off" biomolecular processes at the core of critical biological pathways. To develop molecular switches de novo, an intimate understanding of how they function is required. Here we investigate the thermodynamic parameters that define the nucleotide-dependent switch mechanism of elongation factor (EF) Tu as a prototypical molecular switch. EF-Tu alternates between GTP- and GDP-bound conformations during its functional cycle, representing the "on" and "off" states, respectively. We report for the first time that the activation barriers for nucleotide association are the same for both nucleotides, suggesting a guanosine nucleoside or ribose-first mechanism for nucleotide association. Additionally, molecular dynamics (MD) simulations indicate that enthalpic stabilization of GDP binding compared to GTP binding originates in the backbone hydrogen bonding network of EF-Tu. In contrast, binding of GTP to EF-Tu is entropically driven by the liberation of bound water during the GDP- to GTP-bound transition. GDP binding to the apo conformation of EF-Tu is both enthalpically and entropically favored, a feature unique among translational GTPases. This indicates that the apo conformation does not resemble the GDP-bound state. Finally, we show that antibiotics and single amino acid substitutions can be used to target specific structural elements in EF-Tu to redesign the thermodynamic landscape. These findings demonstrate how, through evolution, EF-Tu has fine-tuned the structural and dynamic features that define nucleotide binding, providing insight into how altering these properties could be exploited for protein engineering.
Collapse
Affiliation(s)
- Dylan Girodat
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| | - Evan Mercier
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| | - Katherine E Gzyl
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry , University of Lethbridge , 4401 University Drive West , Lethbridge , Alberta T1K 3M4 , Canada
| |
Collapse
|
9
|
Zhang Y, Wang Z, Ma X, Yang S, Hu X, Tao J, Hou Y, Bai G. Glycyrrhetinic acid binds to the conserved P-loop region and interferes with the interaction of RAS-effector proteins. Acta Pharm Sin B 2019; 9:294-303. [PMID: 30976491 PMCID: PMC6438844 DOI: 10.1016/j.apsb.2018.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
Members of the RAS proto-oncogene superfamily are indispensable molecular switches that play critical roles in cell proliferation, differentiation, and cell survival. Recent studies have attempted to prevent the interaction of RAS/GTP with RAS guanine nucleotide exchange factors (GEFs), impair RAS-effector interactions, and suppress RAS localization to prevent oncogenic signalling. The present study aimed to investigate the effect of the natural triterpenoic acid inhibitor glycyrrhetinic acid, which is isolated from the roots of Glycyrrhiza plant species, on RAS stability. We found that glycyrrhetinic acid may bind to the P-loop of RAS and alter its stability. Based on our biochemical tests and structural analysis results, glycyrrhetinic acid induced a conformational change in RAS. Meanwhile, glycyrrhetinic acid abolishes the function of RAS by interfering with the effector protein RAF kinase activation and RAS/MAPK signalling.
Collapse
Key Words
- Allosteric inhibitor
- CD, circular dichroism
- DTT, d,l-dithiothreitol
- FTIs, farnesyltransferase inhibitors
- FTS, fluorescence-based thermal shift
- GA, glycyrrhetinic acid
- GAPs, GTP hydrolysis by GTPase-activating proteins
- GEFs, guanine nucleotide exchange factors
- Glycyrrhetinic acid
- HOBt, hydroxybenzotrizole
- Kobe, Kobe0065
- N3-tag, 3-azido-7-hydroxycoumarin
- NH2-MMs, Fe3O4 amino magnetic microspheres
- RAS
- RAS, GTPases RAS
- RAS/MAPK signalling
- SPR, surface plasmon resonance
- Sulfo-SADP, sodium1-((3-((4-azidophenyl)disulfanyl)propanoyl)oxy)-2,5-dioxopyrrolidine-3-sulfonate
- Tip, tipifarnib
Collapse
|
10
|
Tetracycline does not directly inhibit the function of bacterial elongation factor Tu. PLoS One 2017; 12:e0178523. [PMID: 28552981 PMCID: PMC5446176 DOI: 10.1371/journal.pone.0178523] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/15/2017] [Indexed: 12/02/2022] Open
Abstract
Understanding the molecular mechanism of antibiotics that are currently in use is important for the development of new antimicrobials. The tetracyclines, discovered in the 1940s, are a well-established class of antibiotics that still have a role in treating microbial infections in humans. It is generally accepted that the main target of their action is the ribosome. The estimated affinity for tetracycline binding to the ribosome is relatively low compared to the actual potency of the drug in vivo. Therefore, additional inhibitory effects of tetracycline on the translation machinery have been discussed. Structural evidence suggests that tetracycline inhibits the function of the essential bacterial GTPase Elongation Factor (EF)-Tu through interaction with the bound nucleotide. Based on this, tetracycline has been predicted to impede the nucleotide-binding properties of EF-Tu. However, detailed kinetic studies addressing the effect of tetracycline on nucleotide binding have been prevented by the fluorescence properties of the antibiotic. Here, we report a fluorescence-based kinetic assay that minimizes the effect of tetracycline autofluorescence, enabling the detailed kinetic analysis of the nucleotide-binding properties of Escherichia coli EF-Tu. Furthermore, using physiologically relevant conditions, we demonstrate that tetracycline does not affect EF-Tu’s intrinsic or ribosome-stimulated GTPase activity, nor the stability of the EF-Tu•GTP•Phe-tRNAPhe complex. We therefore provide clear evidence that tetracycline does not directly impede the function of EF-Tu.
