1
|
Urbano-Gámez JD, Valdés-Sánchez L, Aracil C, de la Cerda B, Perdigones F, Plaza Reyes Á, Díaz-Corrales FJ, Relimpio López I, Quero JM. Biocompatibility Study of a Commercial Printed Circuit Board for Biomedical Applications: Lab-on-PCB for Organotypic Retina Cultures. MICROMACHINES 2021; 12:1469. [PMID: 34945319 PMCID: PMC8707730 DOI: 10.3390/mi12121469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022]
Abstract
Printed circuit board (PCB) technology is well known, reliable, and low-cost, and its application to biomedicine, which implies the integration of microfluidics and electronics, has led to Lab-on-PCB. However, the biocompatibility of the involved materials has to be examined if they are in contact with biological elements. In this paper, the solder mask (PSR-2000 CD02G/CA-25 CD01, Taiyo Ink (Suzhou) Co., Ltd., Suzhou, China) of a commercial PCB has been studied for retinal cultures. For this purpose, retinal explants have been cultured over this substrate, both on open and closed systems, with successful results. Cell viability data shows that the solder mask has no cytotoxic effect on the culture allowing the application of PCB as the substrate of customized microelectrode arrays (MEAs). Finally, a comparative study of the biocompatibility of the 3D printer Uniz zSG amber resin has also been carried out.
Collapse
Affiliation(s)
- Jesús David Urbano-Gámez
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| | - Lourdes Valdés-Sánchez
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Carmen Aracil
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| | - Berta de la Cerda
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Francisco Perdigones
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| | - Álvaro Plaza Reyes
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Francisco J. Díaz-Corrales
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Avda. Américo Vespucio 24, 41092 Seville, Spain; (L.V.-S.); (Á.P.R.); (F.J.D.-C.)
| | - Isabel Relimpio López
- RETICS Oftared, Carlos III Institute of Health (Spain), Ministry of Health RD16/0008/0010, University Hospital Virgen Macarena, Avda. Dr. Fedriani, 3, 41009 Seville, Spain;
| | - José Manuel Quero
- Electronic Technology Group, Department of Electronic Engineering, Higher Technical School of Engineering, University of Seville, Avda. de los Descubrimientos sn, 41092 Seville, Spain; (J.D.U.-G.); (F.P.); (J.M.Q.)
| |
Collapse
|
2
|
Wijdenes P, Haider K, Gavrilovici C, Gunning B, Wolff MD, Lijnse T, Armstrong R, Teskey GC, Rho JM, Dalton C, Syed NI. Three dimensional microelectrodes enable high signal and spatial resolution for neural seizure recordings in brain slices and freely behaving animals. Sci Rep 2021; 11:21952. [PMID: 34754055 PMCID: PMC8578611 DOI: 10.1038/s41598-021-01528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
Neural recordings made to date through various approaches—both in-vitro or in-vivo—lack high spatial resolution and a high signal-to-noise ratio (SNR) required for detailed understanding of brain function, synaptic plasticity, and dysfunction. These shortcomings in turn deter the ability to further design diagnostic, therapeutic strategies and the fabrication of neuro-modulatory devices with various feedback loop systems. We report here on the simulation and fabrication of fully configurable neural micro-electrodes that can be used for both in vitro and in vivo applications, with three-dimensional semi-insulated structures patterned onto custom, fine-pitch, high density arrays. These microelectrodes were interfaced with isolated brain slices as well as implanted in brains of freely behaving rats to demonstrate their ability to maintain a high SNR. Moreover, the electrodes enabled the detection of epileptiform events and high frequency oscillations in an epilepsy model thus offering a diagnostic potential for neurological disorders such as epilepsy. These microelectrodes provide unique opportunities to study brain activity under normal and various pathological conditions, both in-vivo and in in-vitro, thus furthering the ability to develop drug screening and neuromodulation systems that could accurately record and map the activity of large neural networks over an extended time period.
