1
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
2
|
Rizea RE, Corlatescu AD, Costin HP, Dumitru A, Ciurea AV. Understanding Amyotrophic Lateral Sclerosis: Pathophysiology, Diagnosis, and Therapeutic Advances. Int J Mol Sci 2024; 25:9966. [PMID: 39337454 PMCID: PMC11432652 DOI: 10.3390/ijms25189966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
This review offers an in-depth examination of amyotrophic lateral sclerosis (ALS), addressing its epidemiology, pathophysiology, clinical presentation, diagnostic techniques, and current as well as emerging treatments. The purpose is to condense key findings and illustrate the complexity of ALS, which is shaped by both genetic and environmental influences. We reviewed the literature to discuss recent advancements in understanding molecular mechanisms such as protein misfolding, mitochondrial dysfunction, oxidative stress, and axonal transport defects, which are critical for identifying potential therapeutic targets. Significant progress has been made in refining diagnostic criteria and identifying biomarkers, leading to earlier and more precise diagnoses. Although current drug treatments provide some benefits, there is a clear need for more effective therapies. Emerging treatments, such as gene therapy and stem cell therapy, show potential in modifying disease progression and improving the quality of life for ALS patients. The review emphasizes the importance of continued research to address challenges such as disease variability and the limited effectiveness of existing treatments. Future research should concentrate on further exploring the molecular foundations of ALS and developing new therapeutic approaches. The implications for clinical practice include ensuring the accessibility of new treatments and that healthcare systems are equipped to support ongoing research and patient care.
Collapse
Affiliation(s)
- Radu Eugen Rizea
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Department of Neurosurgery, "Bagdasar-Arseni" Clinical Emergency Hospital, 041915 Bucharest, Romania
| | - Antonio-Daniel Corlatescu
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
| | - Horia Petre Costin
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
| | - Adrian Dumitru
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Department of Morphopathology, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Emergency University Hospital Bucharest, 050098 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, University of Medicine and Pharmacy, "Carol Davila", 020021 Bucharest, Romania
- Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
3
|
Pignataro E, Pini F, Barbanente A, Arnesano F, Palazzo A, Marsano RM. Flying toward a plastic-free world: Can Drosophila serve as a model organism to develop new strategies of plastic waste management? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169942. [PMID: 38199375 DOI: 10.1016/j.scitotenv.2024.169942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The last century was dominated by the widespread use of plastics, both in terms of invention and increased usage. The environmental challenge we currently face is not just about reducing plastic usage but finding new ways to manage plastic waste. Recycling is growing but remains a small part of the solution. There is increasing focus on studying organisms and processes that can break down plastics, offering a modern approach to addressing the environmental crisis. Here, we provide an overview of the organisms associated with plastics biodegradation, and we explore the potential of harnessing and integrating their genetic and biochemical features into a single organism, such as Drosophila melanogaster. The remarkable genetic engineering and microbiota manipulation tools available for this organism suggest that multiple features could be amalgamated and modeled in the fruit fly. We outline feasible genetic engineering and gut microbiome engraftment strategies to develop a new class of plastic-degrading organisms and discuss of both the potential benefits and the limitations of developing such engineered Drosophila melanogaster strains.
Collapse
Affiliation(s)
- Eugenia Pignataro
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Francesco Pini
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Alessandra Barbanente
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Antonio Palazzo
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - René Massimiliano Marsano
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
4
|
Rezvykh A, Shteinberg D, Bronovitsky E, Ustyugov A, Funikov S. Animal Models of FUS-Proteinopathy: A Systematic Review. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S34-S56. [PMID: 38621743 DOI: 10.1134/s0006297924140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 04/17/2024]
Abstract
Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.
Collapse
Affiliation(s)
- Alexander Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Daniil Shteinberg
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | | | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia
| | - Sergei Funikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Fujino Y, Ueyama M, Ishiguro T, Ozawa D, Ito H, Sugiki T, Murata A, Ishiguro A, Gendron T, Mori K, Tokuda E, Taminato T, Konno T, Koyama A, Kawabe Y, Takeuchi T, Furukawa Y, Fujiwara T, Ikeda M, Mizuno T, Mochizuki H, Mizusawa H, Wada K, Ishikawa K, Onodera O, Nakatani K, Petrucelli L, Taguchi H, Nagai Y. FUS regulates RAN translation through modulating the G-quadruplex structure of GGGGCC repeat RNA in C9orf72-linked ALS/FTD. eLife 2023; 12:RP84338. [PMID: 37461319 PMCID: PMC10393046 DOI: 10.7554/elife.84338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Abnormal expansions of GGGGCC repeat sequence in the noncoding region of the C9orf72 gene is the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). The expanded repeat sequence is translated into dipeptide repeat proteins (DPRs) by noncanonical repeat-associated non-AUG (RAN) translation. Since DPRs play central roles in the pathogenesis of C9-ALS/FTD, we here investigate the regulatory mechanisms of RAN translation, focusing on the effects of RNA-binding proteins (RBPs) targeting GGGGCC repeat RNAs. Using C9-ALS/FTD model flies, we demonstrated that the ALS/FTD-linked RBP FUS suppresses RAN translation and neurodegeneration in an RNA-binding activity-dependent manner. Moreover, we found that FUS directly binds to and modulates the G-quadruplex structure of GGGGCC repeat RNA as an RNA chaperone, resulting in the suppression of RAN translation in vitro. These results reveal a previously unrecognized regulatory mechanism of RAN translation by G-quadruplex-targeting RBPs, providing therapeutic insights for C9-ALS/FTD and other repeat expansion diseases.
