1
|
Selection of Producer of α-Ketoglutaric Acid from Ethanol-Containing Wastes and Impact of Cultivation Conditions. FERMENTATION 2022. [DOI: 10.3390/fermentation8080362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ester–aldehyde fraction (EAF) is a by-product of ethyl-alcohol-producing companies whose purification requires an expensive process. The results of this study illustrate the environmentally friendly and alternative possibility of using EAF to increase their value as substrate to produce α-ketoglutaric acid (KGA) using different yeasts. It was found that some species of the genera Babjeviella, Diutina, Moesziomyces, Pichia, Saturnispora, Sugiyamaella, Yarrowia and Zygoascus grown under thiamine deficiency accumulate KGA in the medium with an EAF as the sole carbon source. The strain Y. lipolytica VKM Y-2412 was selected as the producer. To reach the maximum production of KGA, the cultivation medium should contain 0.3 µg/L thiamine during cultivation in flasks and 2 µg/L in the fermentor; the concentration of (NH4)2SO4 should range from 3 to 6 g/L; and the optimal concentrations of Zn2+, Fe2+ and Cu2+ ions should be 1.2, 0.6 and 0.05 mg/L, respectively. EAF concentration should not exceed 1.5 g/L in the growth phase and 3 g/L in the KGA synthesis phase. At higher EAF concentrations, acetic acid was accumulated and inhibited yeast growth and KGA production. Under optimal conditions, the producer accumulated 53.8 g/L KGA with a yield (Yp/s) of 0.68 g/g substrate consumed.
Collapse
|
2
|
Sousa-Silva M, Soares P, Alves J, Vieira D, Casal M, Soares-Silva I. Uncovering Novel Plasma Membrane Carboxylate Transporters in the Yeast Cyberlindnera jadinii. J Fungi (Basel) 2022; 8:51. [PMID: 35049991 PMCID: PMC8779868 DOI: 10.3390/jof8010051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/22/2022] Open
Abstract
The yeast Cyberlindnera jadinii has great potential in the biotechnology industry due to its ability to produce a variety of compounds of interest, including carboxylic acids. In this work, we identified genes encoding carboxylate transporters from this yeast species. The functional characterization of sixteen plasma membrane carboxylate transporters belonging to the AceTr, SHS, TDT, MCT, SSS, and DASS families was performed by heterologous expression in Saccharomyces cerevisiae. The newly identified C. jadinii transporters present specificity for mono-, di-, and tricarboxylates. The transporters CjAto5, CjJen6, CjSlc5, and CjSlc13-1 display the broadest substrate specificity; CjAto2 accepts mono- and dicarboxylates; and CjAto1,3,4, CjJen1-5, CjSlc16, and CjSlc13-2 are specific for monocarboxylic acids. A detailed characterization of these transporters, including phylogenetic reconstruction, 3D structure prediction, and molecular docking analysis is presented here. The properties presented by these transporters make them interesting targets to be explored as organic acid exporters in microbial cell factories.
Collapse
Affiliation(s)
- Maria Sousa-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Pedro Soares
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - João Alves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Daniel Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| | - Isabel Soares-Silva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.S.-S.); (P.S.); (J.A.); (D.V.); (M.C.)
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
3
|
Tomaszewska-Hetman L, Rywińska A, Lazar Z, Juszczyk P, Rakicka-Pustułka M, Janek T, Kuźmińska-Bajor M, Rymowicz W. Application of a New Engineered Strain of Yarrowia lipolytica for Effective Production of Calcium Ketoglutarate Dietary Supplements. Int J Mol Sci 2021; 22:7577. [PMID: 34299193 PMCID: PMC8304598 DOI: 10.3390/ijms22147577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
The present study aimed to develop a technology for the production of dietary supplements based on yeast biomass and α-ketoglutaric acid (KGA), produced by a new transformant of Yarrowia lipolytica with improved KGA biosynthesis ability, as well to verify the usefulness of the obtained products for food and feed purposes. Transformants of Y. lipolytica were constructed to overexpress genes encoding glycerol kinase, methylcitrate synthase and mitochondrial organic acid transporter. The strains were compared in terms of growth ability in glycerol- and oil-based media as well as their suitability for KGA biosynthesis in mixed glycerol-oil medium. The impact of different C:N:P ratios on KGA production by selected strain was also evaluated. Application of the strain that overexpressed all three genes in the culture with a C:N:P ratio of 87:5:1 allowed us to obtain 53.1 g/L of KGA with productivity of 0.35 g/Lh and yield of 0.53 g/g. Finally, the possibility of obtaining three different products with desired nutritional and health-beneficial characteristics was demonstrated: (1) calcium α-ketoglutarate (CaKGA) with purity of 89.9% obtained by precipitation of KGA with CaCO3, (2) yeast biomass with very good nutritional properties, (3) fixed biomass-CaKGA preparation containing 87.2 μg/g of kynurenic acid, which increases the health-promoting value of the product.
