1
|
Sahoo BR, Ramamoorthy A. Direct interaction between the transmembrane helices stabilize cytochrome P450 2B4 and cytochrome b5 redox complex. Biophys Chem 2023; 301:107092. [PMID: 37586236 PMCID: PMC10838600 DOI: 10.1016/j.bpc.2023.107092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
The catalytic activity of cytochrome P450 2B4 (CYP2B4) is moderated by its cognate redox partner cytochrome b5 (Cyt-b5). The endoplasmic reticulum (ER) membrane and intermolecular transmembrane (TM) interaction between CYP2B4 and Cyt-b5 regulate the substrate catalysis and the reaction rate. This emphasizes the significance of elucidating the molecular basis of CYP2B4 and Cyt-b5 complexation in a membrane environment to better understand the enzymatic activity of CYP2B4. Our previous solid-state NMR studies revealed the membrane topology of the transmembrane domains of these proteins in the free and complex forms. Here, we show the cross-angle complex formation by the single-pass TM domains of CYP2B4 and Cyt-b5, which is mainly driven by several salt-bridges (E2-R128, R21-D104 and K25-D104), using a multi-microsecond molecular dynamic simulation. Additionally, the leucine-zipper residues (L8, L12, L15, L18 and L19 from CYP2B4) and π-stacking between H23 and F20 residues of CYP2B4 and W110 of Cyt-b5 are identified to stabilize the TM-TM complex in the ER membrane. The simulated tilts of the helices in the free and in the complex are in excellent agreement with solid-state NMR results. The TM-TM packing influences a higher order structural stability when compared to the complex formed by the truncated soluble domains of these two proteins. MM/PBSA based binding free energy estimates nearly 100-fold higher binding affinity (ΔG = -2810.68 ± 696.44 kJ/mol) between the soluble domains of the full-length CYP2B4 and Cyt-b5 when embedded in lipid membrane as compared to the TM-domain-truncated soluble domains (ΔG = -27.406 ± 10.32 kJ/mol). The high-resolution full-length CYP2B4-Cyt-b5 complex structure and its dynamics in a native ER membrane environment reported here could aid in the development of approaches to effectively modulate the drug-metabolism activity of CYP2B4.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Macromolecular Science and Engineering, Biomedical Engineering, Michigan Neuroscience Institute, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
2
|
Iqbal T, Das D. Biochemical Investigation of Membrane-Bound Cytochrome b5 and the Catalytic Domain of Cytochrome b5 Reductase from Arabidopsis thaliana. Biochemistry 2022; 61:909-921. [PMID: 35475372 DOI: 10.1021/acs.biochem.2c00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The endoplasmic reticulum (ER) membrane of plant cells contains several enzymes responsible for the biosynthesis of a diverse range of molecules essential for plant growth and holds potential for industrial applications. Many of these enzymes are dependent on electron transfer proteins to sustain their catalytic cycles. In plants, two crucial ER-bound electron transfer proteins are cytochrome b5 and cytochrome b5 reductase, which catalyze the stepwise transfer of electrons from NADH to redox enzymes such as fatty acid desaturases, cytochrome P450s, and plant aldehyde decarbonylase. Despite the high significance of plant cytochrome b5 and cytochrome b5 reductase, they have eluded detailed characterization to date. Here, we overexpressed the full-length membrane-bound cytochrome b5 isoform B from the model plant Arabidopsis thaliana in Escherichia coli, purified the protein employing detergents as well as styrene-maleic acid (SMA) copolymers, and biochemically characterized the protein. The SMA-encapsulated cytochrome b5 exhibits a discoidal shape and the characteristic features of the active heme-bound state. We also overexpressed and purified the soluble domain of cytochrome b5 reductase from A. thaliana, establishing its activity, stability, and kinetic parameters. Further, we demonstrated that the plant cytochrome b5, purified in detergents and styrene maleic acid lipid particles (SMALPs), readily accepts electrons from the cognate plant cytochrome b5 reductase and distant electron mediators such as plant NADPH-cytochrome P450 oxidoreductase and cyanobacterial NADPH-ferredoxin reductase. We also measured the kinetic parameters of cytochrome b5 reductase for cytochrome b5. Our studies are the first to report the purification and detailed biochemical characterization of the plant cytochrome b5 and cytochrome b5 reductase from the bacterial overexpression system.