Collapse
Grants
- Scientific Research on Innovative Areas (Brain Protein Aging and Dementia Control) 17H05699 Ministry of Education, Culture, Sports, Science and Technology
- Scientific Research on Innovative Areas (Brain Protein Aging and Dementia Control) 17H05705 Ministry of Education, Culture, Sports, Science and Technology
- Transformative Research Areas (A) (Multifaceted Proteins) 20H05927 Ministry of Education, Culture, Sports, Science and Technology
- Strategic Research Program for Brain Sciences 11013026 Ministry of Education, Culture, Sports, Science and Technology
- Scientific Research (B) 21H02840 Japan Society for the Promotion of Science
- Scientific Research (B) 20H03602 Japan Society for the Promotion of Science
- Scientific Research (C) 15K09331 Japan Society for the Promotion of Science
- Scientific Research (C) 19K07823 Japan Society for the Promotion of Science
- Scientific Research (C) 17K07291 Japan Society for the Promotion of Science
- Young Scientists (A) 17H05091 Japan Society for the Promotion of Science
- Young Scientists (B) 25860733 Japan Society for the Promotion of Science
- Challenging Exploratory Research 24659438 Japan Society for the Promotion of Science
- Challenging Exploratory Research 18K19515 Japan Society for the Promotion of Science
- Health Labor Sciences Research Grant for Research on Development of New Drugs H24-Soyaku-Sogo-002 Ministry of Health, Labor and Welfare, Japan
- Strategic Research Program for Brain Sciences JP15dm0107026 Japan Agency for Medical Research and Development
- Strategic Research Program for Brain Sciences JP20dm0107061 Japan Agency for Medical Research and Development
- Practical Research Projects for Rare/Intractable Diseases JP16ek0109018 Japan Agency for Medical Research and Development
- Practical Research Projects for Rare/Intractable Diseases JP19ek0109222 Japan Agency for Medical Research and Development
- Practical Research Projects for Rare/Intractable Diseases JP20ek0109316 Japan Agency for Medical Research and Development
- Platform Project for Supporting Drug Discovery and Life Science Research JP19am0101072 Japan Agency for Medical Research and Development
- Intramural Research Grants for Neurological and Psychiatric Disorders 27-7 National Center of Neurology and Psychiatry
- Intramural Research Grants for Neurological and Psychiatric Disorders 27-9 National Center of Neurology and Psychiatry
- Intramural Research Grants for Neurological and Psychiatric Disorders 30-3 National Center of Neurology and Psychiatry
- Intramural Research Grants for Neurological and Psychiatric Disorders 30-9 National Center of Neurology and Psychiatry
- Intramural Research Grants for Neurological and Psychiatric Disorders 3-9 National Center of Neurology and Psychiatry
- IBC Grant H28 Japan Amyotrophic Lateral Sclerosis Association
- 2017 Takeda Science Foundation
- 2016 Takeda Science Foundation
- 2018 SENSHIN Medical Research Foundation
Collapse
Affiliation(s)
- Yuzo Fujino
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Morio Ueyama
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Taro Ishiguro
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daisaku Ozawa
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Ito
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshihiko Sugiki
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and28 Industrial Research, Osaka University, Osaka, Japan
| | - Akira Ishiguro
- Research Center for Micro-nano Technology, Hosei University, Tokyo, Japan
| | - Tania Gendron
- Department of Neuroscience, Mayo Clinic, Jacksonville, United States
| | - Kohji Mori
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Eiichi Tokuda
- Department of Chemistry, Keio University, Kanagawa, Japan
| | - Tomoya Taminato
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takuya Konno
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Koyama
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuya Kawabe
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshihide Takeuchi
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
- Life Science Research Institute, Kindai University, Osaka, Japan
| | | | - Toshimichi Fujiwara
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideki Mochizuki
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Clinical Neuroscience Branch, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and28 Industrial Research, Osaka University, Osaka, Japan
| | | | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| | - Yoshitaka Nagai
- Department of Neurology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
6
|
Tello JA, Williams HE, Eppler RM, Steinhilb ML, Khanna M. Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Front Mol Neurosci 2022; 15:883358. [PMID: 35514431 PMCID: PMC9063566 DOI: 10.3389/fnmol.2022.883358] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases represent a formidable challenge to global health. As advances in other areas of medicine grant healthy living into later decades of life, aging diseases such as Alzheimer's disease (AD) and other neurodegenerative disorders can diminish the quality of these additional years, owed largely to the lack of efficacious treatments and the absence of durable cures. Alzheimer's disease prevalence is predicted to more than double in the next 30 years, affecting nearly 15 million Americans, with AD-associated costs exceeding $1 billion by 2050. Delaying onset of AD and other neurodegenerative diseases is critical to improving the quality of life for patients and reducing the burden of disease on caregivers and healthcare systems. Significant progress has been made to model disease pathogenesis and identify points of therapeutic intervention. While some researchers have contributed to our understanding of the proteins and pathways that drive biological dysfunction in disease using in vitro and in vivo models, others have provided mathematical, biophysical, and computational technologies to identify potential therapeutic compounds using in silico modeling. The most exciting phase of the drug discovery process is now: by applying a target-directed approach that leverages the strengths of multiple techniques and validates lead hits using Drosophila as an animal model of disease, we are on the fast-track to identifying novel therapeutics to restore health to those impacted by neurodegenerative disease.
Collapse
Affiliation(s)
- Judith A. Tello
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Haley E. Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Robert M. Eppler
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michelle L. Steinhilb
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
- Department of Molecular Pathobiology, New York University, New York, NY, United States
| |
Collapse
|
7
|
Disease Modeling of Rare Neurological Disorders in Zebrafish. Int J Mol Sci 2022; 23:ijms23073946. [PMID: 35409306 PMCID: PMC9000079 DOI: 10.3390/ijms23073946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
Rare diseases are those which affect a small number of people compared to the general population. However, many patients with a rare disease remain undiagnosed, and a large majority of rare diseases still have no form of viable treatment. Approximately 40% of rare diseases include neurologic and neurodevelopmental disorders. In order to understand the characteristics of rare neurological disorders and identify causative genes, various model organisms have been utilized extensively. In this review, the characteristics of model organisms, such as roundworms, fruit flies, and zebrafish, are examined, with an emphasis on zebrafish disease modeling in rare neurological disorders.
Collapse
|
8
|
Farrugia M, Vassallo N, Cauchi RJ. Disruption of Smn in glia impacts survival but has no effect on neuromuscular function in Drosophila. Neuroscience 2022; 491:32-42. [DOI: 10.1016/j.neuroscience.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/08/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
9
|
Bonifacino T, Zerbo RA, Balbi M, Torazza C, Frumento G, Fedele E, Bonanno G, Milanese M. Nearly 30 Years of Animal Models to Study Amyotrophic Lateral Sclerosis: A Historical Overview and Future Perspectives. Int J Mol Sci 2021; 22:ijms222212236. [PMID: 34830115 PMCID: PMC8619465 DOI: 10.3390/ijms222212236] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, multigenic, multifactorial, and non-cell autonomous neurodegenerative disease characterized by upper and lower motor neuron loss. Several genetic mutations lead to ALS development and many emerging gene mutations have been discovered in recent years. Over the decades since 1990, several animal models have been generated to study ALS pathology including both vertebrates and invertebrates such as yeast, worms, flies, zebrafish, mice, rats, guinea pigs, dogs, and non-human primates. Although these models show different peculiarities, they are all useful and complementary to dissect the pathological mechanisms at the basis of motor neuron degeneration and ALS progression, thus contributing to the development of new promising therapeutics. In this review, we describe the up to date and available ALS genetic animal models, classified by the different genetic mutations and divided per species, pointing out their features in modeling, the onset and progression of the pathology, as well as their specific pathological hallmarks. Moreover, we highlight similarities, differences, advantages, and limitations, aimed at helping the researcher to select the most appropriate experimental animal model, when designing a preclinical ALS study.