Collapse
Affiliation(s)
- Ludwika Tomaszewska-Hetman
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Street 37, 51-630 Wrocław, Poland; (A.R.); (Z.L.); (P.J.); (M.R.-P.); (T.J.); (M.K.-B.); (W.R.)
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Jiang Z, Cui Z, Zhu Z, Liu Y, Tang YJ, Hou J, Qi Q. Engineering of Yarrowia lipolytica transporters for high-efficient production of biobased succinic acid from glucose. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:145. [PMID: 34176501 PMCID: PMC8237505 DOI: 10.1186/s13068-021-01996-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/17/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Succinic acid (SA) is a crucial metabolic intermediate and platform chemical. Development of biobased processes to achieve sustainable SA production has attracted more and more attention in biotechnology industry. Yarrowia lipolytica has a strong tricarboxylic acid cycle and tolerates low pH conditions, thus making it a potential platform for SA production. However, its SA titers in glucose media remain low. RESULTS In this study, we screened mitochondrial carriers and C4-dicarboxylic acid transporters to enhance SA secretion in Y. lipolytica. PGC62-SYF-Mae strain with efficient growth and SA production was constructed by optimizing SA biosynthetic pathways and expressing the transporter SpMae1. In fed-batch fermentation, this strain produced 101.4 g/L SA with a productivity of 0.70 g/L/h and a yield of 0.37 g/g glucose, which is the highest SA titer achieved using yeast, with glucose as the sole carbon resource. CONCLUSION Our results indicated that transporter engineering is a powerful strategy to achieve the efficient secretion of SA in Y. lipolytica, which will promote the industrial production of bio-based SA.
Collapse
Affiliation(s)
- Zhennan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Ziwei Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Yinghang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China.
| |
Collapse
|
5
|
Poorinmohammad N, Kerkhoven EJ. Systems-level approaches for understanding and engineering of the oleaginous cell factory Yarrowia lipolytica. Biotechnol Bioeng 2021; 118:3640-3654. [PMID: 34129240 DOI: 10.1002/bit.27859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/07/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Concerns about climate change and the search for renewable energy sources together with the goal of attaining sustainable product manufacturing have boosted the use of microbial platforms to produce fuels and high-value chemicals. In this regard, Yarrowia lipolytica has been known as a promising yeast with potentials in diverse array of biotechnological applications such as being a host for different oleochemicals, organic acid, and recombinant protein production. Having a rapidly increasing number of molecular and genetic tools available, Y. lipolytica has been well studied amongst oleaginous yeasts and metabolic engineering has been used to explore its potentials. More recently, with the advancement in systems biotechnology and the implementation of mathematical modeling and high throughput omics data-driven approaches, in-depth understanding of cellular mechanisms of cell factories have been made possible resulting in enhanced rational strain design. In case of Y. lipolytica, these systems-level studies and the related cutting-edge technologies have recently been initiated which is expected to result in enabling the biotechnology sector to rationally engineer Y. lipolytica-based cell factories with favorable production metrics. In this regard, here, we highlight the current status of systems metabolic engineering research and assess the potential of this yeast for future cell factory design development.