Collapse
Affiliation(s)
- Tabish Iqbal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Debasis Das
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
3
|
Pereira RFS, de Carvalho CCCR. Optimization of Multiparameters for Increased Yields of Cytochrome B5 in Bioreactors. Molecules 2021; 26:4148. [PMID: 34299423 PMCID: PMC8306036 DOI: 10.3390/molecules26144148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/26/2022] Open
Abstract
The production of recombinant proteins is gaining increasing importance as the market requests high quality proteins for several applications. However, several process parameters affect both the growth of cells and product yields. This study uses high throughput systems and statistical methods to assess the influence of fermentation conditions in lab-scale bioreactors. Using this methodology, it was possible to find the best conditions to produce cytochrome b5 with recombinant cells of Escherichia coli. Using partial least squares, the height-to-diameter ratio of the bioreactor, aeration rate, and PID controller parameters were found to contribute significantly to the final biomass and cytochrome concentrations. Hence, we could use this information to fine-tune the process parameters, which increased cytochrome production and yield several-fold. Using aeration of 1 vvm, a bioreactor with a height-to-ratio of 2.4 and tuned PID parameters, a production of 72.72 mg/L of cytochrome b5 in the culture media, and a maximum of product to biomass yield of 24.97 mg/g could be achieved.
Collapse
Affiliation(s)
- Ricardo F. S. Pereira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
4
|
Sligar SG, Denisov IG. Nanodiscs: A toolkit for membrane protein science. Protein Sci 2020; 30:297-315. [PMID: 33165998 DOI: 10.1002/pro.3994] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/25/2022]
Abstract
Membrane proteins are involved in numerous vital biological processes, including transport, signal transduction and the enzymes in a variety of metabolic pathways. Integral membrane proteins account for up to 30% of the human proteome and they make up more than half of all currently marketed therapeutic targets. Unfortunately, membrane proteins are inherently recalcitrant to study using the normal toolkit available to scientists, and one is most often left with the challenge of finding inhibitors, activators and specific antibodies using a denatured or detergent solubilized aggregate. The Nanodisc platform circumvents these challenges by providing a self-assembled system that renders typically insoluble, yet biologically and pharmacologically significant, targets such as receptors, transporters, enzymes, and viral antigens soluble in aqueous media in a native-like bilayer environment that maintain a target's functional activity. By providing a bilayer surface of defined composition and structure, Nanodiscs have found great utility in the study of cellular signaling complexes that assemble on a membrane surface. Nanodiscs provide a nanometer scale vehicle for the in vivo delivery of amphipathic drugs, therapeutic lipids, tethered nucleic acids, imaging agents and active protein complexes. This means for generating nanoscale lipid bilayers has spawned the successful use of numerous other polymer and peptide amphipathic systems. This review, in celebration of the Anfinsen Award, summarizes some recent results and provides an inroad into the current and historical literature.
Collapse
Affiliation(s)
- Stephen G Sligar
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| | - Ilia G Denisov
- Departments of Biochemistry Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
5
|
Bai J, Wang J, Ravula T, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A. Expression, purification, and functional reconstitution of 19F-labeled cytochrome b5 in peptide nanodiscs for NMR studies. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183194. [PMID: 31953231 PMCID: PMC7050362 DOI: 10.1016/j.bbamem.2020.183194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 02/07/2023]
Abstract
Microsomal cytochrome b5 (cytb5) is a membrane-bound protein capable of donating the second electron to cytochrome P450s (cytP450s) in the cytP450s monooxygenase reactions. Recent studies have demonstrated the importance of the transmembrane domain of cytb5 in the interaction with cytP450 by stabilizing its monomeric structure. While recent NMR studies have provided high-resolution insights into the structural interactions between the soluble domains of ~16-kDa cytb5 and ~57-kDa cytP450 in a membrane environment, there is need for studies to probe the residues in the transmembrane region as well as to obtain intermolecular distance constraints to better understand the very large size cytb5-cytP450 complex structure in a near native membrane environment. In this study, we report the expression, purification, functional reconstitution of 19F-labeled full-length rabbit cytb5 in peptide based nanodiscs for structural studies using NMR spectroscopy. Size exclusion chromatography, dynamic light scattering, transmission electron microscopy, and NMR experiments show a stable reconstitution of cytb5 in 4F peptide-based lipid-nanodiscs. The reported results demonstrate the use of 19F NMR experiments to study 19F-labeled (with 5-fluorotryptophan (5FW)) cytb5 reconstituted in peptide-nanodiscs and the detection of residues from the transmembrane domain by solution 19F NMR experiments. 19F NMR results revealing the interaction of the transmembrane domain of cytb5 with the full-length rabbit cytochrome P450 2B4 (CYP2B4) are also presented. We expect the results presented in this study to be useful to devise approaches to probe the structure, dynamics and functional roles of transmembrane domains of a membrane protein, and also to measure intermolecular 19F-19F distance constraints to determine the structural interactions between the transmembrane domains.
