1
|
Sun N, Jia Y, Bai S, Li Q, Dai L, Li J. The power of super-resolution microscopy in modern biomedical science. Adv Colloid Interface Sci 2023; 314:102880. [PMID: 36965225 DOI: 10.1016/j.cis.2023.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Super-resolution microscopy (SRM) technology that breaks the diffraction limit has revolutionized the field of cell biology since its appearance, which enables researchers to visualize cellular structures with nanometric resolution, multiple colors and single-molecule sensitivity. With the flourishing development of hardware and the availability of novel fluorescent probes, the impact of SRM has already gone beyond cell biology and extended to nanomedicine, material science and nanotechnology, and remarkably boosted important breakthroughs in these fields. In this review, we will mainly highlight the power of SRM in modern biomedical science, discussing how these SRM techniques revolutionize the way we understand cell structures, biomaterials assembly and how assembled biomaterials interact with cellular organelles, and finally their promotion to the clinical pre-diagnosis. Moreover, we also provide an outlook on the current technical challenges and future improvement direction of SRM. We hope this review can provide useful information, inspire new ideas and propel the development both from the perspective of SRM techniques and from the perspective of SRM's applications.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049
| | - Qi Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences, Beijing 100190, China
| | - Luru Dai
- Wenzhou Institute and Wenzhou Key Laboratory of Biophysics, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049.
| |
Collapse
|
2
|
Scalisi S, Ahmad A, D'Annunzio S, Rousseau D, Zippo A. Quantitative Analysis of PcG-Associated Condensates by Stochastic Optical Reconstruction Microscopy (STORM). Methods Mol Biol 2023; 2655:183-200. [PMID: 37212997 DOI: 10.1007/978-1-0716-3143-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The polycomb group (PcG) proteins play a central role in the maintenance of a repressive state of gene expression. Recent findings demonstrate that PcG components are organized into nuclear condensates, contributing to the reshaping of chromatin architecture in physiological and pathological conditions, thus affecting the nuclear mechanics. In this context, direct stochastic optical reconstruction microscopy (dSTORM) provides an effective tool to achieve a detailed characterization of PcG condensates by visualizing them at a nanometric level. Furthermore, by analyzing dSTORM datasets with cluster analysis algorithms, quantitative information can be yielded regarding protein numbers, grouping, and spatial organization. Here, we describe how to set up a dSTORM experiment and perform the data analysis to study PcG complexes' components in adhesion cells quantitatively.
Collapse
Affiliation(s)
- Silvia Scalisi
- Chromatin Biology & Epigenetics Lab, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ali Ahmad
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes, UMR INRAE IRHS, Université d'Angers, Angers, France
| | - Sarah D'Annunzio
- Chromatin Biology & Epigenetics Lab, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - David Rousseau
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes, UMR INRAE IRHS, Université d'Angers, Angers, France
| | - Alessio Zippo
- Chromatin Biology & Epigenetics Lab, Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, Trento, Italy.
| |
Collapse
|
3
|
STAT1 is regulated by TRIM24 and promotes immunosuppression in head and neck squamous carcinoma cells, but enhances T cell antitumour immunity in the tumour microenvironment. Br J Cancer 2022; 127:624-636. [PMID: 35595823 PMCID: PMC9381763 DOI: 10.1038/s41416-022-01853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is a significant problem and is frequently resistant to current treatments. STAT1 is important in anti-tumour immune responses against HNSCC. However, the role of STAT1 expression by tumour cells and its regulation during HNSCC is unclear. METHODS We determined the effects of STAT1 inhibition on tumour development and immunity in CAL27 and UMSCC22A HNSCC cell lines in vitro and in a HNSCC carcinogen-induced model in vivo. RESULTS STAT1 siRNA knockdown in human HNSCC cells impaired their proliferation and expression of the immunosuppressive marker PD-L1. Stat1-deficient mice displayed increased oral lesion incidence and multiplicity during tumour carcinogenesis in vivo. Immunosuppressive markers PD-1 in CD8+ T cells and PD-L1 in monocytic MDSCs and macrophages were reduced in oral tumours and draining lymph nodes of tumour-bearing Stat1-deficient mice. However, STAT1 was required for anti-tumour functions of T cells during HNSCC in vivo. Finally, we identified TRIM24 to be a negative regulator of STAT1 that plays a similar tumorigenic function to STAT1 in vitro and thus may be a potential target when treating HNSCC. CONCLUSION Our findings indicate that STAT1 activity plays an important role in tumorigenicity and immunosuppression during HNSCC development.