Collapse
Affiliation(s)
- Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| | - Roberta Arianna Zerbo
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Matilde Balbi
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Carola Torazza
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Giulia Frumento
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Marco Milanese
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, 16148 Genoa, Italy; (T.B.); (R.A.Z.); (M.B.); (C.T.); (G.F.); (G.B.); (M.M.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
10
|
Liguori F, Amadio S, Volonté C. Fly for ALS: Drosophila modeling on the route to amyotrophic lateral sclerosis modifiers. Cell Mol Life Sci 2021; 78:6143-6160. [PMID: 34322715 PMCID: PMC11072332 DOI: 10.1007/s00018-021-03905-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare, devastating disease, causing movement impairment, respiratory failure and ultimate death. A plethora of genetic, cellular and molecular mechanisms are involved in ALS signature, although the initiating causes and progressive pathological events are far from being understood. Drosophila research has produced seminal discoveries for more than a century and has been successfully used in the past 25 years to untangle the process of ALS pathogenesis, and recognize potential markers and novel strategies for therapeutic solutions. This review will provide an updated view of several ALS modifiers validated in C9ORF72, SOD1, FUS, TDP-43 and Ataxin-2 Drosophila models. We will discuss basic and preclinical findings, illustrating recent developments and novel breakthroughs, also depicting unsettled challenges and limitations in the Drosophila-ALS field. We intend to stimulate a renewed debate on Drosophila as a screening route to identify more successful disease modifiers and neuroprotective agents.
Collapse
Affiliation(s)
- Francesco Liguori
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Susanna Amadio
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 65, 00143, Rome, Italy.
- Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Via dei Taurini 19, 00185, Rome, Italy.
| |
Collapse
|
11
|
Yamaguchi M, Lee IS, Jantrapirom S, Suda K, Yoshida H. Drosophila models to study causative genes for human rare intractable neurological diseases. Exp Cell Res 2021; 403:112584. [PMID: 33812867 DOI: 10.1016/j.yexcr.2021.112584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Drosophila is emerging as a convenient model for investigating human diseases. Functional homologues of almost 75% of human disease-related genes are found in Drosophila. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that causes defects in motoneurons. Charcot-Marie-Tooth disease (CMT) is one of the most commonly found inherited neuropathies affecting both motor and sensory neurons. No effective therapy has been established for either of these diseases. In this review, after overviewing ALS, Drosophila models targeting several ALS-causing genes, including TDP-43, FUS and Ubiquilin2, are described with their genetic interactants. Then, after overviewing CMT, examples of Drosophila models targeting several CMT-causing genes, including mitochondria-related genes and FIG 4, are also described with their genetic interactants. In addition, we introduce Sotos syndrome caused by mutations in the epigenetic regulator gene NSD1. Lastly, several genes and pathways that commonly interact with ALS- and/or CMT-causing genes are described. In the case of ALS and CMT that have many causative genes, it may be not practical to perform gene therapy for each of the many disease-causing genes. The possible uses of the common genes and pathways as novel diagnosis markers and effective therapeutic targets are discussed.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto, 619-0237, Japan
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
12
|
Driesschaert B, Mergan L, Temmerman L. Conditional gene expression in invertebrate animal models. J Genet Genomics 2021; 48:14-31. [PMID: 33814307 DOI: 10.1016/j.jgg.2021.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
A mechanistic understanding of biology requires appreciating spatiotemporal aspects of gene expression and its functional implications. Conditional expression allows for (ir)reversible switching of genes on or off, with the potential of spatial and/or temporal control. This provides a valuable complement to the more often used constitutive gene (in)activation through mutagenesis, providing tools to answer a wider array of research questions across biological disciplines. Spatial and/or temporal control are granted primarily by (combinations of) specific promoters, temperature regimens, compound addition, or illumination. The use of such genetic tool kits is particularly widespread in invertebrate animal models because they can be applied to study biological processes in short time frames and on large scales, using organisms amenable to easy genetic manipulation. Recent years witnessed an exciting expansion and optimization of such tools, of which we provide a comprehensive overview and discussion regarding their use in invertebrates. The mechanism, applicability, benefits, and drawbacks of each of the systems, as well as further developments to be expected in the foreseeable future, are highlighted.
Collapse
Affiliation(s)
- Brecht Driesschaert
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Lucas Mergan
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium
| | - Liesbet Temmerman
- Animal Physiology and Neurobiology, Department of Biology, University of Leuven (KU Leuven), Naamsestraat 59 - Box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
13
|
Layalle S, They L, Ourghani S, Raoul C, Soustelle L. Amyotrophic Lateral Sclerosis Genes in Drosophila melanogaster. Int J Mol Sci 2021; 22:ijms22020904. [PMID: 33477509 PMCID: PMC7831090 DOI: 10.3390/ijms22020904] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating adult-onset neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons. Most ALS cases are sporadic but approximately 10% of ALS cases are due to inherited mutations in identified genes. ALS-causing mutations were identified in over 30 genes with superoxide dismutase-1 (SOD1), chromosome 9 open reading frame 72 (C9orf72), fused in sarcoma (FUS), and TAR DNA-binding protein (TARDBP, encoding TDP-43) being the most frequent. In the last few decades, Drosophila melanogaster emerged as a versatile model for studying neurodegenerative diseases, including ALS. In this review, we describe the different Drosophila ALS models that have been successfully used to decipher the cellular and molecular pathways associated with SOD1, C9orf72, FUS, and TDP-43. The study of the known fruit fly orthologs of these ALS-related genes yielded significant insights into cellular mechanisms and physiological functions. Moreover, genetic screening in tissue-specific gain-of-function mutants that mimic ALS-associated phenotypes identified disease-modifying genes. Here, we propose a comprehensive review on the Drosophila research focused on four ALS-linked genes that has revealed novel pathogenic mechanisms and identified potential therapeutic targets for future therapy.