Collapse
Affiliation(s)
- Naghmeh Poorinmohammad
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
6
|
Laothanachareon T, Bruinsma L, Nijsse B, Schonewille T, Suarez-Diez M, Tamayo-Ramos JA, Martins dos Santos VAP, Schaap PJ. Global Transcriptional Response of Aspergillus niger to Blocked Active Citrate Export through Deletion of the Exporter Gene. J Fungi (Basel) 2021; 7:jof7060409. [PMID: 34071072 PMCID: PMC8224569 DOI: 10.3390/jof7060409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus niger is the major industrial citrate producer worldwide. Export as well as uptake of citric acid are believed to occur by active, proton-dependent, symport systems. Both are major bottlenecks for industrial citrate production. Therefore, we assessed the consequences of deleting the citT gene encoding the A. niger citrate exporter, effectively blocking active citrate export. We followed the consumption of glucose and citrate as carbon sources, monitored the secretion of organic acids and carried out a thorough transcriptome pathway enrichment analysis. Under controlled cultivation conditions that normally promote citrate secretion, the knock-out strain secreted negligible amounts of citrate. Blocking active citrate export in this way led to a reduced glucose uptake and a reduced expression of high-affinity glucose transporter genes, mstG and mstH. The glyoxylate shunt was strongly activated and an increased expression of the OAH gene was observed, resulting in a more than two-fold higher concentration of oxalate in the medium. Deletion of citT did not affect citrate uptake suggesting that citrate export and citrate uptake are uncoupled from the system.
Collapse
Affiliation(s)
- Thanaporn Laothanachareon
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
- Enzyme Technology Laboratory, Biorefinery and Bioproduct Research Group, National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Khlong Luang, Pathumthani 12120, Thailand
- Correspondence: (T.L.); (V.A.P.M.d.S.)
| | - Lyon Bruinsma
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Bart Nijsse
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Tom Schonewille
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| | - Juan Antonio Tamayo-Ramos
- International Research Center in Critical Raw Materials-ICCRAM, University of Burgos, 09001 Burgos, Spain;
| | - Vitor A. P. Martins dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
- LifeGlimmer GmbH, 12163 Berlin, Germany
- Correspondence: (T.L.); (V.A.P.M.d.S.)
| | - Peter J. Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University & Research, 6708 WE Wageningen, The Netherlands; (L.B.); (B.N.); (T.S.); (M.S.-D.); (P.J.S.)
| |
Collapse
|
7
|
Xi Y, Zhan T, Xu H, Chen J, Bi C, Fan F, Zhang X. Characterization of JEN family carboxylate transporters from the acid-tolerant yeast Pichia kudriavzevii and their applications in succinic acid production. Microb Biotechnol 2021; 14:1130-1147. [PMID: 33629807 PMCID: PMC8085920 DOI: 10.1111/1751-7915.13781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
The unconventional yeast Pichia kudriavzevii is renowned for its ability to survive at low pH and has been exploited for the industrial production of various organic acids, especially succinic acid (SA). However, P. kudriavzevii can also utilize the di- and tricarboxylate intermediates of the Krebs cycle as the sole carbon sources for cell growth, which may adversely affect the extracellular accumulation of SA. Because the carboxylic acid transport machinery of P. kudriavzevii remains poorly understood, here, we focused on studying its SA transportation process from the perspective of mining and characterization of dicarboxylate transporters in a newly isolated acid-tolerant P. kudriavzevii strain CY902. Through genome sequencing and transcriptome analysis, two JEN family carboxylate transporters (PkJEN2-1 and PkJEN2-2) were found to be involved in SA transport. Substrate specificity analysis revealed that both PkJEN proteins are active dicarboxylate transporters, that can effectively import succinate, fumarate and L-malate into the cell. In addition, PkJEN2-1 can transport α-ketoglutarate, while PkJEN2-2 cannot. Since PkJEN2-1 shows higher transcript abundance than PkJEN2-2, its role in dicarboxylate transport is more important than PkJEN2-2. In addition, PKJEN2-2 is also responsible for the uptake of citrate. To our best knowledge, this is the first study to show that a JEN2 subfamily transporter is involved in tricarboxylate transport in yeast. A combination of model-based structure analysis and rational mutagenesis further proved that amino acid residues 392-403 of the tenth transmembrane span (TMS-X) of PkJEN2-2 play an important role in determining the specificity of the tricarboxylate substrate. Moreover, these two PkJEN transporters only exhibited inward transport activity for SA, and simultaneous inactivation of both PkJEN transporters reduced the SA influx, resulting in enhanced extracellular accumulation of SA in the late stage of fermentation. This work provides useful information on the mechanism of di-/tricarboxylic acid utilization in P. kudriavzevii, which will help improve the organic acid production performance of this microbial chassis.