Collapse
Affiliation(s)
- Jia Bai
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Jian Wang
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Sang-Choul Im
- Department of Internal Medicine, The University of Michigan, and VA Medical Center, Ann Arbor, MI 48105, USA
| | | | - Lucy Waskell
- Department of Anesthesiology, The University of Michigan, and VA Medical Center, Ann Arbor, MI 48105, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, The University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
6
|
Gentry KA, Anantharamaiah GM, Ramamoorthy A. Probing protein-protein and protein-substrate interactions in the dynamic membrane-associated ternary complex of cytochromes P450, b 5, and reductase. Chem Commun (Camb) 2019; 55:13422-13425. [PMID: 31638629 PMCID: PMC6879317 DOI: 10.1039/c9cc05904k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytochrome P450 (cytP450) interacts with two redox partners, cytP450 reductase and cytochrome-b5, to metabolize substrates. Using NMR, we reveal changes in the dynamic interplay when all three proteins are incorporated into lipid nanodiscs in the absence and presence of substrates.
Collapse
Affiliation(s)
- Katherine A Gentry
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama 35294, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
7
|
Kumar A, Estrada DF. Specificity of the Redox Complex between Cytochrome P450 24A1 and Adrenodoxin Relies on Carbon-25 Hydroxylation of Vitamin-D Substrate. Drug Metab Dispos 2019; 47:974-982. [PMID: 31289106 DOI: 10.1124/dmd.119.087759] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022] Open
Abstract
Metabolic deactivation of 1,25(OH)2D3 is initiated by modification of the vitamin-D side chain, as carried out by the mitochondrial cytochrome P450 24A1 (CYP24A1). In addition to its role in vitamin-D metabolism, CYP24A1 is involved in catabolism of vitamin-D analogs, thereby reducing their efficacy. CYP24A1 function relies on electron transfer from the soluble ferredoxin protein adrenodoxin (Adx). Recent structural evidence suggests that regioselectivity of the CYP24A1 reaction may correlate with distinct modes of Adx recognition. Here we used nuclear magnetic resonance (NMR) spectroscopy to monitor the structure of 15N-labeled full-length Adx from rat while forming the complex with rat CYP24A1 in the ligand-free state or bound to either 1,25(OH)2D3 or the vitamin-D supplement 1α(OH)D3. Although both vitamin-D ligands were found to induce a reduction in overall NMR peak broadening, thereby suggesting ligand-induced disruption of the complex, a crosslinking analysis suggested that ligand does not have a significant effect on the relative association affinities of the redox complexes. However, a key finding is that, whereas the presence of primary CYP24A1 substrate was found to induce NMR peak broadening focused on the putative recognition site α-helix 3 of rat adrenodoxin, the interaction in the presence of 1α(OH)D3, which is lacking the carbon-25 hydroxyl, results in disruption of the NMR peak broadening pattern, thus indicating a ligand-induced nonspecific protein interaction. These findings provide a structural basis for the poor substrate turnover of side-chain-modified vitamin-D analogs, while also confirming that specificity of the CYP24A1-ligand interaction influences specificity of CYP24A1-Adx recognition. SIGNIFICANCE STATEMENT: Mitochondrial cytochrome P450 enzymes, such as CYP24A1 responsible for catabolizing vitamin-D and its analogs, rely on a protein-protein interaction with a ferredoxin in order to receive delivery of the electrons required for catalysis. In this study, we demonstrate that this protein interaction is influenced by the enzyme-ligand interaction that precedes it. Specifically, vitamin-D missing carbon-25 hydroxylation binds the enzyme active site with high affinity but results in a loss of P450-ferredoxin binding specificity.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo New York
| | - D Fernando Estrada
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Science, University at Buffalo, Buffalo New York
| |
Collapse
|
8
|
Gold ND, Fossati E, Hansen CC, DiFalco M, Douchin V, Martin VJJ. A Combinatorial Approach To Study Cytochrome P450 Enzymes for De Novo Production of Steviol Glucosides in Baker's Yeast. ACS Synth Biol 2018; 7:2918-2929. [PMID: 30474973 DOI: 10.1021/acssynbio.8b00470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biosynthesis of steviol glycosides in planta proceeds via two cytochrome P450 enzymes (CYPs): kaurene oxidase (KO) and kaurenoic acid hydroxylase (KAH). KO and KAH function in succession with the support of a NADPH-dependent cytochrome P450 reductase (CPR) to convert kaurene to steviol. This work describes a platform for recombinant production of steviol glucosides (SGs) in Saccharomyces cerevisiae, demonstrating the full reconstituted pathway from the simple sugar glucose to the SG precursor steviol. With a focus on optimization of the KO-KAH activities, combinations of functional homologues were tested in batch growth. Among the CYPs, novel KO75 (CYP701) and novel KAH82 (CYP72) outperformed their respective functional homologues from Stevia rebaudiana, SrKO (CYP701A5) and SrKAH (CYP81), in assays where substrate was supplemented to culture broth. With kaurene produced from glucose in the cell, SrCPR1 from S. rebaudiana supported highest turnover for KO-KAH combinations, besting two other CPRs isolated from S. rebaudiana, the Arabidopsis thaliana ATR2, and a new class I CPR12. Some coexpressions of ATR2 with a second CPR were found to diminish KAH activity, showing that coexpression of CPRs can lead to competition for CYPs with possibly adverse effects on catalysis.