Collapse
Affiliation(s)
- Sophie Layalle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Laetitia They
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Sarah Ourghani
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: (C.R.); (L.S.)
| | - Laurent Soustelle
- The Neuroscience Institute of Montpellier, INSERM, University of Montpellier, 34091 Montpellier, France; (S.L.); (L.T.); (S.O.)
- Correspondence: (C.R.); (L.S.)
| |
Collapse
|
14
|
Nefedova LN. Drosophila melanogaster as a Model of Developmental Genetics: Modern Approaches and Prospects. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Yalgin C, Rovenko B, Andjelković A, Neefjes M, Oymak B, Dufour E, Hietakangas V, Jacobs HT. Effects on Dopaminergic Neurons Are Secondary in COX-Deficient Locomotor Dysfunction in Drosophila. iScience 2020; 23:101362. [PMID: 32738610 PMCID: PMC7394922 DOI: 10.1016/j.isci.2020.101362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
Dopaminergic (DA) neurons have been implicated as key targets in neurological disorders, notably those involving locomotor impairment, and are considered to be highly vulnerable to mitochondrial dysfunction, a common feature of such diseases. Here we investigated a Drosophila model of locomotor disorders in which functional impairment is brought about by pan-neuronal RNAi knockdown of subunit COX7A of cytochrome oxidase (COX). Despite minimal neuronal loss by apoptosis, the expression and activity of tyrosine hydroxylase was decreased by half. Surprisingly, COX7A knockdown specifically targeted to DA neurons did not produce locomotor defect. Instead, using various drivers, we found that COX7A knockdown in specific groups of cholinergic and glutamatergic neurons underlay the phenotype. Based on our main finding, the vulnerability of DA neurons to mitochondrial dysfunction as a cause of impaired locomotion in other organisms, including mammals, warrants detailed investigation.
Collapse
Affiliation(s)
- Cagri Yalgin
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Bohdana Rovenko
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland; Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Ana Andjelković
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Margot Neefjes
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland; Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Burak Oymak
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland; Faculty of Biological and Environmental Sciences, FI-00014 University of Helsinki, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland.
| |
Collapse
|
16
|
Bourefis AR, Campanari ML, Buee-Scherrer V, Kabashi E. Functional characterization of a FUS mutant zebrafish line as a novel genetic model for ALS. Neurobiol Dis 2020; 142:104935. [PMID: 32380281 DOI: 10.1016/j.nbd.2020.104935] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in Fused in sarcoma (FUS), an RNA-binding protein, are known to cause Amyotrophic Lateral Sclerosis (ALS). However, molecular mechanisms due to loss of FUS function remain unclear and controversial. Here, we report the characterization and phenotypic analysis of a deletion mutant of the unique FUS orthologue in zebrafish where Fus protein levels are depleted. The homozygous mutants displayed a reduced lifespan as well as impaired motor abilities associated with specific cellular deficits, including decreased motor neurons length and neuromuscular junctions (NMJ) fragmentation. Furthermore, we demonstrate that these cellular impairments are linked to the misregulation of mRNA expression of acetylcholine receptor (AChR) subunits and histone deacetylase 4, markers of denervation and reinnervation processes observed in ALS patients. In addition, fus loss of function alters tau transcripts favoring the expression of small tau isoforms. Overall, this new animal model extends our knowledge on FUS and supports the relevance of FUS loss of function in ALS physiopathology.
Collapse
Affiliation(s)
- Annis-Rayan Bourefis
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| | - Maria-Letizia Campanari
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France
| | | | - Edor Kabashi
- Imagine Institute, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1163, Paris Descartes Université, 75015 Paris, France; Sorbonne Université, Université Pierre et Marie Curie (UPMC), Université de Paris 06, INSERM Unité 1127, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 7225 Institut du Cerveau et de la Moelle Épinière (ICM), 75013 Paris, France.
| |
Collapse
|
17
|
Catinozzi M, Mallik M, Frickenhaus M, Been M, Sijlmans C, Kulshrestha D, Alexopoulos I, Weitkunat M, Schnorrer F, Storkebaum E. The Drosophila FUS ortholog cabeza promotes adult founder myoblast selection by Xrp1-dependent regulation of FGF signaling. PLoS Genet 2020; 16:e1008731. [PMID: 32302304 PMCID: PMC7190187 DOI: 10.1371/journal.pgen.1008731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/29/2020] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
The number of adult myofibers in Drosophila is determined by the number of founder myoblasts selected from a myoblast pool, a process governed by fibroblast growth factor (FGF) signaling. Here, we show that loss of cabeza (caz) function results in a reduced number of adult founder myoblasts, leading to a reduced number and misorientation of adult dorsal abdominal muscles. Genetic experiments revealed that loss of caz function in both adult myoblasts and neurons contributes to caz mutant muscle phenotypes. Selective overexpression of the FGF receptor Htl or the FGF receptor-specific signaling molecule Stumps in adult myoblasts partially rescued caz mutant muscle phenotypes, and Stumps levels were reduced in caz mutant founder myoblasts, indicating FGF pathway deregulation. In both adult myoblasts and neurons, caz mutant muscle phenotypes were mediated by increased expression levels of Xrp1, a DNA-binding protein involved in gene expression regulation. Xrp1-induced phenotypes were dependent on the DNA-binding capacity of its AT-hook motif, and increased Xrp1 levels in founder myoblasts reduced Stumps expression. Thus, control of Xrp1 expression by Caz is required for regulation of Stumps expression in founder myoblasts, resulting in correct founder myoblast selection.