Collapse
Affiliation(s)
- Yongyan Xi
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Ave, Tianjin Airport Economic ParkTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tao Zhan
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Ave, Tianjin Airport Economic ParkTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Hongtao Xu
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Ave, Tianjin Airport Economic ParkTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Jing Chen
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Ave, Tianjin Airport Economic ParkTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
| | - Changhao Bi
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Ave, Tianjin Airport Economic ParkTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Feiyu Fan
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Ave, Tianjin Airport Economic ParkTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| | - Xueli Zhang
- Tianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th Ave, Tianjin Airport Economic ParkTianjin300308China
- Key Laboratory of Systems Microbial BiotechnologyChinese Academy of SciencesTianjinChina
- National Technology Innovation Center of Synthetic BiologyTianjinChina
| |
Collapse
|
8
|
Kamzolova SV, Morgunov IG. Optimization of medium composition and fermentation conditions for α-ketoglutaric acid production from biodiesel waste by Yarrowia lipolytica. Appl Microbiol Biotechnol 2020; 104:7979-7989. [PMID: 32749527 DOI: 10.1007/s00253-020-10805-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
This work demonstrates the ability of the yeast Yarrowia lipolytica cultivated on biodiesel waste to synthesize α-ketoglutaric acid with a minimal content of pyruvic acid as the main byproduct. The key factor promoting the microbial production of α-ketoglutaric acid from the waste is a strong deficiency of thiamine in the cultivation medium. The production of α-ketoglutaric acid by the yeast can be regulated by changing the concentration of nitrogen, iron, zinc, copper, and manganese in the medium, as well as by pH medium and the aeration rate. The optimization of these parameters in flask experiments allowed us to increase the concentration of α-ketoglutaric acid in the medium by 2.6 times and to shift the α-ketoglutaric acid/pyruvic acid ratio from 5:1 to 30:1. During cultivation in a fermentor under optimized conditions, Y. lipolytica produced 80.4 g/L α-ketoglutaric acid with a process selectivity of 96.7% and the product yield (YKGA) equal to 1.01 g/g. KEY POINTS: • α-Ketoglutaric acid is commercially important biotechnological product. • Biosynthesis of α-ketoglutaric acid from biodiesel waste. • Optimization of cultivation medium and nutrition medium.
Collapse
Affiliation(s)
- Svetlana V Kamzolova
- Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia
| | - Igor G Morgunov
- Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences, Prospect Nauki 5, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
9
|
Chen X, Dong X, Liu J, Luo Q, Liu L. Pathway engineering of Escherichia coli for α-ketoglutaric acid production. Biotechnol Bioeng 2020; 117:2791-2801. [PMID: 32530489 DOI: 10.1002/bit.27456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/19/2020] [Accepted: 06/11/2020] [Indexed: 01/09/2023]
Abstract
α-Ketoglutaric acid (α-KG) is a multifunctional dicarboxylic acid in the tricarboxylic acid (TCA) cycle, but microbial engineering for α-KG production is not economically efficient, due to the intrinsic inefficiency of its biosynthetic pathway. In this study, pathway engineering was used to improve pathway efficiency for α-KG production in Escherichia coli. First, the TCA cycle was rewired for α-KG production starting from pyruvate, and the engineered strain E. coli W3110Δ4-PCAI produced 15.66 g/L α-KG. Then, the rewired TCA cycle was optimized by designing various strengths of pyruvate carboxylase and isocitrate dehydrogenase expression cassettes, resulting in a large increase in α-KG production (24.66 g/L). Furthermore, acetyl coenzyme A (acetyl-CoA) availability was improved by overexpressing acetyl-CoA synthetase, leading to α-KG production up to 28.54 g/L. Finally, the engineered strain E. coli W3110Δ4-P(H) CAI(H) A was able to produce 32.20 g/L α-KG in a 5-L fed-batch bioreactor. This strategy described here paves the way to the development of an efficient pathway for microbial production of α-KG.
