1
|
Simoben CV, Babiaka SB, Moumbock AFA, Namba-Nzanguim CT, Eni DB, Medina-Franco JL, Günther S, Ntie-Kang F, Sippl W. Challenges in natural product-based drug discovery assisted with in silico-based methods. RSC Adv 2023; 13:31578-31594. [PMID: 37908659 PMCID: PMC10613855 DOI: 10.1039/d3ra06831e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
The application of traditional medicine by humans for the treatment of ailments as well as improving the quality of life far outdates recorded history. To date, a significant percentage of humans, especially those living in developing/underprivileged communities still rely on traditional medicine for primary healthcare needs. In silico-based methods have been shown to play a pivotal role in modern pharmaceutical drug discovery processes. The application of these methods in identifying natural product (NP)-based hits has been successful. This is very much observed in many research set-ups that use rationally in silico-based methods in combination with experimental validation techniques. The combination has rendered the use of in silico-based approaches even more popular and successful in the investigation of NPs. However, identifying and proposing novel NP-based hits for experimental validation comes with several challenges such as the availability of compounds by suppliers, the huge task of separating pure compounds from complex mixtures, the quantity of samples available from the natural source to be tested, not to mention the potential ecological impact if the natural source is exhausted. Because most peer-reviewed publications are biased towards "positive results", these challenges are generally not discussed in publications. In this review, we highlight and discuss these challenges. The idea is to give interested scientists in this field of research an idea of what they can come across or should be expecting as well as prompting them on how to avoid or fix these issues.
Collapse
Affiliation(s)
- Conrad V Simoben
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Structural Genomics Consortium, University of Toronto Toronto Ontario M5G 1L7 Canada
- Department of Pharmacology & Toxicology, University of Toronto Toronto Ontario M5S 1A8 Canada
| | - Smith B Babiaka
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen 72076 Tübingen Germany
| | - Aurélien F A Moumbock
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Cyril T Namba-Nzanguim
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - Donatus Bekindaka Eni
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000 Mexico City 04510 Mexico
| | - Stefan Günther
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg Freiburg Germany
| | - Fidele Ntie-Kang
- Center for Drug Discovery, Faculty of Science, University of Buea P.O. Box 63 Buea CM-00237 Cameroon
- Department of Chemistry, University of Buea Buea Cameroon
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University Halle-Wittenberg Halle (Saale) Germany
| |
Collapse
|
2
|
Zhao H, Yang Y, Wang S, Yang X, Zhou K, Xu C, Zhang X, Fan J, Hou D, Li X, Lin H, Tan Y, Wang S, Chu XY, Zhuoma D, Zhang F, Ju D, Zeng X, Chen YZ. NPASS database update 2023: quantitative natural product activity and species source database for biomedical research. Nucleic Acids Res 2023; 51:D621-D628. [PMID: 36624664 PMCID: PMC9825494 DOI: 10.1093/nar/gkac1069] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/30/2022] Open
Abstract
Quantitative activity and species source data of natural products (NPs) are important for drug discovery, medicinal plant research, and microbial investigations. Activity values of NPs against specific targets are useful for discovering targeted therapeutic agents and investigating the mechanism of medicinal plants. Composition/concentration values of NPs in individual species facilitate the assessments and investigations of the therapeutic quality of herbs and phenotypes of microbes. Here, we describe an update of the NPASS natural product activity and species source database previously featured in NAR. This update includes: (i) new data of ∼95 000 records of the composition/concentration values of ∼1 490 NPs/NP clusters in ∼390 species, (ii) extended data of activity values of ∼43 200 NPs against ∼7 700 targets (∼40% and ∼32% increase, respectively), (iii) extended data of ∼31 600 species sources of ∼94 400 NPs (∼26% and ∼32% increase, respectively), (iv) new species types of ∼440 co-cultured microbes and ∼420 engineered microbes, (v) new data of ∼66 600 NPs without experimental activity values but with estimated activity profiles from the established chemical similarity tool Chemical Checker, (vi) new data of the computed drug-likeness properties and the absorption, distribution, metabolism, excretion and toxicity (ADMET) properties for all NPs. NPASS update version is freely accessible at http://bidd.group/NPASS.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Yuan Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Shuaiqi Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xue Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Kaicheng Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Dongyue Hou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xingxiu Li