Collapse
Affiliation(s)
- Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marie Frickenhaus
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Ioannis Alexopoulos
- General Instruments Department, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Manuela Weitkunat
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aix Marseille University, CNRS, IBDM, Marseille, France
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| |
Collapse
|
18
|
Cacciottolo R, Ciantar J, Lanfranco M, Borg RM, Vassallo N, Bordonné R, Cauchi RJ. SMN complex member Gemin3 self-interacts and has a functional relationship with ALS-linked proteins TDP-43, FUS and Sod1. Sci Rep 2019; 9:18666. [PMID: 31822699 PMCID: PMC6904755 DOI: 10.1038/s41598-019-53508-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
The predominant motor neuron disease in infants and adults is spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), respectively. SMA is caused by insufficient levels of the Survival Motor Neuron (SMN) protein, which operates as part of the multiprotein SMN complex that includes the DEAD-box RNA helicase Gemin3/DDX20/DP103. C9orf72, SOD1, TDP-43 and FUS are ranked as the four major genes causing familial ALS. Accumulating evidence has revealed a surprising molecular overlap between SMA and ALS. Here, we ask the question of whether Drosophila can also be exploited to study shared pathogenic pathways. Focusing on motor behaviour, muscle mass and survival, we show that disruption of either TBPH/TDP-43 or Caz/FUS enhance defects associated with Gemin3 loss-of-function. Gemin3-associated neuromuscular junction overgrowth was however suppressed. Sod1 depletion had a modifying effect in late adulthood. We also show that Gemin3 self-interacts and Gem3ΔN, a helicase domain deletion mutant, retains the ability to interact with its wild-type counterpart. Importantly, mutant:wild-type dimers are favoured more than wild-type:wild-type dimers. In addition to reinforcing the link between SMA and ALS, further exploration of mechanistic overlaps is now possible in a genetically tractable model organism. Notably, Gemin3 can be elevated to a candidate for modifying motor neuron degeneration.
Collapse
Affiliation(s)
- Rebecca Cacciottolo
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, Université de Montpellier, Montpellier, France.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Joanna Ciantar
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Maia Lanfranco
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, Université de Montpellier, Montpellier, France.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Rebecca M Borg
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, Université de Montpellier, Montpellier, France.,Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta
| | - Rémy Bordonné
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, Université de Montpellier, Montpellier, France
| | - Ruben J Cauchi
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta. .,Centre for Molecular Medicine and Biobanking, Biomedical Sciences Building, University of Malta, Msida, Malta.
| |
Collapse
|
19
|
Gilles AF, Schinko JB, Schacht MI, Enjolras C, Averof M. Clonal analysis by tunable CRISPR-mediated excision. Development 2019; 146:dev.170969. [PMID: 30552128 DOI: 10.1242/dev.170969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/26/2018] [Indexed: 01/05/2023]
Abstract
Clonal marking techniques based on the Cre/lox and Flp/FRT systems are widely used in multicellular model organisms to mark individual cells and their progeny, in order to study their morphology, growth properties and developmental fates. The same tools can be adapted to introduce specific genetic changes in a subset of cells within the body, i.e. to perform mosaic genetic analysis. Marking and manipulating distinct cell clones requires control over the frequency of clone induction, which is sometimes difficult to achieve. Here, we present Valcyrie, a new method that replaces the conventional Cre or Flp recombinase-mediated excision of a marker cassette by CRISPR-mediated excision. A major advantage of this approach is that CRISPR efficiency can be tuned in a predictable fashion by manipulating the degree of sequence complementarity between the CRISPR guide RNA and its targets. We establish the method in the beetle Tribolium castaneum We demonstrate that clone marking frequency can be tuned to generate embryos that carry single marked clones. The Valcyrie approach can be applied to a wide range of experimental settings, for example to modulate clone frequency with existing tools in established model organisms and to introduce clonal analysis in emerging experimental models.
Collapse
Affiliation(s)
- Anna F Gilles
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 32 avenue Tony Garnier, 69007 Lyon, France .,BMIC graduate programme, Université Claude Bernard/Lyon 1, France.,TriGenes gUG, Biberach University of Applied Sciences, Hubertus-Liebrecht-Str. 35, 88400 Biberach/Riss, Germany
| | - Johannes B Schinko
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 32 avenue Tony Garnier, 69007 Lyon, France .,TriGenes gUG, Biberach University of Applied Sciences, Hubertus-Liebrecht-Str. 35, 88400 Biberach/Riss, Germany.,Centre National de la Recherche Scientifique (CNRS), France
| | - Magdalena I Schacht
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 32 avenue Tony Garnier, 69007 Lyon, France.,Department of Evolutionary Developmental Genetics, Universität Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Camille Enjolras
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 32 avenue Tony Garnier, 69007 Lyon, France.,Centre National de la Recherche Scientifique (CNRS), France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 32 avenue Tony Garnier, 69007 Lyon, France .,Centre National de la Recherche Scientifique (CNRS), France
| |
Collapse
|
20
|
Mallik M, Catinozzi M, Hug CB, Zhang L, Wagner M, Bussmann J, Bittern J, Mersmann S, Klämbt C, Drexler HCA, Huynen MA, Vaquerizas JM, Storkebaum E. Xrp1 genetically interacts with the ALS-associated FUS orthologue caz and mediates its toxicity. J Cell Biol 2018; 217:3947-3964. [PMID: 30209068 PMCID: PMC6219715 DOI: 10.1083/jcb.201802151] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/13/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022] Open
Abstract
Mallik et al. identify Xrp1 as a nuclear chromatin-binding protein involved in gene expression regulation that mediates phenotypes induced by loss of function of cabeza (caz), the Drosophila melanogaster orthologue of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) protein FUS. Knockdown of Xrp1 in motor neurons rescues phenotypes induced by ALS-mutant FUS. Cabeza (caz) is the single Drosophila melanogaster orthologue of the human FET proteins FUS, TAF15, and EWSR1, which have been implicated in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. In this study, we identified Xrp1, a nuclear chromatin-binding protein, as a key modifier of caz mutant phenotypes. Xrp1 expression was strongly up-regulated in caz mutants, and Xrp1 heterozygosity rescued their motor defects and life span. Interestingly, selective neuronal Xrp1 knockdown was sufficient to rescue, and neuronal Xrp1 overexpression phenocopied caz mutant phenotypes. The caz/Xrp1 genetic interaction depended on the functionality of the AT-hook DNA-binding domain in Xrp1, and the majority of Xrp1-interacting proteins are involved in gene expression regulation. Consistently, caz mutants displayed gene expression dysregulation, which was mitigated by Xrp1 heterozygosity. Finally, Xrp1 knockdown substantially rescued the motor deficits and life span of flies expressing ALS mutant FUS in motor neurons, implicating gene expression dysregulation in ALS-FUS pathogenesis.