Collapse
Affiliation(s)
- Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiaoxiang Dong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Qiuling Luo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Wuxi Chenming Biotechnology Co., Ltd., Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Zhu Y, Zhou C, Wang Y, Li C. Transporter Engineering for Microbial Manufacturing. Biotechnol J 2020; 15:e1900494. [PMID: 32298528 DOI: 10.1002/biot.201900494] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/30/2020] [Indexed: 01/08/2023]
Abstract
Microbes play an important role in biotransformation and biosynthesis of biofuels, natural products, and polymers. Therefore, microbial manufacturing has been widely used in medicine, industry, and agriculture. However, common strategies including enzyme engineering, pathway optimization, and host engineering are generally inadequate to obtain an efficient microbial production system. Transporter engineering provides an alternative strategy to promote the transmembrane transfer of substrates, intermediates, and final products in microbial cells and thus enhances production by alleviating feedback inhibition and cytotoxicity caused by final products. According to the current studies in transport engineering, native transporters usually have low expression and poor transportation ability, resulting in inefficient transport processes and microbial production. In this review, current approaches for transporter mining, characterization, and verification are comprehensively summarized. Practical approaches to enhance the transport system in engineered cells, such as balancing transporter overexpression and cell growth, and evolution of native transporters are discussed. Furthermore, the applications of transporter engineering in microbial manufacturing, including enhancement of substrate utilization, concentration of metabolic flux to the target pathway, and acceleration of efflux and recovery of products, demonstrate its outstanding advantages and promising prospects.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chen Zhou
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Wang
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chun Li
- Department of Biochemical Engineering, Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
11
|
Fickers P, Cheng H, Sze Ki Lin C. Sugar Alcohols and Organic Acids Synthesis in Yarrowia lipolytica: Where Are We? Microorganisms 2020; 8:E574. [PMID: 32326622 PMCID: PMC7232202 DOI: 10.3390/microorganisms8040574] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023] Open
Abstract
Sugar alcohols and organic acids that derive from the metabolism of certain microorganisms have a panoply of applications in agro-food, chemical and pharmaceutical industries. The main challenge in their production is to reach a productivity threshold that allow the process to be profitable. This relies on the construction of efficient cell factories by metabolic engineering and on the development of low-cost production processes by using industrial wastes or cheap and widely available raw materials as feedstock. The non-conventional yeast Yarrowia lipolytica has emerged recently as a potential producer of such metabolites owing its low nutritive requirements, its ability to grow at high cell densities in a bioreactor and ease of genome edition. This review will focus on current knowledge on the synthesis of the most important sugar alcohols and organic acids in Y. lipolytica.
Collapse
Affiliation(s)
- Patrick Fickers
- Microbial Process and Interactions, TERRA Teaching and Research Centre, University of Liege—Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;
| |
Collapse
|
12
|
Savory FR, Milner DS, Miles DC, Richards TA. Ancestral Function and Diversification of a Horizontally Acquired Oomycete Carboxylic Acid Transporter. Mol Biol Evol 2019; 35:1887-1900. [PMID: 29701800 PMCID: PMC6063262 DOI: 10.1093/molbev/msy082] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Horizontal gene transfer (HGT) can equip organisms with novel genes, expanding the repertoire of genetic material available for evolutionary innovation and allowing recipient lineages to colonize new environments. However, few studies have characterized the functions of HGT genes experimentally or examined postacquisition functional divergence. Here, we report the use of ancestral sequence reconstruction and heterologous expression in Saccharomyces cerevisiae to examine the evolutionary history of an oomycete transporter gene family that was horizontally acquired from fungi. We demonstrate that the inferred ancestral oomycete HGT transporter proteins and their extant descendants transport dicarboxylic acids which are intermediates of the tricarboxylic acid cycle. The substrate specificity profile of the most ancestral protein has largely been retained throughout the radiation of oomycetes, including in both plant and animal pathogens and in a free-living saprotroph, indicating that the ancestral HGT transporter function has been maintained by selection across a range of different lifestyles. No evidence of neofunctionalization in terms of substrate specificity was detected for different HGT transporter paralogues which have different patterns of temporal expression. However, a striking expansion of substrate range was observed for one plant pathogenic oomycete, with a HGT derived paralogue from Pythium aphanidermatum encoding a protein that enables tricarboxylic acid uptake in addition to dicarboxylic acid uptake. This demonstrates that HGT acquisitions can provide functional additions to the recipient proteome as well as the foundation material for the evolution of expanded protein functions.
