Dong D, Xing X, Ma H, Chen C, Liu Z, Rabitz H. Learning-Based Quantum Robust Control: Algorithm, Applications, and Experiments.
IEEE TRANSACTIONS ON CYBERNETICS 2020;
50:3581-3593. [PMID:
31295133 DOI:
10.1109/tcyb.2019.2921424]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Robust control design for quantum systems has been recognized as a key task in quantum information technology, molecular chemistry, and atomic physics. In this paper, an improved differential evolution algorithm, referred to as multiple-samples and mixed-strategy DE (msMS_DE), is proposed to search robust fields for various quantum control problems. In msMS_DE, multiple samples are used for fitness evaluation and a mixed strategy is employed for the mutation operation. In particular, the msMS_DE algorithm is applied to the control problems of: 1) open inhomogeneous quantum ensembles and 2) the consensus goal of a quantum network with uncertainties. Numerical results are presented to demonstrate the excellent performance of the improved machine learning algorithm for these two classes of quantum robust control problems. Furthermore, msMS_DE is experimentally implemented on femtosecond (fs) laser control applications to optimize two-photon absorption and control fragmentation of the molecule CH2BrI. The experimental results demonstrate the excellent performance of msMS_DE in searching for effective fs laser pulses for various tasks.
Collapse