Collapse
Affiliation(s)
- Moushami Mallik
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany.,Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Radboud University, Nijmegen, Netherlands
| | - Marica Catinozzi
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany.,Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Radboud University, Nijmegen, Netherlands
| | - Clemens B Hug
- Regulatory Genomics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Li Zhang
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Marina Wagner
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Julia Bussmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Jonas Bittern
- Institute of Neuro and Behavioural Biology, University of Münster, Münster, Germany
| | - Sina Mersmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Faculty of Medicine, University of Münster, Münster, Germany
| | - Christian Klämbt
- Institute of Neuro and Behavioural Biology, University of Münster, Münster, Germany
| | - Hannes C A Drexler
- Bioanalytical Mass Spectrometry Facility, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Juan M Vaquerizas
- Regulatory Genomics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany .,Faculty of Medicine, University of Münster, Münster, Germany.,Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Radboud University, Nijmegen, Netherlands
| |
Collapse
|
21
|
Zhang K, Coyne AN, Lloyd TE. Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism. Brain Res 2018; 1693:109-120. [PMID: 29752901 DOI: 10.1016/j.brainres.2018.04.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022]
Abstract
The fruit fly Drosophila Melanogaster has been widely used to study neurodegenerative diseases. The conservation of nervous system biology coupled with the rapid life cycle and powerful genetic tools in the fly have enabled the identification of novel therapeutic targets that have been validated in vertebrate model systems and human patients. A recent example is in the study of the devastating motor neuron degenerative disease amyotrophic lateral sclerosis (ALS). Mutations in genes that regulate RNA metabolism are a major cause of inherited ALS, and functional analysis of these genes in the fly nervous system has shed light on how mutations cause disease. Importantly, unbiased genetic screens have identified key pathways that contribute to ALS pathogenesis such as nucleocytoplasmic transport and stress granule assembly. In this review, we will discuss the utilization of Drosophila models of ALS with defects in RNA metabolism.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Azuma Y, Mizuta I, Tokuda T, Mizuno T. Amyotrophic Lateral Sclerosis Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:79-95. [PMID: 29951816 DOI: 10.1007/978-981-13-0529-0_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects upper and lower motor neurons in the brain and the spinal cord. Due to the progressive neurodegeneration, ALS leads to paralysis and death caused by respiratory failure 2-5 years after the onset of symptoms. There is no effective cure available. Most ALS cases are sporadic, without family history, whereas 10% of the cases are familial. Identification of variants in more than 30 different loci has provided insight into the pathogenic molecular mechanisms mediating disease pathogenesis. Studies of a Drosophila melanogaster model for each of the ALS genes can contribute to uncovering pathophysiological mechanism of ALS and finding targets of the disease-modifying therapy. In this review, we focus on three ALS-causing genes: TAR DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma (FUS/TLS), and chromosome 9 open reading frame 72 (C9orf72).
Collapse
Affiliation(s)
- Yumiko Azuma
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Ikuko Mizuta
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiki Mizuno
- Department of Neurology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
FUS toxicity is rescued by the modulation of lncRNA hsrω expression in Drosophila melanogaster. Sci Rep 2017; 7:15660. [PMID: 29142303 PMCID: PMC5688078 DOI: 10.1038/s41598-017-15944-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
FUS is an aggregation-prone hnRNP involved in transcriptional and post-transcriptional regulation that aberrantly forms immunoreactive inclusion bodies in a range of neurological diseases classified as FUS-proteinopathies. Although FUS has been extensively examined, the underlying molecular mechanisms of these diseases have not yet been elucidated in detail. We previously reported that RNAi of the lncRNA hsrω altered the expression and sub-cellular localization of Drosophila FUS in the central nervous system of the fly. In order to obtain a clearer understanding of the role of hsrω in FUS toxicity, we herein drove the expression of human FUS in Drosophila eyes with and without a hsrω RNAi background. We found that hFUS was largely soluble and also able to form aggregates. As such, hFUS was toxic, inducing an aberrant eye morphology with the loss of pigmentation. The co-expression of hsrω double-stranded RNA reduced hFUS transcript levels and induced the formation of cytoplasmic non-toxic hFUS-LAMP1-insoluble inclusions. The combination of these events caused the titration of hFUS molar excess and a removal of hFUS aggregates to rescue toxicity. These results revealed the presence of a lncRNA-dependent pathway involved in the management of aggregation-prone hnRNPs, suggesting that properly formed FUS inclusions are not toxic to cells.
Collapse
|
24
|
Efimova AD, Ovchinnikov RK, Roman AY, Maltsev AV, Grigoriev VV, Kovrazhkina EA, Skvortsova VI. The FUS protein: Physiological functions and a role in amyotrophic lateral sclerosis. Mol Biol 2017. [DOI: 10.1134/s0026893317020091] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Lo Piccolo L, Yamaguchi M. RNAi of arcRNA hsrω affects sub-cellular localization of Drosophila FUS to drive neurodiseases. Exp Neurol 2017; 292:125-134. [PMID: 28342748 DOI: 10.1016/j.expneurol.2017.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/01/2017] [Accepted: 03/21/2017] [Indexed: 02/08/2023]
Abstract
Defective RNA metabolism is common pathogenic mechanisms involved in neurological disorders. Indeed, a conspicuous feature of some neurodegenerative diseases is the loss of nuclear activities of RNA-binding proteins (RBPs) like Fused in sarcoma (FUS) and eventually, their accumulation in cytoplasmic proteinaceous inclusions. Long non-coding RNAs (lncRNAs) are emerging as important regulators of tissue physiology and disease processes, including neurological disorders. A subset of these lncRNAs is the core of nuclear bodies (NBs), which are the sites of RNA processing and sequestration of specific ribonucleoproteins (RNPs) complexes. In Drosophila melanogaster the lncRNA hsrω is the architectural RNA (arcRNA) of the NB omega speckles (ω-speckles). Here, we show that the neuron-specific and motor neuron-specific knockdown of hsrω impairs locomotion in larval and adult flies and induces anatomical defects in presynaptic terminals of motor neurons, suggesting a novel role of arcRNA hsrω in development of neuromuscular junctions. Since RBPs are recognized as important regulators of neuronal activities, to examine the molecular mechanism of such neurodegeneration, we analysed interaction between hsrω and Drosophila orthologue of human FUS (dFUS). Strictly, we found that dFUS genetically and physically interacts with the arcRNA hsrω. Moreover, we revealed that a fine regulation of gene expression occurs between hsrω and dFUS and surprisingly, we uncover that depletion of hsrω affects the sub-cellular compartmentalization of dFUS thus, enhancing its cytoplasmic localization and inducing its loss of nuclear function. The model we propose shows the role of arcRNA in diseases affecting the nervous system and in particular it elucidates the molecular mechanism underlying the loss of dFUS nuclear function in the absence of its mutations. Our new findings could provide new insights into the pathogenesis of neurodegenerative disease dependent on mis-function or mis-localization of aggregation prone RNA binding proteins like FUS in Amyotrophic Lateral Sclerosis.