Collapse
Affiliation(s)
- Fiona R Savory
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - David S Milner
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Daniel C Miles
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Thomas A Richards
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
13
|
Guo H, Huang T, Zhao J, Chen H, Chen G. Fungi short-chain carboxylate transporter: shift from microbe hereditary functional component to metabolic engineering target. Appl Microbiol Biotechnol 2018; 102:4653-4662. [PMID: 29679102 DOI: 10.1007/s00253-018-9010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 11/29/2022]
Abstract
Short-chain carboxylic acids and their derivatives are widely utilized in all aspects of our daily life. Given their specific functional groups, these molecules are also utilized in fine chemical synthesis. The traditional petroleum-based carboxylate production methods are restricted by petrol shortage and environmental pollution. Renowned for their more sustainable processes than traditional methods, biotechnological methods are preferred alternatives and have attracted increasing attention. However, the industrial application of biotechnological methods is currently limited by low factors: low productivity and low yield. Therefore, understanding the regulation of carboxylate accumulation will greatly enhance the industrial biotechnological production of short-chain carboxylate acids. The carboxylate transporter plays a crucial role in transmembrane uptake and secretion of carboxylate; therefore, regulating these transporters is of high academic and application relevance. This review concentrates on the physiological roles, regulation mechanisms, and harnessing strategies of Jen and AcpA orthologs in fungi, which provide potential clues for the biotechnological production of short-chain carboxylic acids with high efficiency.
Collapse
Affiliation(s)
- Hongwei Guo
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China.
| | - Tianqiu Huang
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| | - Jun Zhao
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| | - Hongwen Chen
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| | - Guo Chen
- Department of Biotechnology and Bioengineering, School of Chemical Engineering and Key Laboratory of Fujian Province for Biochemical Technology, National Huaqiao University, 668 Jimei Road, Amoy, 361021, Fujian, China
| |
Collapse
|
14
|
Liu HH, Zeng SY, Shi TQ, Ding Y, Ren LJ, Song P, Huang H, Madzak C, Ji XJ. A Yarrowia lipolytica strain engineered for arachidonic acid production counteracts metabolic burden by redirecting carbon flux towards intracellular fatty acid accumulation at the expense of organic acids secretion. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Shi S, Zhao H. Metabolic Engineering of Oleaginous Yeasts for Production of Fuels and Chemicals. Front Microbiol 2017; 8:2185. [PMID: 29167664 PMCID: PMC5682390 DOI: 10.3389/fmicb.2017.02185] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/25/2017] [Indexed: 01/23/2023] Open
Abstract
Oleaginous yeasts have been increasingly explored for production of chemicals and fuels via metabolic engineering. Particularly, there is a growing interest in using oleaginous yeasts for the synthesis of lipid-related products due to their high lipogenesis capability, robustness, and ability to utilize a variety of substrates. Most of the metabolic engineering studies in oleaginous yeasts focused on Yarrowia that already has plenty of genetic engineering tools. However, recent advances in systems biology and synthetic biology have provided new strategies and tools to engineer those oleaginous yeasts that have naturally high lipid accumulation but lack genetic tools, such as Rhodosporidium, Trichosporon, and Lipomyces. This review highlights recent accomplishments in metabolic engineering of oleaginous yeasts and recent advances in the development of genetic engineering tools in oleaginous yeasts within the last 3 years.
Collapse
Affiliation(s)
- Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
| | - Huimin Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Metabolic Engineering Research Laboratory, Science and Engineering Institutes, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
16
|
Luo Z, Liu S, Du G, Xu S, Zhou J, Chen J. Enhanced pyruvate production in Candida glabrata
by carrier engineering. Biotechnol Bioeng 2017; 115:473-482. [DOI: 10.1002/bit.26477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Zhengshan Luo
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Song Liu
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; Jiangnan University; Wuxi Jiangsu China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education; Jiangnan University; Wuxi Jiangsu China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology; Ministry of Education, School of Biotechnology; Jiangnan University; Wuxi Jiangsu China
- National Engineering Laboratory for Cereal Fermentation Technology; Jiangnan University; Wuxi Jiangsu China
| |
Collapse
|
17
|
Zeng W, Zhang H, Xu S, Fang F, Zhou J. Biosynthesis of keto acids by fed-batch culture of Yarrowia lipolytica WSH-Z06. BIORESOURCE TECHNOLOGY 2017; 243:1037-1043. [PMID: 28764105 DOI: 10.1016/j.biortech.2017.07.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 06/07/2023]
Abstract
Both α-ketoglutarate (α-KG) and pyruvate (PYR) are important organic acids with promising applications in the food, pharmaceutical and chemical industries. During the production of α-KG by different microorganisms, PYR is always present as a by-product. Strategies have been applied to eliminate PYR accumulation since it can bring difficulties to the downstream separation process. However, modern separation technologies have already conquered this problem. Therefore, this study was aimed at simultaneously enhancing α-KG and PYR production by Yarrowia lipolytica WSH-Z06. Using a fed-batch strategy, in which the initial glycerol concentration was 50g·L-1, the residual glycerol concentration was maintained 20-30g·L-1 by constant feeding at a rate of 1.25g·L-1·h-1. The titers of α-KG and PYR were increased by 9.6% and 176.8%, and reached 67.4g·L-1 and 39.1g·L-1, respectively. The final yield of keto acids was 0.71g·g-1 glycerol, which is 42.0% higher than that of the optimal batch fermentation.
