1
|
Extremely low-energy ARPES of quantum well states in cubic-GaN/AlN and GaAs/AlGaAs heterostructures. Sci Rep 2021; 11:19081. [PMID: 34580361 PMCID: PMC8476498 DOI: 10.1038/s41598-021-98569-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
Quantum well (QW) heterostructures have been extensively used for the realization of a wide range of optical and electronic devices. Exploiting their potential for further improvement and development requires a fundamental understanding of their electronic structure. So far, the most commonly used experimental techniques for this purpose have been all-optical spectroscopy methods that, however, are generally averaging in momentum space. Additional information can be gained by angle-resolved photoelectron spectroscopy (ARPES), which measures the electronic structure with momentum resolution. Here we report on the use of extremely low-energy ARPES (photon energy ~ 7 eV) to increase depth sensitivity and access buried QW states, located at 3 nm and 6 nm below the surface of cubic-GaN/AlN and GaAs/AlGaAs heterostructures, respectively. We find that the QW states in cubic-GaN/AlN can indeed be observed, but not their energy dispersion, because of the high surface roughness. The GaAs/AlGaAs QW states, on the other hand, are buried too deep to be detected by extremely low-energy ARPES. Since the sample surface is much flatter, the ARPES spectra of the GaAs/AlGaAs show distinct features in momentum space, which can be reconducted to the band structure of the topmost surface layer of the QW structure. Our results provide important information about the samples’ properties required to perform extremely low-energy ARPES experiments on electronic states buried in semiconductor heterostructures.
Collapse
|
2
|
Bersweiler M, Dumesnil K, Fagot-Revurat Y, Le Fèvre P, Tiusan C, Lacour D, Hehn M. Spin-polarized resonant surface state in (1 1 1) Sm 1-x Gd x Al 2, a zero-magnetization ferromagnet. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:435501. [PMID: 30239337 DOI: 10.1088/1361-648x/aae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The electronic structure of (1 1 1) Sm1-x Gd x Al2, a zero-magnetization ferromagnet, is investigated by angle- and spin- resolved photoemission spectroscopy. An intense electron pocket strongly localized around [Formula: see text] and close to the Fermi level is observed and analyzed in detail. Its various characteristics, combined with electronic structure calculations, reveal a resonant surface state of 5d character and Λ1 symmetry, likely built on bulk states developing around L points. It exhibits moreover a low temperature positive spin polarization at the Fermi level, of strong interest for spin-dependent transport properties in Sm1-x Gd x Al2-based spintronic devices.
Collapse
Affiliation(s)
- M Bersweiler
- Institut Jean Lamour (UMR CNRS 7198), Université de Lorraine, 54000 Nancy, France
| | | | | | | | | | | | | |
Collapse
|
3
|
Großmann N, Magri A, Laux M, Stadtmüller B, Thielen P, Schäfer B, Fuhr O, Ruben M, Cinchetti M, Aeschlimann M. Controlled manipulation of the Co–Alq3 interface by rational design of Alq3 derivatives. Dalton Trans 2016; 45:18365-18376. [DOI: 10.1039/c6dt03183h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, research has revealed that molecules can be used to steer the local spin properties of ferromagnetic surfaces.