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Hanbo Lin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics & Key Laboratory of Chemical Biology, Tsinghua University Shenzhen Graduate School, Shenzhen Kivita Innovative Drug Discovery Institute, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Xin-Yi Chu
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | | | - Fengying Zhang
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai 201203, China
| | | |
Collapse
|
3
|
Swain SS, Pati S, Hussain T. Quinoline heterocyclic containing plant and marine candidates against drug-resistant Mycobacterium tuberculosis: A systematic drug-ability investigation. Eur J Med Chem 2022; 232:114173. [DOI: 10.1016/j.ejmech.2022.114173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
|
4
|
Zhao X, Kuipers OP. BrevicidineB, a New Member of the Brevicidine Family, Displays an Extended Target Specificity. Front Microbiol 2021; 12:693117. [PMID: 34177875 PMCID: PMC8219939 DOI: 10.3389/fmicb.2021.693117] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/14/2021] [Indexed: 12/18/2022] Open
Abstract
The group of bacterial non-ribosomally produced peptides (NRPs) has formed a rich source for drug development. Brevicidine, a bacterial non-ribosomally produced cyclic lipo-dodecapeptide, displays selective antimicrobial activity against Gram-negative pathogens. Here, we show that brevicidineB, which contains a single substitution (Tyr2 to Phe2) in the amino acid sequence of the linear part of brevicidine, has a broadened antimicrobial spectrum, showing bactericidal activity against both Gram-negative (with a MIC value of 2 to 4 mg/L) and Gram-positive (with a MIC value of 2 to 8 mg/L) pathogens. Compared with an earlier reported member of the brevicidine family, the broadened antimicrobial spectrum of brevicidineB is caused by its increased membrane disruptive capacity on Gram-positive pathogens, which was evidenced by fluorescence microscopy assays. In addition, DiSC3(5) and resazurin assays show that brevicidine and brevicidineB exert their antimicrobial activity against Gram-negative bacteria via disrupting the proton motive force of cells. Notably, as a brevicidine family member, brevicidineB also showed neither hemolytic activity nor cytotoxicity at a high concentration of 64 mg/L. This study provides a promising antibiotic candidate (brevicidineB) with a broad antimicrobial spectrum, and provides novel insights into the antimicrobial mode of action of brevicidines.
Collapse
Affiliation(s)
- Xinghong Zhao
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Santana K, do Nascimento LD, Lima e Lima A, Damasceno V, Nahum C, Braga RC, Lameira J. Applications of Virtual Screening in Bioprospecting: Facts, Shifts, and Perspectives to Explore the Chemo-Structural Diversity of Natural Products. Front Chem 2021; 9:662688. [PMID: 33996755 PMCID: PMC8117418 DOI: 10.3389/fchem.2021.662688] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/25/2021] [Indexed: 12/22/2022] Open
Abstract
Natural products are continually explored in the development of new bioactive compounds with industrial applications, attracting the attention of scientific research efforts due to their pharmacophore-like structures, pharmacokinetic properties, and unique chemical space. The systematic search for natural sources to obtain valuable molecules to develop products with commercial value and industrial purposes remains the most challenging task in bioprospecting. Virtual screening strategies have innovated the discovery of novel bioactive molecules assessing in silico large compound libraries, favoring the analysis of their chemical space, pharmacodynamics, and their pharmacokinetic properties, thus leading to the reduction of financial efforts, infrastructure, and time involved in the process of discovering new chemical entities. Herein, we discuss the computational approaches and methods developed to explore the chemo-structural diversity of natural products, focusing on the main paradigms involved in the discovery and screening of bioactive compounds from natural sources, placing particular emphasis on artificial intelligence, cheminformatics methods, and big data analyses.
