1
|
Wang H, Marshall M, Wang Z, Plumb KW, Greenblatt M, Zhu Y, Walker D, Xie W. Non-Centrosymmetric Sr 2IrO 4 Obtained Under High Pressure. Inorg Chem 2023; 62:2161-2168. [PMID: 36662554 DOI: 10.1021/acs.inorgchem.2c03835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Sr2IrO4 with strong spin-orbit coupling and Hubbard repulsion (U) hosts Mott insulating states. The similar crystal structure and magnetic and electronic properties, particularly the d-wave gap observed in Sr2IrO4 enhanced the analogies to the cuprate high-Tc superconductor, La2CuO4. The incomplete analogy was due to the lack of broken inversion symmetry phases observed in Sr2IrO4. Here, under high-pressure and high-temperature conditions, we report a noncentrosymmetric Sr2IrO4. The crystal structure and its noncentrosymmetric character were determined by single-crystal X-ray diffraction and high-resolution scanning transmission electron microscopy. The magnetic characterization confirms the Ir4+ with S = 1/2 at low temperature in Sr2IrO4 with magnetic ordering occurring at around 86 K, where a larger moment is observed than the ambient pressure Sr2IrO4. Moreover, the resistivity measurement shows three-dimensional Mott variable-range hopping (VRH) existed in the system. This noncentrosymmetric Sr2IrO4 phase appears to be a unique material that offers a further understanding of high-Tc superconductivity.
Collapse
Affiliation(s)
- Haozhe Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| | - Madalynn Marshall
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey08854, United States
| | - Zhen Wang
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Kemp W Plumb
- Department of Physics, Brown University, Providence, Rhode Island02912, United States
| | - Martha Greenblatt
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey08854, United States
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York11973, United States
| | - David Walker
- Lamont Doherty Earth Observatory, Columbia University, Palisades, New York10964, United States
| | - Weiwei Xie
- Department of Chemistry, Michigan State University, East Lansing, Michigan48824, United States
| |
Collapse
|
2
|
Lu X, McNally DE, Moretti Sala M, Terzic J, Upton MH, Casa D, Ingold G, Cao G, Schmitt T. Doping Evolution of Magnetic Order and Magnetic Excitations in (Sr_{1-x}La_{x})_{3}Ir_{2}O_{7}. PHYSICAL REVIEW LETTERS 2017; 118:027202. [PMID: 28128620 DOI: 10.1103/physrevlett.118.027202] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Indexed: 06/06/2023]
Abstract
We use resonant elastic and inelastic x-ray scattering at the Ir-L_{3} edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr_{1-x}La_{x})_{3}Ir_{2}O_{7} (0≤x≤0.065). With increasing doping x, the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x=0 to 0.05, followed by a transition to two-dimensional short range order between x=0.05 and 0.065. Because of the interactions between the J_{eff}=1/2 pseudospins and the emergent itinerant electrons, magnetic excitations undergo damping, anisotropic softening, and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr_{1-x}La_{x})_{3}Ir_{2}O_{7} into a correlated metallic state with two-dimensional short range antiferromagnetic order. Strong antiferromagnetic fluctuations of the J_{eff}=1/2 moments persist deep in this correlated metallic state, with the magnon gap strongly suppressed.
Collapse
Affiliation(s)
- Xingye Lu
- Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - D E McNally
- Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - M Moretti Sala
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | - J Terzic
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - M H Upton
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - D Casa
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - G Ingold
- Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- SwissFEL, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - G Cao
- Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - T Schmitt
- Research Department Synchrotron Radiation and Nanotechnology, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
3
|
Ahn G, Song SJ, Hogan T, Wilson SD, Moon SJ. Infrared Spectroscopic Evidences of Strong Electronic Correlations in (Sr1-xLax)3Ir2O7. Sci Rep 2016; 6:32632. [PMID: 27599573 PMCID: PMC5013521 DOI: 10.1038/srep32632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/11/2016] [Indexed: 11/09/2022] Open
Abstract
We report on infrared spectroscopic studies of the electronic response of the (Sr1-xLax)3Ir2O7 system. Our experiments revealed hallmarks of strong electronic correlations in the evolution of the electronic response across the filling-controlled insulator-metal transition. We observed a collapse of the Jeff = 1/2 Mott gap accompanying the transfer of the spectral weight from the high-energy region to the gap region with electron doping. The intraband conductivity at the metallic side of the transition was found to consist of coherent Drude-like and incoherent responses. The sum rule and the extended Drude model analyses further indicated a large mass enhancement. Our results demonstrate a critical role of the electronic correlations in the charge dynamics of the (Sr1-xLax)3Ir2O7 system.
Collapse
Affiliation(s)
- Gihyeon Ahn
- Department of Physics, Hanyang University, Seoul 04763, Korea
| | - S. J. Song
- Department of Physics, Hanyang University, Seoul 04763, Korea
| | - T. Hogan
- Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| | - S. D. Wilson
- Department of Materials, University of California, Santa Barbara, California 93106, USA
| | - S. J. Moon
- Department of Physics, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
4
|
de la Torre A, McKeown Walker S, Bruno FY, Riccó S, Wang Z, Gutierrez Lezama I, Scheerer G, Giriat G, Jaccard D, Berthod C, Kim TK, Hoesch M, Hunter EC, Perry RS, Tamai A, Baumberger F. Collapse of the Mott Gap and Emergence of a Nodal Liquid in Lightly Doped Sr(2)IrO(4). PHYSICAL REVIEW LETTERS 2015; 115:176402. [PMID: 26551128 DOI: 10.1103/physrevlett.115.176402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Indexed: 06/05/2023]
Abstract
We report angle resolved photoemission experiments on the electron doped Heisenberg antiferromagnet (Sr(1-x)La(x))(2)IrO(4). For a doping level of x=0.05, we find an unusual metallic state with coherent nodal excitations and an antinodal pseudogap bearing strong similarities with underdoped cuprates. This state emerges from a rapid collapse of the Mott gap with doping resulting in a large underlying Fermi surface that is backfolded by a (π,π) reciprocal lattice vector which we attribute to the intrinsic structural distortion of Sr(2)IrO(4).
Collapse
Affiliation(s)
- A de la Torre
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - S McKeown Walker
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - F Y Bruno
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - S Riccó
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Z Wang
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - I Gutierrez Lezama
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - G Scheerer
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - G Giriat
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - D Jaccard
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - C Berthod
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - T K Kim
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - M Hoesch
- Diamond Light Source, Harwell Campus, Didcot OX11 0DE, United Kingdom
| | - E C Hunter
- School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9 2TT, United Kingdom
| | - R S Perry
- London Centre for Nanotechnology and UCL Centre for Materials Discovery, University College London, London WC1E 6BT, United Kingdom
| | - A Tamai
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - F Baumberger
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews, Fife KY16 9SS, United Kingdom
| |
Collapse
|