Collapse
Affiliation(s)
- Luca Lo Piccolo
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Masamitsu Yamaguchi
- Department of Applied Biology, The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
26
|
Lebedeva S, de Jesus Domingues AM, Butter F, Ketting RF. Characterization of genetic loss-of-function of Fus in zebrafish. RNA Biol 2017; 14:29-35. [PMID: 27898262 PMCID: PMC5270537 DOI: 10.1080/15476286.2016.1256532] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/24/2016] [Accepted: 10/30/2016] [Indexed: 12/13/2022] Open
Abstract
The RNA-binding protein FUS is implicated in transcription, alternative splicing of neuronal genes and DNA repair. Mutations in FUS have been linked to human neurodegenerative diseases such as ALS (amyotrophic lateral sclerosis). We genetically disrupted fus in zebrafish (Danio rerio) using the CRISPR-Cas9 system. The fus knockout animals are fertile and did not show any distinctive phenotype. Mutation of fus induces mild changes in gene expression on the transcriptome and proteome level in the adult brain. We observed a significant influence of genetic background on gene expression and 3'UTR usage, which could mask the effects of loss of Fus. Unlike published fus morphants, maternal zygotic fus mutants do not show motoneuronal degeneration and exhibit normal locomotor activity.
Collapse
Affiliation(s)
| | | | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | | |
Collapse
|
27
|
Zhou Q, Neal SJ, Pignoni F. Mutant analysis by rescue gene excision: New tools for mosaic studies in Drosophila. Genesis 2016; 54:589-592. [PMID: 27696669 DOI: 10.1002/dvg.22984] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/24/2016] [Accepted: 09/29/2016] [Indexed: 11/11/2022]
Abstract
A host of classical and molecular genetic tools make Drosophila a tremendous model for the dissection of gene activity. In particular, the FLP-FRT technique for mitotic recombination has greatly enhanced gene loss-of-function analysis. This technique efficiently induces formation of homozygous mutant clones in tissues of heterozygous organisms. However, the dependence of the FLP-FRT method on cell division, and other constraints, also impose limits on its effectiveness. We describe here the generation and testing of tools for Mutant Analysis by Rescue Gene Excision (MARGE), an approach whereby mutant cells are formed by loss of a rescue transgene in a homozygous mutant organism. Rescue-transgene loss can be induced in any tissue or cell-type and at any time during development or in the adult using available heat-shock-induced or tissue-specific flippases, or combinations of UAS-FLP with Gal4 and Gal80ts reagents. The simultaneous loss of a constitutive fluorescence marker (GFP or RFP) identifies the mutant cells. We demonstrate the efficacy of the MARGE technique by flip-out (clonal and disc-wide) of a Ubi-GFP-carrying construct in imaginal discs, and by inducing a known yki mutant phenotype in the Drosophila ovary.
Collapse
Affiliation(s)
- Qingxiang Zhou
- Departments of Ophthalmology, Center for Vision Research and SUNY Eye Institute SUNY Upstate Medical University, Syracuse, New York, USA
| | - Scott J Neal
- Departments of Ophthalmology, Center for Vision Research and SUNY Eye Institute SUNY Upstate Medical University, Syracuse, New York, USA
| | - Francesca Pignoni
- Departments of Ophthalmology, Center for Vision Research and SUNY Eye Institute SUNY Upstate Medical University, Syracuse, New York, USA.,Departments of Biochemistry & Molecular Biology, Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
28
|
Abstract
Neurodegenerative disorders such as Alzheimer disease (AD), frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), Parkinson disease (PD), Huntington's disease (HD), and multiple sclerosis (MS) affect different neuronal cells, and have a variable age of onset, clinical symptoms, and pathological features. Despite the great progress in understanding the etiology of these disorders, the underlying mechanisms remain largely unclear. Among the processes affected in neurodegenerative diseases, alteration in RNA metabolism is emerging as a crucial player. RNA-binding proteins (RBPs) are involved at all stages of RNA metabolism and display a broad range of functions, including modulation of mRNA transcription, splicing, editing, export, stability, translation and localization and miRNA biogenesis, thus enormously impacting regulation of gene expression. On the other hand, aberrant regulation of RBP expression or activity can contribute to disease onset and progression. Recent reports identified mutations causative of neurological disorders in the genes encoding a family of RBPs named FET (FUS/TLS, EWS and TAF15). This review summarizes recent works documenting the involvement of FET proteins in the pathology of ALS, FTLD, essential tremor (ET) and other neurodegenerative diseases. Moreover, clinical implications of recent advances in FET research are critically discussed.
Collapse
Affiliation(s)
- Francesca Svetoni
- a University of Rome "Foro Italico," , Rome , Italy.,b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| | - Paola Frisone
- b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| | - Maria Paola Paronetto
- a University of Rome "Foro Italico," , Rome , Italy.,b Laboratory of Cellular and Molecular Neurobiology, Fondazione Santa Lucia , Rome , Italy
| |
Collapse
|
29
|
Jin M, Eblimit A, Pulikkathara M, Corr S, Chen R, Mardon G. Conditional knockout of retinal determination genes in differentiating cells in Drosophila. FEBS J 2016; 283:2754-66. [PMID: 27257739 DOI: 10.1111/febs.13772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/18/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022]
Abstract
Conditional gene knockout in postmitotic cells is a valuable technique which allows the study of gene function with spatiotemporal control. Surprisingly, in contrast to its long-term and extensive use in mouse studies, this technology is lacking in Drosophila. Here, we use a novel method for generating complete loss of eyes absent (eya) or sine oculis (so) function in postmitotic cells posterior to the morphogenetic furrow (MF). Specifically, genomic rescue constructs with flippase recognition target (FRT) sequences flanking essential exons are used to generate conditional null alleles. By removing gene function in differentiating cells, we show that eya and so are dispensable for larval photoreceptor differentiation, but are required for differentiation during pupal development. Both eya and so are necessary for photoreceptor survival and the apoptosis caused by loss of eya or so function is likely a secondary consequence of inappropriate differentiation. We also confirm their requirement for cone cell development and reveal a novel role in interommatidial bristle (IOB) formation. In addition, so is required for normal eye disc morphology. This is the first report of a knockout method to study eya and so function in postmitotic cells. This technology will open the door to a large array of new functional studies in virtually any tissue and at any stage of development or in adults.