Collapse
Affiliation(s)
- Nicolas Großmann
- Fachbereich Physik and Research Center OPTIMAS
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
| | - Andrea Magri
- Institut für Nanotechnologie
- Karlsruher Institut für Technologie
- 76344 Leopoldshafen-Eggenstein
- Germany
| | - Martin Laux
- Fachbereich Physik and Research Center OPTIMAS
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
| | - Benjamin Stadtmüller
- Fachbereich Physik and Research Center OPTIMAS
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
- Graduate School of Excellence Materials Science in Mainz
| | - Philip Thielen
- Fachbereich Physik and Research Center OPTIMAS
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
- Graduate School of Excellence Materials Science in Mainz
| | - Bernhard Schäfer
- Institut für Nanotechnologie
- Karlsruher Institut für Technologie
- 76344 Leopoldshafen-Eggenstein
- Germany
| | - Olaf Fuhr
- Institut für Nanotechnologie
- Karlsruher Institut für Technologie
- 76344 Leopoldshafen-Eggenstein
- Germany
| | - Mario Ruben
- Institut für Nanotechnologie
- Karlsruher Institut für Technologie
- 76344 Leopoldshafen-Eggenstein
- Germany
- Institute de Physique et Chimie de Matériaux de Strasbourg (IPCMS)
| | - Mirko Cinchetti
- Experimentelle Physik VI
- Technische Universität Dortmund
- 44221 Dortmund
- Germany
| | - Martin Aeschlimann
- Fachbereich Physik and Research Center OPTIMAS
- Technische Universität Kaiserslautern
- 67663 Kaiserslautern
- Germany
| |
Collapse
|
4
|
Jakobs S, Narayan A, Stadtmüller B, Droghetti A, Rungger I, Hor YS, Klyatskaya S, Jungkenn D, Stöckl J, Laux M, Monti OLA, Aeschlimann M, Cava RJ, Ruben M, Mathias S, Sanvito S, Cinchetti M. Controlling the Spin Texture of Topological Insulators by Rational Design of Organic Molecules. NANO LETTERS 2015; 15:6022-6029. [PMID: 26262825 DOI: 10.1021/acs.nanolett.5b02213] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We present a rational design approach to customize the spin texture of surface states of a topological insulator. This approach relies on the extreme multifunctionality of organic molecules that are used to functionalize the surface of the prototypical topological insulator (TI) Bi2Se3. For the rational design we use theoretical calculations to guide the choice and chemical synthesis of appropriate molecules that customize the spin texture of Bi2Se3. The theoretical predictions are then verified in angular-resolved photoemission experiments. We show that, by tuning the strength of molecule-TI interaction, the surface of the TI can be passivated, the Dirac point can energetically be shifted at will, and Rashba-split quantum-well interface states can be created. These tailored interface properties-passivation, spin-texture tuning, and creation of hybrid interface states-lay a solid foundation for interface-assisted molecular spintronics in spin-textured materials.
Collapse
Affiliation(s)
- Sebastian Jakobs
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern , Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
- Graduate School of Excellence Materials Science in Mainz , Erwin Schroedinger Straße 46, 67663 Kaiserslautern, Germany
| | - Awadhesh Narayan
- School of Physics, AMBER and CRANN Institute, Trinity College , Dublin 2, Ireland
| | - Benjamin Stadtmüller
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern , Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Andrea Droghetti
- School of Physics, AMBER and CRANN Institute, Trinity College , Dublin 2, Ireland
| | - Ivan Rungger
- School of Physics, AMBER and CRANN Institute, Trinity College , Dublin 2, Ireland
| | - Yew S Hor
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Svetlana Klyatskaya
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , D-76344 Eggenstein-Leopoldshafen, Germany
| | - Dominik Jungkenn
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern , Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Johannes Stöckl
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern , Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Martin Laux
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern , Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Oliver L A Monti
- Department of Chemistry and Biochemistry, and Department of Physics, University of Arizona , 1306 E. University Blvd., Tucson, Arizona United States
| | - Martin Aeschlimann
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern , Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| | - Robert J Cava
- Department of Chemistry, Princeton University , Princeton, New Jersey 08544, United States
| | - Mario Ruben
- Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT) , D-76344 Eggenstein-Leopoldshafen, Germany
- Universite de Strasbourg , Institut de Physique et de Chimie des Materiaux de Strasbourg, Campus de Cronenbourg, 23 Rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Stefan Mathias
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern , Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
- I. Physikalisches Institut, Georg-August-Universität Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Stefano Sanvito
- School of Physics, AMBER and CRANN Institute, Trinity College , Dublin 2, Ireland
| | - Mirko Cinchetti
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern , Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany
| |
Collapse
|