Collapse
Affiliation(s)
- Nicholas D. Gold
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Elena Fossati
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - Cecilie Cetti Hansen
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Plant Biochemistry Laboratory, Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
- Center for Synthetic Biology, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Marcos DiFalco
- Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
| | | | - Vincent J. J. Martin
- Centre for Applied Synthetic Biology, Concordia University, Montréal, Québec H4B 1R6, Canada
- Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec H4B 1R6, Canada
- Department of Biology, Centre for Structural and Functional Genomic, Concordia University, Montréal, Québec H4B 1R6, Canada
| |
Collapse
|
9
|
Campelo D, Esteves F, Brito Palma B, Costa Gomes B, Rueff J, Lautier T, Urban P, Truan G, Kranendonk M. Probing the Role of the Hinge Segment of Cytochrome P450 Oxidoreductase in the Interaction with Cytochrome P450. Int J Mol Sci 2018; 19:ijms19123914. [PMID: 30563285 PMCID: PMC6321550 DOI: 10.3390/ijms19123914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 01/08/2023] Open
Abstract
NADPH-cytochrome P450 reductase (CPR) is the unique redox partner of microsomal cytochrome P450s (CYPs). CPR exists in a conformational equilibrium between open and closed conformations throughout its electron transfer (ET) function. Previously, we have shown that electrostatic and flexibility properties of the hinge segment of CPR are critical for ET. Three mutants of human CPR were studied (S243P, I245P and R246A) and combined with representative human drug-metabolizing CYPs (isoforms 1A2, 2A6 and 3A4). To probe the effect of these hinge mutations different experimental approaches were employed: CYP bioactivation capacity of pre-carcinogens, enzyme kinetic analysis, and effect of the ionic strength and cytochrome b5 (CYB5) on CYP activity. The hinge mutations influenced the bioactivation of pre-carcinogens, which seemed CYP isoform and substrate dependent. The deviations of Michaelis-Menten kinetic parameters uncovered tend to confirm this discrepancy, which was confirmed by CYP and hinge mutant specific salt/activity profiles. CPR/CYB5 competition experiments indicated a less important role of affinity in CPR/CYP interaction. Overall, our data suggest that the highly flexible hinge of CPR is responsible for the existence of a conformational aggregate of different open CPR conformers enabling ET-interaction with structural varied redox partners.
Collapse
Affiliation(s)
- Diana Campelo
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Francisco Esteves
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Bernardo Brito Palma
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Bruno Costa Gomes
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - José Rueff
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| | - Thomas Lautier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Philippe Urban
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Gilles Truan
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077 Toulouse CEDEX 04, France.
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1150-082 Lisbon, Portugal.
| |
Collapse
|
10
|
Ravula T, Hardin NZ, Bai J, Im SC, Waskell L, Ramamoorthy A. Effect of polymer charge on functional reconstitution of membrane proteins in polymer nanodiscs. Chem Commun (Camb) 2018; 54:9615-9618. [PMID: 30094448 DOI: 10.1039/c8cc04184a] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although there is a growing interest in using polymer lipid-nanodiscs, the polymer charge poses limitations for studies on membrane proteins. Here, we demonstrate the functional reconstitution of a large soluble-domain containing positively-charged ∼57 kDa cytochrome-P450 and negatively-charged ∼16 kDa cytochrome-b5 in lipid-nanodiscs, and the role of the polymer charge for high-resolution studies on membrane proteins.
Collapse
Affiliation(s)
- Thirupathi Ravula
- Biophysics and Department of Chemistry, University of Michigan Ann Arbor, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Gentry KA, Zhang M, Im SC, Waskell L, Ramamoorthy A. Substrate mediated redox partner selectivity of cytochrome P450. Chem Commun (Camb) 2018; 54:5780-5783. [PMID: 29781479 DOI: 10.1039/c8cc02525h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Investigating the interplay between cytochrome-P450 and its redox partners (CPR and cytochrome-b5) is vital for understanding the metabolism of most hydrophobic drugs. Dynamic structural interactions with the ternary complex, with and without substrates, captured by NMR reveal a gating mechanism for redox partners to promote P450 function.