Collapse
Affiliation(s)
- Kauê Santana
- Instituto de Biodiversidade, Universidade Federal do Oeste do Pará, Santarém, Brazil
| | | | - Anderson Lima e Lima
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Vinícius Damasceno
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | - Claudio Nahum
- Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Brazil
| | | | - Jerônimo Lameira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
6
|
Zeng X, Zhang P, He W, Qin C, Chen S, Tao L, Wang Y, Tan Y, Gao D, Wang B, Chen Z, Chen W, Jiang YY, Chen YZ. NPASS: natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Res 2019; 46:D1217-D1222. [PMID: 29106619 PMCID: PMC5753227 DOI: 10.1093/nar/gkx1026] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/18/2017] [Indexed: 01/22/2023] Open
Abstract
There has been renewed interests in the exploration of natural products (NPs) for drug discovery, and continuous investigations of the therapeutic claims and mechanisms of traditional and herbal medicines. In-silico methods have been employed for facilitating these studies. These studies and the optimization of in-silico algorithms for NP applications can be facilitated by the quantitative activity and species source data of the NPs. A number of databases collectively provide the structural and other information of ∼470 000 NPs, including qualitative activity information for many NPs, but only ∼4000 NPs are with the experimental activity values. There is a need for the activity and species source data of more NPs. We therefore developed a new database, NPASS (Natural Product Activity and Species Source) to complement other databases by providing the experimental activity values and species sources of 35 032 NPs from 25 041 species targeting 5863 targets (2946 proteins, 1352 microbial species and 1227 cell-lines). NPASS contains 446 552 quantitative activity records (e.g. IC50, Ki, EC50, GI50 or MIC mainly in units of nM) of 222 092 NP-target pairs and 288 002 NP-species pairs. NPASS, http://bidd2.nus.edu.sg/NPASS/, is freely accessible with its contents searchable by keywords, physicochemical property range, structural similarity, species and target search facilities.
Collapse
Affiliation(s)
- Xian Zeng
- Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, PR China.,Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Peng Zhang
- Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Weidong He
- Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Chu Qin
- Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Shangying Chen
- Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Lin Tao
- Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore.,Zhejiang Key Laboratory of Gastro-intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, School of Medicine, Hangzhou Normal University, Hangzhou 310006, RP China
| | - Yali Wang
- Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Ying Tan
- Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, PR China
| | - Dan Gao
- Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, PR China
| | - Bohua Wang
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University, Nanchang 330045, PR China.,College of Life and Environmental Sciences, Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan University of Arts and Science, Changde, Hunan 415000, PR China
| | - Zhe Chen
- Zhejiang Key Laboratory of Gastro-intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, School of Medicine, Hangzhou Normal University, Hangzhou 310006, RP China
| | - Weiping Chen
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yu Yang Jiang
- Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, PR China
| | - Yu Zong Chen
- Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, PR China.,Bioinformatics and Drug Design group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
7
|
Koulouridi E, Valli M, Ntie-Kang F, Bolzani VDS. A primer on natural product-based virtual screening. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Databases play an important role in various computational techniques, including virtual screening (VS) and molecular modeling in general. These collections of molecules can contain a large amount of information, making them suitable for several drug discovery applications. For example, vendor, bioactivity data or target type can be found when searching a database. The introduction of these data resources and their characteristics is used for the design of an experiment. The description of the construction of a database can also be a good advisor for the creation of a new one. There are free available databases and commercial virtual libraries of molecules. Furthermore, a computational chemist can find databases for a general purpose or a specific subset such as natural products (NPs). In this chapter, NP database resources are presented, along with some guidelines when preparing an NP database for drug discovery purposes.
Collapse
|
8
|
Saldívar-González FI, Pilón-Jiménez BA, Medina-Franco JL. Chemical space of naturally occurring compounds. PHYSICAL SCIENCES REVIEWS 2019. [DOI: 10.1515/psr-2018-0103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AbstractThe chemical space of naturally occurring compounds is vast and diverse. Other than biologics, naturally occurring small molecules include a large variety of compounds covering natural products from different sources such as plant, marine, and fungi, to name a few, and several food chemicals. The systematic exploration of the chemical space of naturally occurring compounds have significant implications in many areas of research including but not limited to drug discovery, nutrition, bio- and chemical diversity analysis. The exploration of the coverage and diversity of the chemical space of compound databases can be carried out in different ways. The approach will largely depend on the criteria to define the chemical space that is commonly selected based on the goals of the study. This chapter discusses major compound databases of natural products and cheminformatics strategies that have been used to characterize the chemical space of natural products. Recent exemplary studies of the chemical space of natural products from different sources and their relationships with other compounds are also discussed. We also present novel chemical descriptors and data mining approaches that are emerging to characterize the chemical space of naturally occurring compounds.