Collapse
|
11
|
De Laurentiis EI, Mercier E, Wieden HJ. The C-terminal Helix of Pseudomonas aeruginosa Elongation Factor Ts Tunes EF-Tu Dynamics to Modulate Nucleotide Exchange. J Biol Chem 2016; 291:23136-23148. [PMID: 27624934 DOI: 10.1074/jbc.m116.740381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
Little is known about the conservation of critical kinetic parameters and the mechanistic strategies of elongation factor (EF) Ts-catalyzed nucleotide exchange in EF-Tu in bacteria and particularly in clinically relevant pathogens. EF-Tu from the clinically relevant pathogen Pseudomonas aeruginosa shares over 84% sequence identity with the corresponding elongation factor from Escherichia coli Interestingly, the functionally closely linked EF-Ts only shares 55% sequence identity. To identify any differences in the nucleotide binding properties, as well as in the EF-Ts-mediated nucleotide exchange reaction, we performed a comparative rapid kinetics and mutagenesis analysis of the nucleotide exchange mechanism for both the E. coli and P. aeruginosa systems, identifying helix 13 of EF-Ts as a previously unnoticed regulatory element in the nucleotide exchange mechanism with species-specific elements. Our findings support the base side-first entry of the nucleotide into the binding pocket of the EF-Tu·EF-Ts binary complex, followed by displacement of helix 13 and rapid binding of the phosphate side of the nucleotide, ultimately leading to the release of EF-Ts.
Collapse
Affiliation(s)
- Evelina Ines De Laurentiis
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Evan Mercier
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Hans-Joachim Wieden
- From the Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
12
|
Katava M, Kalimeri M, Stirnemann G, Sterpone F. Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue. J Phys Chem B 2016; 120:2721-30. [DOI: 10.1021/acs.jpcb.6b00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Marina Katava
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Maria Kalimeri
- Department
of Physics, Tampere University of Technology, Tampere, Finland
| | - Guillaume Stirnemann
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| | - Fabio Sterpone
- CNRS (UPR9080),
Institut de Biologie Physico-Chimique, Université de Paris
Sorbonne Cité et Paris Science et Lettres, Univ. Paris Diderot,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, 75005, Paris, France
| |
Collapse
|
13
|
Walters BT, Jensen PF, Larraillet V, Lin K, Patapoff T, Schlothauer T, Rand KD, Zhang J. Conformational Destabilization of Immunoglobulin G Increases the Low pH Binding Affinity with the Neonatal Fc Receptor. J Biol Chem 2015; 291:1817-1825. [PMID: 26627822 DOI: 10.1074/jbc.m115.691568] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and FcRn affinity chromatography. The combination of experimental results demonstrates that differences between an IgG and its cognate YTE mutant vary with their pH-sensitive dynamics prior to binding FcRn. The conformational dynamics of these two molecules are nearly indistinguishable upon binding FcRn. We present evidence that pH-induced destabilization in the CH2/3 domain interface of IgG increases binding affinity by breaking intramolecular H-bonds and increases side-chain adaptability in sites that form intermolecular contacts with FcRn. Our results provide new insights into the mechanism of pH-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors.
Collapse
Affiliation(s)
- Benjamin T Walters
- From the Departments of Protein Analytical Chemistry,; Early Stage Pharmaceutical Development, and.
| | - Pernille F Jensen
- the Department of Pharmacy, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Vincent Larraillet
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center, DE-82377 Penzberg, Germany, and
| | - Kevin Lin
- Analytical Operations, Genentech Inc., South San Francisco, California 94080-4990
| | | | - Tilman Schlothauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center, DE-82377 Penzberg, Germany, and
| | - Kasper D Rand
- the Department of Pharmacy, University of Copenhagen, 1165 Copenhagen, Denmark
| | | |
Collapse
|