Collapse
Affiliation(s)
- Katherine A Gentry
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | |
Collapse
|
12
|
Estrada DF. The cytochrome P450 24A1 interaction with adrenodoxin relies on multiple recognition sites that vary among species. J Biol Chem 2018; 293:4167-4179. [PMID: 29371396 DOI: 10.1074/jbc.ra117.001145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/24/2018] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial cytochromes P450 (P450s) are responsible for important metabolic reactions, including steps involved in steroid and vitamin D metabolism. The mitochondrial P450 24A1 (CYP24A1) is responsible for deactivation of the bioactive form of vitamin D, 1,25(OH)2D3. Its function relies on formation of a P450-redox partner complex with the ferredoxin and electron donor adrenodoxin (Adx). However, very little is known about how the Adx-CYP24A1 complex forms. In this study, we report the results of solution NMR in which we monitor isotopically labeled full-length Adx as it binds CYP24A1 in complex with the P450 inhibitor clotrimazole. The NMR titration data suggested a mode for P450-Adx interactions in which formation of the complex relies on contributions from multiple recognition sites on the Adx core domain, some of which have not previously been reported. To evaluate differences among CYP24A1-Adx complexes from different mammalian species and displaying distinct regioselectivity for 1,25(OH)2D3, all bound spectra were acquired in parallel for human (carbon-23 and -24 hydroxylase), rat (carbon-24 hydroxylase), and opossum (carbon-23 hydroxylase) CYP24A1 isoforms. Binding data from a series of single and double charge-neutralizing substitutions of Adx confirmed that species-specific CYP24A1 isoforms differ in binding to Adx, providing evidence that variations in redox partner interactions correlate with P450 regioselectivity. In summary, these findings reveal that CYP24A1-Adx interactions rely on several recognition sites and that variations in CYP24A1 isoforms modulate formation of the complex, thus providing insight into the variable and complex nature of mitochondrial P450-Adx interactions.
Collapse
Affiliation(s)
- D Fernando Estrada
- From the Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214
| |
Collapse
|
13
|
Barnaba C, Taylor E, Brozik JA. Dissociation Constants of Cytochrome P450 2C9/Cytochrome P450 Reductase Complexes in a Lipid Bilayer Membrane Depend on NADPH: A Single-Protein Tracking Study. J Am Chem Soc 2017; 139:17923-17934. [PMID: 29148818 DOI: 10.1021/jacs.7b08750] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochrome P450-reductase (CPR) is a versatile NADPH-dependent electron donor located in the cytoplasmic side of the endoplasmic reticulum. It is an electron transferase that is able to deliver electrons to a variety of membrane-bound oxidative partners, including the drug-metabolizing enzymes of the cytochrome P450s (P450). CPR is also stoichiometrically limited compared to its oxidative counterparts, and hypotheses have arisen about possible models that can overcome the stoichiometric imbalance, including quaternary organization of P450 and diffusion-limited models. Described here are results from a single-protein tracking study of fluorescently labeled CPR and cytochrome P450 2C9 (CYP2C9) molecules in which stochastic analysis was used to determine the dissociation constants of CPR/CYP2C9 complexes in a lipid bilayer membrane for the first time. Single-protein trajectories demonstrate the transient nature of these CPR-CYP2C9 interactions, and the measured Kd values are highly dependent on the redox state of CPR. It is shown that CPRox/CYP2C9 complexes have a much higher dissociation constant than CPR2-/CYP2C9 or CPR4-/CYP2C9 complexes, and a model is presented to account for these results. An Arrhenius analysis of diffusion constants was also carried out, demonstrating that the reduced forms of CPR and CYP2C9 interact differently with the biomimetic ER and may, in addition to protein conformational changes, contribute to the observed NADPH-dependent shift in Kd. Finally, it is also shown that the CPRox/CYP2C9 affinity depends on the nature of the ligand, being higher when a substrate is bound, compared to an inhibitor.
Collapse
Affiliation(s)
- Carlo Barnaba
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - Evan Taylor
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | - James A Brozik
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| |
Collapse
|
14
|
Bart AG, Scott EE. Structural and functional effects of cytochrome b5 interactions with human cytochrome P450 enzymes. J Biol Chem 2017; 292:20818-20833. [PMID: 29079577 DOI: 10.1074/jbc.ra117.000220] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/22/2017] [Indexed: 02/04/2023] Open
Abstract
The small heme-containing protein cytochrome b5 can facilitate, inhibit, or have no effect on cytochrome P450 catalysis, often in a P450-dependent and substrate-dependent manner that is not well understood. Herein, solution NMR was used to identify b5 residues interacting with different human drug-metabolizing P450 enzymes. NMR results revealed that P450 enzymes bound to either b5 α4-5 (CYP2A6 and CYP2E1) or this region and α2-3 (CYP2D6 and CYP3A4) and suggested variation in the affinity for b5 Mutations of key b5 residues suggest not only that different b5 surfaces are responsible for binding different P450 enzymes, but that these different complexes are relevant to the observed effects on P450 catalysis.