Collapse
|
9
|
Secondary Metabolites from Marine Endophytic Fungi: Emphasis on Recent Advances in Natural Product Research. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-03589-1_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
10
|
Li G, Lou HX. Strategies to diversify natural products for drug discovery. Med Res Rev 2017; 38:1255-1294. [PMID: 29064108 DOI: 10.1002/med.21474] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 12/11/2022]
Abstract
Natural product libraries contain specialized metabolites derived from plants, animals, and microorganisms that play a pivotal role in drug discovery due to their immense structural diversity and wide variety of biological activities. The strategies to greatly extend natural product scaffolds through available biological and chemical approaches offer unique opportunities to access a new series of natural product analogues, enabling the construction of diverse natural product-like libraries. The affordability of these structurally diverse molecules has been a crucial step in accelerating drug discovery. This review provides an overview of various approaches to exploit the diversity of compounds for natural product-based drug development, drawing upon a series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Gang Li
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hong-Xiang Lou
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, China.,Department of Natural Products Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| |
Collapse
|
11
|
Tao L, Wang B, Zhong Y, Pow SH, Zeng X, Qin C, Zhang P, Chen S, He W, Tan Y, Liu H, Jiang Y, Chen W, Chen YZ. Database and Bioinformatics Studies of Probiotics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7599-7606. [PMID: 28727425 DOI: 10.1021/acs.jafc.7b01815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Probiotics have been widely explored for health benefits, animal cares, and agricultural applications. Recent advances in microbiome, microbiota, and microbial dark matter research have fueled greater interests in and paved ways for the study of the mechanisms of probiotics and the discovery of new probiotics from uncharacterized microbial sources. A probiotics database named PROBIO was developed to facilitate these efforts and the need for the information on the known probiotics, which provides the comprehensive information about the probiotic functions of 448 marketed, 167 clinical trial/field trial, and 382 research probiotics for use or being studied for use in humans, animals, and plants. The potential applications of the probiotics data are illustrated by several literature-reported investigations, which have used the relevant information for probing the function and mechanism of the probiotics and for discovering new probiotics. PROBIO can be accessed free of charge at http://bidd2.nus.edu.sg/probio/homepage.htm .
Collapse
Affiliation(s)
- Lin Tao
- School of Medicine, Hangzhou Normal University , Hangzhou, P. R. China 310012
| | - Bohua Wang
- College of Life and Environmental Sciences, Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan University of Arts and Science , Changde, Hunan, P. R. China 415000
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University , Nanchang, P. R. China 330045
| | - Yafen Zhong
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University , Nanchang, P. R. China 330045
| | - Siok Hoon Pow
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Xian Zeng
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Chu Qin
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Peng Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Shangying Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Weidong He
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| | - Ying Tan
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong, P. R. China 518055
| | - Hongxia Liu
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong, P. R. China 518055
| | - Yuyang Jiang
- The Key Laboratory of Chemical Biology, Guangdong Province, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong, P. R. China 518055
| | - Weiping Chen
- Key Lab of Agricultural Products Processing and Quality Control of Nanchang City, Jiangxi Agricultural University , Nanchang, P. R. China 330045
| | - Yu Zong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore , Singapore 117543
| |
Collapse
|
12
|
Kanchi MM, Shanmugam MK, Rane G, Sethi G, Kumar AP. Tocotrienols: the unsaturated sidekick shifting new paradigms in vitamin E therapeutics. Drug Discov Today 2017; 22:1765-1781. [PMID: 28789906 DOI: 10.1016/j.drudis.2017.08.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/01/2017] [Accepted: 08/01/2017] [Indexed: 11/15/2022]
Abstract
Vitamin E family members: tocotrienols and tocopherols are widely known for their health benefits. Decades of research on tocotrienols have shown they have diverse biological activities such as antioxidant, anti-inflammatory, anticancer, neuroprotective and skin protection benefits, as well as improved cognition, bone health, longevity and reduction of cholesterol levels in plasma. Tocotrienols also modulate several intracellular molecular targets and, most importantly, have been shown to improve lipid profiles, reduce total cholesterol and reduce the volume of white matter lesions in human clinical trials. This review provides a comprehensive update on the little-known therapeutic potentials of tocotrienols, which tocopherols lack in a variety of inflammation-driven diseases.