Collapse
Affiliation(s)
- Weizhu Zeng
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Hailin Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Fang Fang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
18
|
Cui Z, Gao C, Li J, Hou J, Lin CSK, Qi Q. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metab Eng 2017. [PMID: 28627452 DOI: 10.1016/j.ymben.2017.06.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Yarrowia lipolytica is considered as a potential candidate for succinic acid production because of its innate ability to accumulate citric acid cycle intermediates and its tolerance to acidic pH. Previously, a succinate-production strain was obtained through the deletion of succinate dehydrogenase subunit encoding gene Ylsdh5. However, the accumulation of by-product acetate limited further improvement of succinate production. Meanwhile, additional pH adjustment procedure increased the downstream cost in industrial application. In this study, we identified for the first time that acetic acid overflow is caused by CoA-transfer reaction from acetyl-CoA to succinate in mitochondria rather than pyruvate decarboxylation reaction in SDH negative Y. lipolytica. The deletion of CoA-transferase gene Ylach eliminated acetic acid formation and improved succinic acid production and the cell growth. We then analyzed the effect of overexpressing the key enzymes of oxidative TCA, reductive carboxylation and glyoxylate bypass on succinic acid yield and by-products formation. The best strain with phosphoenolpyruvate carboxykinase (ScPCK) from Saccharomyces cerevisiae and endogenous succinyl-CoA synthase beta subunit (YlSCS2) overexpression improved succinic acid titer by 4.3-fold. In fed-batch fermentation, this strain produced 110.7g/L succinic acid with a yield of 0.53g/g glycerol without pH control. This is the highest succinic acid titer achieved at low pH by yeast reported worldwide, to date, using defined media. This study not only revealed the mechanism of acetic acid overflow in SDH negative Y. lipolytica, but it also reported the development of an efficient succinic acid production strain with great industrial prospects.
Collapse
Affiliation(s)
- Zhiyong Cui
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Cuijuan Gao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China; School of Life Science, Linyi University, Linyi 276000, China
| | - Jiaojiao Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China.
| |
Collapse
|
19
|
Sabra W, Bommareddy RR, Maheshwari G, Papanikolaou S, Zeng AP. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses. Microb Cell Fact 2017; 16:78. [PMID: 28482902 PMCID: PMC5421321 DOI: 10.1186/s12934-017-0690-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/23/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Unlike the well-studied backer yeast where catabolite repression represents a burden for mixed substrate fermentation, Yarrowia lipolytica, an oleaginous yeast, is recognized for its potential to produce single cell oils and citric acid from different feedstocks. These versatilities of Y. lipolytica with regards to substrate utilization make it an attractive host for biorefinery application. However, to develop a commercial process for the production of citric acid by Y. lipolytica, it is necessary to better understand the primary metabolism and its regulation, especially for growth on mixed substrate. RESULTS Controlling the dissolved oxygen concentration (pO2) in Y. lipolytica cultures enhanced citric acid production significantly in cultures grown on glucose in mono- or dual substrate fermentations, whereas with glycerol as mono-substrate no significant effect of pO2 was found on citrate production. Growth on mixed substrate with glucose and glycerol revealed a relative preference of glycerol utilization by Y. lipolytica. Under optimized conditions with pO2 control, the citric acid titer on glucose in mono- or in dual substrate cultures was 55 and 50 g/L (with productivity of 0.6 g/L*h in both cultures), respectively, compared to a maximum of 18 g/L (0.2 g/L*h) with glycerol in monosubstrate culture. Additionally, in dual substrate fermentation, glycerol limitation was found to trigger citrate consumption despite the presence of enough glucose in pO2-limited culture. The metabolic behavior of this yeast on different substrates was investigated at transcriptomic and 13C-based fluxomics levels. CONCLUSION Upregulation of most of the genes of the pentose phosphate pathway was found in cultures with highest citrate production with glucose in mono- or in dual substrate fermentation with pO2 control. The activation of the glyoxylate cycle in the oxygen limited cultures and the imbalance caused by glycerol limitation might be the reason for the re-consumption of citrate in dual substrate fermentations. This study provides interesting targets for metabolic engineering of this industrial yeast.