Collapse
Affiliation(s)
| | - Emily E Scott
- From the Biophysics Program and .,the Departments of Medicinal Chemistry and Pharmacology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
15
|
Gentry KA, Prade E, Barnaba C, Zhang M, Mahajan M, Im SC, Anantharamaiah GM, Nagao S, Waskell L, Ramamoorthy A. Kinetic and Structural Characterization of the Effects of Membrane on the Complex of Cytochrome b 5 and Cytochrome c. Sci Rep 2017; 7:7793. [PMID: 28798301 PMCID: PMC5552742 DOI: 10.1038/s41598-017-08130-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/04/2017] [Indexed: 12/13/2022] Open
Abstract
Cytochrome b5 (cytb5) is a membrane protein vital for the regulation of cytochrome P450 (cytP450) metabolism and is capable of electron transfer to many redox partners. Here, using cyt c as a surrogate for cytP450, we report the effect of membrane on the interaction between full-length cytb5 and cyt c for the first time. As shown through stopped-flow kinetic experiments, electron transfer capable cytb5 - cyt c complexes were formed in the presence of bicelles and nanodiscs. Experimentally measured NMR parameters were used to map the cytb5-cyt c binding interface. Our experimental results identify differences in the binding epitope of cytb5 in the presence and absence of membrane. Notably, in the presence of membrane, cytb5 only engaged cyt c at its lower and upper clefts while the membrane-free cytb5 also uses a distal region. Using restraints generated from both cytb5 and cyt c, a complex structure was generated and a potential electron transfer pathway was identified. These results demonstrate the importance of studying protein-protein complex formation in membrane mimetic systems. Our results also demonstrate the successful preparation of novel peptide-based lipid nanodiscs, which are detergent-free and possesses size flexibility, and their use for NMR structural studies of membrane proteins.
Collapse
Affiliation(s)
| | - Elke Prade
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carlo Barnaba
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Meng Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mukesh Mahajan
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan, and Veterans Affairs Medical Center, Ann Arbor, Michigan, 48105, USA
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama, 35294, USA
| | - Satoshi Nagao
- Graduate School of Material Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan, and Veterans Affairs Medical Center, Ann Arbor, Michigan, 48105, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Bhatt MR, Khatri Y, Rodgers RJ, Martin LL. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1). J Steroid Biochem Mol Biol 2017; 170:2-18. [PMID: 26976652 DOI: 10.1016/j.jsbmb.2016.02.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/25/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
Cytochrome b5 (cyt b5) is a small hemoprotein that plays a significant role in the modulation of activities of an important steroidogenic enzyme, cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1, CYP17A1). Located in the zona fasciculata and zona reticularis of the adrenal cortex and in the gonads, P450 17A1 catalyzes two different reactions in the steroidogenic pathway; the 17α-hydroxylation and 17,20-lyase, in the endoplasmic reticulum of these respective tissues. The activities of P450 17A1 are regulated by cyt b5 that enhances the 17,20-lyase reaction by promoting the coupling of P450 17A1 and cytochrome P450 reductase (CPR), allosterically. Cyt b5 can also act as an electron donor to enhance the 16-ene-synthase activity of human P450 17A1. In this review, we discuss the many roles of cyt b5 and focus on the modulation of CYP17A1 activities by cyt b5 and the mechanisms involved.
Collapse
Affiliation(s)
- Megh Raj Bhatt
- Everest Biotech Pvt. Ltd., Khumaltar, Lalitpur, P.O. Box 21608, Kathmandu 44600, Nepal
| | - Yogan Khatri
- Institute of Biochemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Raymond J Rodgers
- School of Medicine, Robinson Research Institute, University of Adelaide, Adelaide SA 5005, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
17
|
Barnaba C, Gentry K, Sumangala N, Ramamoorthy A. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature. F1000Res 2017; 6:662. [PMID: 28529725 PMCID: PMC5428493 DOI: 10.12688/f1000research.11015.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts—cytochrome P450-reductase and cytochrome
b
5—are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s) played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.