Collapse
|
4
|
Ghosh S, Di Bartolo V, Tubul L, Shimoni E, Kartvelishvily E, Dadosh T, Feigelson SW, Alon R, Alcover A, Haran G. ERM-Dependent Assembly of T Cell Receptor Signaling and Co-stimulatory Molecules on Microvilli prior to Activation. Cell Rep 2021; 30:3434-3447.e6. [PMID: 32160548 DOI: 10.1016/j.celrep.2020.02.069] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 01/25/2023] Open
Abstract
T cell surfaces are covered with microvilli, actin-rich and flexible protrusions. We use super-resolution microscopy to show that ≥90% of T cell receptor (TCR) complex molecules TCRαβ and TCRζ, as well as the co-receptor CD4 (cluster of differentiation 4) and the co-stimulatory molecule CD2, reside on microvilli of resting human T cells. Furthermore, TCR proximal signaling molecules involved in the initial stages of the immune response, including the protein tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase) and the key adaptor LAT (linker for activation of T cells), are also enriched on microvilli. Notably, phosphorylated proteins of the ERM (ezrin, radixin, and moesin) family colocalize with TCRαβ as well as with actin filaments, implying a role for one or more ERMs in linking the TCR complex to the actin cytoskeleton within microvilli. Our results establish microvilli as key signaling hubs, in which the TCR complex and its proximal signaling molecules and adaptors are preassembled prior to activation in an ERM-dependent manner, facilitating initial antigen sensing.
Collapse
Affiliation(s)
- Shirsendu Ghosh
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Vincenzo Di Bartolo
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France
| | - Liron Tubul
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal Shimoni
- Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Kartvelishvily
- Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tali Dadosh
- Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sara W Feigelson
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ronen Alon
- Department of Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Andres Alcover
- Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Institut Pasteur, Paris 75015, France
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
5
|
Price RM, Budzyński MA, Kundra S, Teves SS. Advances in visualizing transcription factor - DNA interactions. Genome 2020; 64:449-466. [PMID: 33113335 DOI: 10.1139/gen-2020-0086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
At the heart of the transcription process is the specific interaction between transcription factors (TFs) and their target DNA sequences. Decades of molecular biology research have led to unprecedented insights into how TFs access the genome to regulate transcription. In the last 20 years, advances in microscopy have enabled scientists to add imaging as a powerful tool in probing two specific aspects of TF-DNA interactions: structure and dynamics. In this review, we examine how applications of diverse imaging technologies can provide structural and dynamic information that complements insights gained from molecular biology assays. As a case study, we discuss how applications of advanced imaging techniques have reshaped our understanding of TF behavior across the cell cycle, leading to a rethinking in the field of mitotic bookmarking.
Collapse
Affiliation(s)
- Rachel M Price
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Marek A Budzyński
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Shivani Kundra
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Sheila S Teves
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Department of Biochemistry and Molecular Biology, Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Yan Q, Cai M, Zhou L, Xu H, Shi Y, Sun J, Jiang J, Gao J, Wang H. Using an RNA aptamer probe for super-resolution imaging of native EGFR. NANOSCALE ADVANCES 2019; 1:291-298. [PMID: 36132464 PMCID: PMC9473275 DOI: 10.1039/c8na00143j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/08/2019] [Accepted: 08/16/2018] [Indexed: 05/06/2023]
Abstract
Aptamers, referred to as "chemical antibodies", are short single-stranded oligonucleotides that bind to targets with high affinity and specificity. Compared with antibodies, aptamers can be designed, developed and modified easily. Since their discovery, aptamers have been widely used in in vitro diagnostics and molecular imaging. However, they are relatively less studied and applied in advanced microscopy. Here we used an RNA aptamer in dSTORM imaging and obtained a high-quality image of EGFR nanoscale clusters on live cell membranes. The results showed that the cluster number and size with aptamer labeling were almost the same as those with labeling with the natural ligand EGF, but the morphology of the clusters was smaller and more regular than that with cetuximab labeling. Meanwhile, dual-color imaging demonstrated sufficient fluorophore labeling, highly specific recognition and greatly accurate clustering information provided by aptamers. Furthermore, the aptamer labeling method indicated that active EGFR formed larger clusters containing more molecules than resting EGFR, which was hidden under the antibody labeling. Our work suggested that aptamers can be used as versatile probes in super-resolution imaging with small steric hindrance, opening a new avenue for detailed and precise morphological analysis of membrane proteins.