Collapse
Affiliation(s)
- Meng Jin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Aiden Eblimit
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Stuart Corr
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.,Department of Chemistry, Rice University, Houston, TX, USA.,Department of Biomedical Engineering, University of Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Scekic-Zahirovic J, Sendscheid O, El Oussini H, Jambeau M, Sun Y, Mersmann S, Wagner M, Dieterlé S, Sinniger J, Dirrig-Grosch S, Drenner K, Birling MC, Qiu J, Zhou Y, Li H, Fu XD, Rouaux C, Shelkovnikova T, Witting A, Ludolph AC, Kiefer F, Storkebaum E, Lagier-Tourenne C, Dupuis L. Toxic gain of function from mutant FUS protein is crucial to trigger cell autonomous motor neuron loss. EMBO J 2016; 35:1077-97. [PMID: 26951610 PMCID: PMC4868956 DOI: 10.15252/embj.201592559] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 12/12/2022] Open
Abstract
FUS is an RNA-binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS-containing aggregates are often associated with concomitant loss of nuclear FUS Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell-specific CRE-mediated expression of wild-type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons.
Collapse
Affiliation(s)
- Jelena Scekic-Zahirovic
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Oliver Sendscheid
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Hajer El Oussini
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Mélanie Jambeau
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Ying Sun
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Sina Mersmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marina Wagner
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Stéphane Dieterlé
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Jérome Sinniger
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Sylvie Dirrig-Grosch
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | - Kevin Drenner
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | | | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Caroline Rouaux
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| | | | - Anke Witting
- Department of Neurology University of Ulm, Ulm, Germany
| | | | - Friedemann Kiefer
- Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Erik Storkebaum
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Clotilde Lagier-Tourenne
- Department of Neurosciences, University of California, San Diego La Jolla, CA, USA Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Luc Dupuis
- Faculté de Médecine, INSERM U1118, Strasbourg, France Université de Strasbourg UMR_S1118, Strasbourg, France
| |
Collapse
|
31
|
Therrien M, Rouleau GA, Dion PA, Parker JA. FET proteins regulate lifespan and neuronal integrity. Sci Rep 2016; 6:25159. [PMID: 27117089 PMCID: PMC4846834 DOI: 10.1038/srep25159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/12/2016] [Indexed: 11/09/2022] Open
Abstract
The FET protein family includes FUS, EWS and TAF15 proteins, all of which have been linked to amyotrophic lateral sclerosis, a fatal neurodegenerative disease affecting motor neurons. Here, we show that a reduction of FET proteins in the nematode Caenorhabditis elegans causes synaptic dysfunction accompanied by impaired motor phenotypes. FET proteins are also involved in the regulation of lifespan and stress resistance, acting partially through the insulin/IGF-signalling pathway. We propose that FET proteins are involved in the maintenance of lifespan, cellular stress resistance and neuronal integrity.
Collapse
Affiliation(s)
- Martine Therrien
- CHUM Research Center, Montreal, H2X 3H8, Canada
- Pathology and Cell biology department, University of Montreal, Montreal, H3T 1J4, Canada
| | - Guy A. Rouleau
- Neurology and Neurosurgery department, McGill University, Montreal, H3A 0G4, Canada
- Montreal Neurological Hospital, Montreal, H3A 2B4, Canada
| | - Patrick A. Dion
- Neurology and Neurosurgery department, McGill University, Montreal, H3A 0G4, Canada
- Montreal Neurological Hospital, Montreal, H3A 2B4, Canada
| | - J. Alex Parker
- CHUM Research Center, Montreal, H2X 3H8, Canada
- Department of Neuroscience, University of Montreal, Montreal, H3T 1J4, Canada
| |
Collapse
|
32
|
Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry. Neurobiol Dis 2016; 89:76-87. [PMID: 26851502 DOI: 10.1016/j.nbd.2016.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/22/2023] Open
Abstract
Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early-use critical period.
Collapse
|
33
|
Venken KJT, Sarrion-Perdigones A, Vandeventer PJ, Abel NS, Christiansen AE, Hoffman KL. Genome engineering: Drosophila melanogaster and beyond. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:233-67. [PMID: 26447401 DOI: 10.1002/wdev.214] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 08/03/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022]
Abstract
A central challenge in investigating biological phenomena is the development of techniques to modify genomic DNA with nucleotide precision that can be transmitted through the germ line. Recent years have brought a boon in these technologies, now collectively known as genome engineering. Defined genomic manipulations at the nucleotide level enable a variety of reverse engineering paradigms, providing new opportunities to interrogate diverse biological functions. These genetic modifications include controlled removal, insertion, and substitution of genetic fragments, both small and large. Small fragments up to a few kilobases (e.g., single nucleotide mutations, small deletions, or gene tagging at single or multiple gene loci) to large fragments up to megabase resolution can be manipulated at single loci to create deletions, duplications, inversions, or translocations of substantial sections of whole chromosome arms. A specialized substitution of chromosomal portions that presumably are functionally orthologous between different organisms through syntenic replacement, can provide proof of evolutionary conservation between regulatory sequences. Large transgenes containing endogenous or synthetic DNA can be integrated at defined genomic locations, permitting an alternative proof of evolutionary conservation, and sophisticated transgenes can be used to interrogate biological phenomena. Precision engineering can additionally be used to manipulate the genomes of organelles (e.g., mitochondria). Novel genome engineering paradigms are often accelerated in existing, easily genetically tractable model organisms, primarily because these paradigms can be integrated in a rigorous, existing technology foundation. The Drosophila melanogaster fly model is ideal for these types of studies. Due to its small genome size, having just four chromosomes, the vast amount of cutting-edge genetic technologies, and its short life-cycle and inexpensive maintenance requirements, the fly is exceptionally amenable to complex genetic analysis using advanced genome engineering. Thus, highly sophisticated methods developed in the fly model can be used in nearly any sequenced organism. Here, we summarize different ways to perform precise inheritable genome engineering using integrases, recombinases, and DNA nucleases in the D. melanogaster. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Koen J T Venken
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA.,Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Paul J Vandeventer
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Nicholas S Abel
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, USA
| | - Audrey E Christiansen
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| | - Kristi L Hoffman
- Department of Biochemistry and Molecular Biology, Verna and Marrs McLean, Houston, TX, USA
| |
Collapse
|