Collapse
Affiliation(s)
- Carlo Barnaba
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Katherine Gentry
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Nirupama Sumangala
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, The University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
D'Souza A, Mahajan M, Bhattacharjya S. Designed multi-stranded heme binding β-sheet peptides in membrane. Chem Sci 2016; 7:2563-2571. [PMID: 28660027 PMCID: PMC5477022 DOI: 10.1039/c5sc04108b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 01/20/2023] Open
Abstract
Designed peptides demonstrating well-defined structures and functioning in membrane environment are of significant interest in developing novel proteins for membrane active biological processes including enzymes, electron transfer, ion channels and energy conversion. Heme proteins' ability to carry out multiple functions in nature has inspired the design of several helical heme binding peptides and proteins soluble in water and also recently in membrane. Naturally occurring β-sheet proteins are both water and membrane soluble, and are known to bind heme, however, designed heme binding β-sheet proteins are yet to be reported, plausibly because of the complex folding and difficulty in introducing heme binding sites in the β-sheet structures. Here, we describe the design, NMR structures and biochemical functional characterization of four stranded and six stranded membrane soluble β-sheet peptides that bind heme and di-heme, respectively. The designed peptides contain either DP-G or DP-DA residues for the nucleation of β-turns intended to stabilize multi-stranded β-sheet topologies and ligate heme with bis-His coordination between adjacent antiparallel β-strands. Furthermore, we have optimized a high affinity heme binding pocket, Kd ∼ nM range, in the adjacent β-strands by utilizing a series of four stranded β-sheet peptides employing β- and ω-amino acids. We find that there is a progressive increase in cofactor binding affinity in the designed peptides with the alkyl chain length of ω-amino acids. Notably, the six stranded β-sheet peptide binds two molecules of heme in a cooperative fashion. The designed peptides perform peroxidase activity with varying ability and efficiently carried out electron transfer with membrane associated protein cytochrome c. The current study demonstrates the designing of functional β-sheet proteins in a membrane environment and expands the repertoire of heme protein design.
Collapse
Affiliation(s)
- Areetha D'Souza
- School of Biological Sciences , 60 Nanyang Drive , 637551 , Singapore .
| | - Mukesh Mahajan
- School of Biological Sciences , 60 Nanyang Drive , 637551 , Singapore .
| | | |
Collapse
|
19
|
Zhang M, Huang R, Ackermann R, Im SC, Waskell L, Schwendeman A, Ramamoorthy A. Reconstitution of the Cytb5-CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600073] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Meng Zhang
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Rui Huang
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Rose Ackermann
- Department of Medicinal Chemistry; The Biointerfaces Institute; University of Michigan; North Campus Research Complex; Ann Arbor MI 48109 USA
| | - Sang-Choul Im
- Department of Anesthesiology; University of Michigan and VA Medical Center; Ann Arbor MI 48105 USA
| | - Lucy Waskell
- Department of Anesthesiology; University of Michigan and VA Medical Center; Ann Arbor MI 48105 USA
| | - Anna Schwendeman
- Department of Medicinal Chemistry; The Biointerfaces Institute; University of Michigan; North Campus Research Complex; Ann Arbor MI 48109 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
- Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| |
Collapse
|
20
|
Zhang M, Huang R, Ackermann R, Im SC, Waskell L, Schwendeman A, Ramamoorthy A. Reconstitution of the Cytb5-CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy. Angew Chem Int Ed Engl 2016; 55:4497-9. [PMID: 26924779 DOI: 10.1002/anie.201600073] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/22/2016] [Indexed: 11/05/2022]
Abstract
Cytochrome P450s (P450s) are a superfamily of enzymes responsible for the catalysis of a wide range of substrates. Dynamic interactions between full-length membrane-bound P450 and its redox partner cytochrome b5 (cytb5 ) have been found to be important for the enzymatic activity of P450. However, the stability of the circa 70 kDa membrane-bound complex in model membranes renders high-resolution structural NMR studies particularly difficult. To overcome these challenges, reconstitution of the P450-cytb5 complex in peptide-based nanodiscs, containing no detergents, has been demonstrated, which are characterized by size exclusion chromatography and NMR spectroscopy. In addition, NMR experiments are used to identify the binding interface of the P450-cytb5 complex in the nanodisc. This is the first successful demonstration of a protein-protein complex in a nanodisc using NMR structural studies and should be useful to obtain valuable structural information on membrane-bound protein complexes.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Rui Huang
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Rose Ackermann
- Department of Medicinal Chemistry, The Biointerfaces Institute, University of Michigan, North Campus Research Complex, Ann Arbor, MI, 48109, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105, USA
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105, USA
| | - Anna Schwendeman
- Department of Medicinal Chemistry, The Biointerfaces Institute, University of Michigan, North Campus Research Complex, Ann Arbor, MI, 48109, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA. .,Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA.