Collapse
Affiliation(s)
- Madhu M Kanchi
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Grishma Rane
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia.
| | - Alan P Kumar
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; National University Cancer Institute, National University Health System, 119074, Singapore; Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA 6102, Australia; Medical Science Cluster, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
13
|
Zhang C, Shao YM, Ma X, Cheong SL, Qin C, Tao L, Zhang P, Chen S, Zeng X, Liu H, Pastorin G, Jiang Y, Chen YZ. Pharmacological relationships and ligand discovery of G protein-coupled receptors revealed by simultaneous ligand and receptor clustering. J Mol Graph Model 2017; 76:136-142. [PMID: 28728042 DOI: 10.1016/j.jmgm.2017.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022]
Abstract
Conventional ligand and receptor similarity methods have been extensively used for exposing pharmacological relationships and drug lead discovery. They may in some cases neglect minor relationships useful for target hopping particularly against the remote family members. To complement the conventional methods for capturing these minor relationships, we developed a new method that uses a SLARC (Simultaneous Ligand And Receptor Clustering) 2D map to simultaneously characterize the ligand structural and receptor binding-site sequence relationships of a receptor family. The SLARC maps of the rhodopsin-like GPCR family comprehensively revealed scaffold hopping, target hopping, and multi-target relationships for the ligands of both homologous and remote family members. Their usefulness in new ligand discovery was validated by guiding the prospective discovery of novel indole piperazinylpyrimidine dual-targeting adenosine A2A receptor antagonist and dopamine D2 agonist compounds. The SLARC approach is useful for revealing pharmacological relationships and discovering new ligands at target family levels.
Collapse
Affiliation(s)
- Cheng Zhang
- Ministry-Province Jointly Constructed Base for State Key Lab and Shenzhen Technology and Engineering Lab for Personalized Cancer Diagnostics and Therapeutics, Tsinghua University Shenzhen Graduate School, and Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, PR China; Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yi-Ming Shao
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Xiaohua Ma
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Siew Lee Cheong
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Chu Qin
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Lin Tao
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Peng Zhang
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Shangying Chen
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Xian Zeng
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Hongxia Liu
- Ministry-Province Jointly Constructed Base for State Key Lab and Shenzhen Technology and Engineering Lab for Personalized Cancer Diagnostics and Therapeutics, Tsinghua University Shenzhen Graduate School, and Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, PR China
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School for Integrative Sciences and Engineering, 117456, Singapore.
| | - Yuyang Jiang
- Ministry-Province Jointly Constructed Base for State Key Lab and Shenzhen Technology and Engineering Lab for Personalized Cancer Diagnostics and Therapeutics, Tsinghua University Shenzhen Graduate School, and Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen 518055, PR China.
| | - Yu Zong Chen
- Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore; NUS Graduate School for Integrative Sciences and Engineering, 117456, Singapore.
| |
Collapse
|
14
|
Cancer prevention and therapy through the modulation of transcription factors by bioactive natural compounds. Semin Cancer Biol 2016; 40-41:35-47. [DOI: 10.1016/j.semcancer.2016.03.005] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 02/07/2023]
|
15
|
Ernst M, Saslis-Lagoudakis CH, Grace OM, Nilsson N, Simonsen HT, Horn JW, Rønsted N. Evolutionary prediction of medicinal properties in the genus Euphorbia L. Sci Rep 2016; 6:30531. [PMID: 27464466 PMCID: PMC4964329 DOI: 10.1038/srep30531] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/05/2016] [Indexed: 11/21/2022] Open
Abstract
The current decrease of new drugs brought to the market has fostered renewed interest in plant-based drug discovery. Given the alarming rate of biodiversity loss, systematic methodologies in finding new plant-derived drugs are urgently needed. Medicinal uses of plants were proposed as proxy for bioactivity, and phylogenetic patterns in medicinal plant uses have suggested that phylogeny can be used as predictive tool. However, the common practice of grouping medicinal plant uses into standardised categories may restrict the relevance of phylogenetic predictions. Standardised categories are mostly associated to systems of the human body and only poorly reflect biological responses to the treatment. Here we show that medicinal plant uses interpreted from a perspective of a biological response can reveal different phylogenetic patterns of presumed underlying bioactivity compared to standardised methods of medicinal plant use classification. In the cosmopolitan and pharmaceutically highly relevant genus Euphorbia L., identifying plant uses modulating the inflammatory response highlighted a greater phylogenetic diversity and number of potentially promising species than standardised categories. Our interpretation of medicinal plant uses may therefore allow for a more targeted approach for future phylogeny-guided drug discovery at an early screening stage, which will likely result in higher discovery rates of novel chemistry with functional biological activity.