Collapse
Affiliation(s)
- Wael Sabra
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, 21071 Hamburg, Germany
| | - Rajesh Reddy Bommareddy
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, 21071 Hamburg, Germany
- Synthetic Biology Research Centre, University of Nottingham, Nottingham, NG7 2RD UK
| | - Garima Maheshwari
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, 21071 Hamburg, Germany
| | - Seraphim Papanikolaou
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, 21071 Hamburg, Germany
| |
Collapse
|
20
|
Identification of a polysaccharide produced by the pyruvate overproducer Candida glabrata CCTCC M202019. Appl Microbiol Biotechnol 2017; 101:4447-4458. [DOI: 10.1007/s00253-017-8245-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/08/2017] [Accepted: 03/12/2017] [Indexed: 12/22/2022]
|
21
|
Liu HH, Madzak C, Sun ML, Ren LJ, Song P, Huang H, Ji XJ. Engineering Yarrowia lipolytica for arachidonic acid production through rapid assembly of metabolic pathway. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.12.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Ribas D, Sá-Pessoa J, Soares-Silva I, Paiva S, Nygård Y, Ruohonen L, Penttilä M, Casal M. Yeast as a tool to express sugar acid transporters with biotechnological interest. FEMS Yeast Res 2017; 17:fox005. [DOI: 10.1093/femsyr/fox005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/10/2017] [Indexed: 11/13/2022] Open
|
23
|
Applying pathway engineering to enhance production of alpha-ketoglutarate in Yarrowia lipolytica. Appl Microbiol Biotechnol 2016; 100:9875-9884. [DOI: 10.1007/s00253-016-7913-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 12/29/2022]
|
24
|
Zeng W, Fang F, Liu S, Du G, Chen J, Zhou J. Comparative genomics analysis of a series of Yarrowia lipolytica WSH-Z06 mutants with varied capacity for α-ketoglutarate production. J Biotechnol 2016; 239:76-82. [PMID: 27732868 DOI: 10.1016/j.jbiotec.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/16/2016] [Accepted: 10/07/2016] [Indexed: 01/23/2023]
Abstract
Yarrowia lipolytica is one of the most intensively investigated α-ketoglutaric acid (α-KG) producers, and metabolic engineering has proven effective for enhancing production. However, regulation of α-KG metabolism remains poorly understood. Genetic engineering of new strains is accompanied by potential safety concerns in some countries and regions. A series of mutants with varied capacity for α-KG production were obtained using random mutagenesis of Y. lipolytica WSH-Z06. Comparative genomics analysis was implemented to identify genes candidates associated with α-KG production. Manipulation of genes regulating mitochondrial biogenesis and energy metabolism could improve α-KG production, while genes involved in regulating transformation between keto acids and amino acids may decrease production. One gene associated with cell cycle control well represented in all mutants, whereas this gene involved in cell concentration do not appear to influence α-KG production. The results shed light on α-KG production in eukaryotic cells, and pave the way for a high-throughput screening and random mutagenesis method for enhancing α-KG production.
Collapse
Affiliation(s)
- Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Fang Fang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Synergetic Innovation Center of Food Safety and Nutrition, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
25
|
Casal M, Queirós O, Talaia G, Ribas D, Paiva S. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:229-251. [PMID: 26721276 DOI: 10.1007/978-3-319-25304-6_9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.
Collapse
Affiliation(s)
- Margarida Casal
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Odília Queirós
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Gabriel Talaia
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - David Ribas
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Sandra Paiva
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| |
Collapse
|