Collapse
Affiliation(s)
- Qiuyan Yan
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Lulu Zhou
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Jiayin Sun
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Research Center of Biomembranomics, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology Wenhai Road, Aoshanwei, Jimo, Qingdao Shandong 266237 P. R. China
| |
Collapse
|
7
|
Gao J, He L, Shi Y, Cai M, Xu H, Jiang J, Zhang L, Wang H. Cell contact and pressure control of YAP localization and clustering revealed by super-resolution imaging. NANOSCALE 2017; 9:16993-17003. [PMID: 29082393 DOI: 10.1039/c7nr05818g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Yes-associated protein (YAP) is well known for being an effecter of the Hippo signaling cascade that plays a critical role in organ size control, tumorigenesis, and regeneration. As YAP is a transcriptional coactivator, nuclear accumulation is a crucial determinant of its function. Numerous investigations have provided insights into the regulation of YAP, such as upstream molecules of the Hippo pathway, cell contact inhibition, and mechanical forces. However, detailed information regarding YAP spatial localization and organization in cells remains uncertain, and how mechanical signals control YAP distribution and function is not fully known. Therefore, we used one of the super-resolution imaging techniques, direct stochastic optical reconstruction microscopy (dSTORM), combined with confocal microscopy, to solve these problems. We found that YAP is mainly distributed in clusters in the cells, and that both cell contact and pressure on cell surfaces promote the nuclear-to-cytoplasm translocation of YAP and its phosphorylation, but weaken the clustering of nuclear YAP and its transcriptional activity. Moreover, we found that pressure regulation may be more effective on YAP from cancer cells as compared to normal cells, which could help open a door to target YAP for anticancer drug design.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5626 Renmin Street, Changchun, Jilin 130022, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
He H, Liu X, Li S, Wang X, Wang Q, Li J, Wang J, Ren H, Ge B, Wang S, Zhang X, Huang F. High-Density Super-Resolution Localization Imaging with Blinking Carbon Dots. Anal Chem 2017; 89:11831-11838. [DOI: 10.1021/acs.analchem.7b03567] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hua He
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xu Liu
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Shan Li
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaojuan Wang
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Jiqiang Li
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Junying Wang
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300350, China
| | - Hao Ren
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Baosheng Ge
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Shengjie Wang
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaodong Zhang
- Department
of Physics and Tianjin Key Laboratory of Low Dimensional Materials
Physics and Preparing Technology, School of Science, Tianjin University, Tianjin 300350, China
| | - Fang Huang
- State
Key Laboratory of Heavy Oil Processing and Center for Bioengineering
and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
9
|
Ryabichko SS, Ibragimov AN, Lebedeva LA, Kozlov EN, Shidlovskii YV. Super-Resolution Microscopy in Studying the Structure and Function of the Cell Nucleus. Acta Naturae 2017; 9:42-51. [PMID: 29340216 PMCID: PMC5762827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Indexed: 11/21/2022] Open
Abstract
In recent decades, novel microscopic methods commonly referred to as super- resolution microscopy have been developed. These methods enable the visualization of a cell with a resolution of up to 10 nm. The application of these methods is of great interest in studying the structure and function of the cell nucleus. The review describes the main achievements in this field.
Collapse
Affiliation(s)
- S. S. Ryabichko
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - A. N. Ibragimov
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - L. A. Lebedeva
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - E. N. Kozlov
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
| | - Y. V. Shidlovskii
- Institute of Gene Biology RAS, Vavilova Str. 34/5, Moscow, 119334, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8, bldg. 2, Moscow, 119048 , Russia
| |
Collapse
|
10
|
Gao J, Chen J, Cai M, Xu H, Jiang J, Tong T, Wang H. Clustered localization of STAT3 during the cell cycle detected by super-resolution fluorescence microscopy. Methods Appl Fluoresc 2017; 5:024004. [DOI: 10.1088/2050-6120/aa6ab5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Ginsenoside PPD's Antitumor Effect via Down-Regulation of mTOR Revealed by Super-Resolution Imaging. Molecules 2017; 22:molecules22030486. [PMID: 28335497 PMCID: PMC6155369 DOI: 10.3390/molecules22030486] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/19/2022] Open
Abstract
Derived from Panax ginseng, the natural product 20(S)-Protopanaxadiol (PPD) has been reported for its cytotoxicity against several cancer cell lines. The molecular mechanism is, however, not well understood. Here we show that PPD significantly inhibits proliferation, induces apoptosis and causes G2/M cell cycle arrest in human laryngeal carcinoma cells (Hep-2 cells). PPD also decreases the levels of proteins related to cell proliferation. Moreover, PPD-induced apoptosis is characterized by a dose-dependent down-regulation of Bcl-2 expression and up-regulation of Bax, and is accompanied by the activation of Caspase-3 as well. Further molecular mechanism is revealed by direct stochastic optical reconstruction microscopy (dSTORM)—a novel high-precision localization microscopy which enables effective resolution down to the order of 10 nm. It shows the expression and spatial arrangement of mTOR and its downstream effectors, demonstrating that this ginsenoside exerts its excellent anticancer effects via down-regulation of mTOR signaling pathway in Hep-2 cells. Taken together, our findings elucidate that the antitumor effect of PPD is associated with its regulation of mTOR expression and distribution, which encourages further studies of PPD as a promising therapeutic agent against laryngeal carcinoma.
Collapse
|
12
|
Gao J, Wang F, Chen J, Wang J, Cai M, Xu H, Jiang J, Wang H. Super-resolution imaging of STAT3 cellular clustering during nuclear transport. RSC Adv 2016. [DOI: 10.1039/c6ra09591g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
STAT3 cellular clustering revealed by super-resolution fluorescence microscopy.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, China
| | - Feng Wang
- Institute of Immunology
- The First Bethune Hospital Academy of Translational Medicine
- Jilin University
- Changchun, China
| | - Junling Chen
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, China
- University of Chinese Academy of Sciences
| | - Jianzhong Wang
- School of Computer Science and Information Technology
- Northeast Normal University
- Changchun, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun, China
| |
Collapse
|