Collapse
Affiliation(s)
- Madeleine Ernst
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Sølvgade 83S, DK-1307 Copenhagen K, Denmark
| | - C Haris Saslis-Lagoudakis
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Sølvgade 83S, DK-1307 Copenhagen K, Denmark
| | - Olwen M Grace
- Comparative Plant &Fungal Biology, Royal Botanic Gardens, Kew, Surrey TW9 3AB, United Kingdom
| | - Niclas Nilsson
- Skin Research, LEO Pharma A/S, Industriparken 55, DK-2750 Ballerup, Denmark
| | - Henrik Toft Simonsen
- Department of Systems Biology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - James W Horn
- Natural and Applied Sciences, University of Wisconsin, Green Bay, LS 458, UW-Green Bay, 2420 Nicolet Dr, Green Bay, WI 54311-7001, USA
| | - Nina Rønsted
- Natural History Museum of Denmark, Faculty of Science, University of Copenhagen, Sølvgade 83S, DK-1307 Copenhagen K, Denmark
| |
Collapse
|
16
|
Trindade M, van Zyl LJ, Navarro-Fernández J, Abd Elrazak A. Targeted metagenomics as a tool to tap into marine natural product diversity for the discovery and production of drug candidates. Front Microbiol 2015; 6:890. [PMID: 26379658 PMCID: PMC4552006 DOI: 10.3389/fmicb.2015.00890] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/17/2015] [Indexed: 11/13/2022] Open
Abstract
Microbial natural products exhibit immense structural diversity and complexity and have captured the attention of researchers for several decades. They have been explored for a wide spectrum of applications, most noteworthy being their prominent role in medicine, and their versatility expands to application as drugs for many diseases. Accessing unexplored environments harboring unique microorganisms is expected to yield novel bioactive metabolites with distinguishing functionalities, which can be supplied to the starved pharmaceutical market. For this purpose the oceans have turned out to be an attractive and productive field. Owing to the enormous biodiversity of marine microorganisms, as well as the growing evidence that many metabolites previously isolated from marine invertebrates and algae are actually produced by their associated bacteria, the interest in marine microorganisms has intensified. Since the majority of the microorganisms are uncultured, metagenomic tools are required to exploit the untapped biochemistry. However, after years of employing metagenomics for marine drug discovery, new drugs are vastly under-represented. While a plethora of natural product biosynthetic genes and clusters are reported, only a minor number of potential therapeutic compounds have resulted through functional metagenomic screening. This review explores specific obstacles that have led to the low success rate. In addition to the typical problems encountered with traditional functional metagenomic-based screens for novel biocatalysts, there are enormous limitations which are particular to drug-like metabolites. We also present how targeted and function-guided strategies, employing modern, and multi-disciplinary approaches have yielded some of the most exciting discoveries attributed to uncultured marine bacteria. These discoveries set the stage for progressing the production of drug candidates from uncultured bacteria for pre-clinical and clinical development.
Collapse
Affiliation(s)
- Marla Trindade
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
| | - Leonardo Joaquim van Zyl
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
| | - José Navarro-Fernández
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
- Centro Regional de Hemodonación, Servicio de Hematología y Oncología Médica, Universidad de Murcia, IMIB-Arrixaca, MurciaSpain
| | - Ahmed Abd Elrazak
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, BellvilleSouth Africa
- Botany Department, Faculty of Science, Mansoura University, MansouraEgypt
| |
Collapse
|