| |
Collapse
|
21
|
Mapping the Free Energy Landscape of PKA Inhibition and Activation: A Double-Conformational Selection Model for the Tandem cAMP-Binding Domains of PKA RIα. PLoS Biol 2015; 13:e1002305. [PMID: 26618408 PMCID: PMC4664472 DOI: 10.1371/journal.pbio.1002305] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/22/2015] [Indexed: 01/31/2023] Open
Abstract
Protein Kinase A (PKA) is the major receptor for the cyclic adenosine monophosphate (cAMP) secondary messenger in eukaryotes. cAMP binds to two tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunit of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A in RIα is required for PKA inhibition and activation, CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. Preliminary evidence suggests that CBD-B dynamics are critical for its gatekeeper function. To test this hypothesis, here we investigate by Nuclear Magnetic Resonance (NMR) the two-domain construct RIα (91–379) in its apo, cAMP2, and C-bound forms. Our comparative NMR analyses lead to a double conformational selection model in which each apo CBD dynamically samples both active and inactive states independently of the adjacent CBD within a nearly degenerate free energy landscape. Such degeneracy is critical to explain the sensitivity of CBD-B to weak interactions with C and its high affinity for cAMP. Binding of cAMP eliminates this degeneracy, as it selectively stabilizes the active conformation within each CBD and inter-CBD contacts, which require both cAMP and W260. The latter is contributed by CBD-B and mediates capping of the cAMP bound to CBD-A. The inter-CBD interface is dispensable for intra-CBD conformational selection, but is indispensable for full activation of PKA as it occludes C-subunit recognition sites within CBD-A. In addition, the two structurally homologous cAMP-bound CBDs exhibit marked differences in their residual dynamics profiles, supporting the notion that conservation of structure does not necessarily imply conservation of dynamics. Protein Kinase A (PKA) is the major receptor for the cAMP secondary messenger in eukaryotes. This study shows how PKA's regulatory subunit dynamically samples a degenerate free energy landscape that controls affinities for the catalytic subunit and cAMP; intra-domain conformational selection by cAMP controls inter-domain interactions and PKA activation. Cyclic adenosine monophosphate (cAMP) is a messenger molecule produced within cells to control cellular metabolism in response to external stimuli. Protein Kinase A (PKA) is the major receptor for cAMP. cAMP binds to tandem cAMP-binding domains (CBD-A and -B) within the regulatory subunits of PKA (R), unleashing the activity of the catalytic subunit (C). While CBD-A is required for C-subunit inhibition and activation, in RIα CBD-B functions as a “gatekeeper” domain that modulates the control exerted by CBD-A. However, it is not currently clear how ligand binding and dynamics of CBD-B mediate its gatekeeper function. We comparatively analyzed by Nuclear Magnetic Resonance (NMR) a two-domain construct of the regulatory subunit RIα with no ligand, with cAMP2 bound, and the C-bound form. These data show that both CBDs can exist in a system of uncorrelated conformational selection as both can independently sample activated and inactivated states (in what is known as a nearly degenerate free energy landscape). This explains why both RIα CBDs exhibit a higher cAMP-affinity than other cAMP receptors. Once cAMP has bound, the degeneracy is lost and dissociation of the kinase subunit is promoted through a combination of intra-domain conformational selection and changes in inter-CBD orientation. The proposed model—a double-conformational selection model—provides a general framework to interpret the effect of PKA mutations that have been reported in rare human disorders such as Carney complex and Acrodysostosis.
Collapse
|
22
|
Run C, Yang Q, Liu Z, OuYang B, Chou JJ. Molecular Basis of MgATP Selectivity of the Mitochondrial SCaMC Carrier. Structure 2015; 23:1394-1403. [PMID: 26165595 DOI: 10.1016/j.str.2015.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/28/2015] [Accepted: 06/04/2015] [Indexed: 01/21/2023]
Abstract
The mitochondrial matrix is the supplier of cellular ATP. The short Ca(2+)-binding mitochondrial carrier (SCaMC) is one of the two mitochondrial carriers responsible for transporting ATP across the mitochondrial inner membrane. While the ADP/ATP carrier (AAC) accounts for the bulk ADP/ATP recycling in the matrix, the function of SCaMC is important for mitochondrial activities that depend on adenine nucleotides, such as gluconeogenesis and mitochondrial biogenesis. A key difference between SCaMC and AAC is that SCaMC selectively transports MgATP whereas AAC only transports free nucleotides. Here, we use a combination of nuclear magnetic resonance experiments and functional mutagenesis to investigate the structural basis of the MgATP selectivity in SCaMC. Our data revealed an MgATP binding site inside the transporter cavity, while identifying an aspartic acid residue that plays an important role in the higher selectivity for MgATP over free ATP.
Collapse
Affiliation(s)
- Changqing Run
- National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qin Yang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhijun Liu
- National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bo OuYang
- National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - James J Chou
- National Center for Protein Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|