Collapse
Affiliation(s)
- P Wijdenes
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - K Haider
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - C Gavrilovici
- Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - B Gunning
- Department of Cell Biology and Anatomy, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - M D Wolff
- Department of Cell Biology and Anatomy, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - T Lijnse
- Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - R Armstrong
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - G C Teskey
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - J M Rho
- Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Departments of Neurosciences and Pediatrics, University of California San Diego, Rady Children's Hospital, San Diego, CA, USA
| | - C Dalton
- Biomedical Engineering Graduate Program, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.,Department of Electrical and Computer Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Naweed I Syed
- Faculty of Medicine, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Department of Cell Biology and Anatomy, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada. .,Cumming School of Medicine, University of Calgary, 3330-Hospital Drive, NW, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
3
|
Neurotrophic factors and target-specific retrograde signaling interactions define the specificity of classical and neuropeptide cotransmitter release at identified Lymnaea synapses. Sci Rep 2020; 10:13526. [PMID: 32782285 PMCID: PMC7419297 DOI: 10.1038/s41598-020-70322-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Many neurons concurrently and/or differentially release multiple neurotransmitter substances to selectively modulate the activity of distinct postsynaptic targets within a network. However, the molecular mechanisms that produce synaptic heterogeneity by regulating the cotransmitter release characteristics of individual presynaptic terminals remain poorly defined. In particular, we know little about the regulation of neuropeptide corelease, despite the fact that they mediate synaptic transmission, plasticity and neuromodulation. Here, we report that an identified Lymnaea neuron selectively releases its classical small molecule and peptide neurotransmitters, acetylcholine and FMRFamide-derived neuropeptides, to differentially influence the activity of distinct postsynaptic targets that coordinate cardiorespiratory behaviour. Using a combination of electrophysiological, molecular, and pharmacological approaches, we found that neuropeptide cotransmitter release was regulated by cross-talk between extrinsic neurotrophic factor signaling and target-specific retrograde arachidonic acid signaling, which converged on modulation of glycogen synthase kinase 3. In this context, we identified a novel role for the Lymnaea synaptophysin homologue as a specific and synapse-delimited inhibitory regulator of peptide neurotransmitter release. This study is among the first to define the cellular and molecular mechanisms underlying the differential release of cotransmitter substances from individual presynaptic terminals, which allow for context-dependent tuning and plasticity of the synaptic networks underlying patterned motor behaviour.
Collapse
|
4
|
Batool S, Raza H, Zaidi J, Riaz S, Hasan S, Syed NI. Synapse formation: from cellular and molecular mechanisms to neurodevelopmental and neurodegenerative disorders. J Neurophysiol 2019; 121:1381-1397. [PMID: 30759043 DOI: 10.1152/jn.00833.2018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The precise patterns of neuronal assembly during development determine all functional outputs of a nervous system; these may range from simple reflexes to learning, memory, cognition, etc. To understand how brain functions and how best to repair it after injury, disease, or trauma, it is imperative that we first seek to define fundamental steps mediating this neuronal assembly. To acquire the sophisticated ensemble of highly specialized networks seen in a mature brain, all proliferated and migrated neurons must extend their axonal and dendritic processes toward targets, which are often located at some distance. Upon contact with potential partners, neurons must undergo dramatic structural changes to become either a pre- or a postsynaptic neuron. This connectivity is cemented through specialized structures termed synapses. Both structurally and functionally, the newly formed synapses are, however, not static as they undergo consistent changes in order for an animal to meet its behavioral needs in a changing environment. These changes may be either in the form of new synapses or an enhancement of their synaptic efficacy, referred to as synaptic plasticity. Thus, synapse formation is not restricted to neurodevelopment; it is a process that remains active throughout life. As the brain ages, either the lack of neuronal activity or cell death render synapses dysfunctional, thus giving rise to neurodegenerative disorders. This review seeks to highlight salient steps that are involved in a neuron's journey, starting with the establishment, maturation, and consolidation of synapses; we particularly focus on identifying key players involved in the synaptogenic program. We hope that this endeavor will not only help the beginners in this field to understand how brain networks are assembled in the first place but also shed light on various neurodevelopmental, neurological, neurodegenerative, and neuropsychiatric disorders that involve synaptic inactivity or dysfunction.
Collapse
Affiliation(s)
- Shadab Batool
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada.,Department of Neuroscience, University of Calgary, Alberta, Canada
| | - Hussain Raza
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Jawwad Zaidi
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Saba Riaz
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Sean Hasan
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Naweed I Syed
- Hotchkiss Brain Institute, University of Calgary, Alberta, Canada.,Department of Cell Biology & Anatomy, University of Calgary, Alberta, Canada
| |
Collapse
|
5
|
Getz AM, Wijdenes P, Riaz S, Syed NI. Uncovering the Cellular and Molecular Mechanisms of Synapse Formation and Functional Specificity Using Central Neurons of Lymnaea stagnalis. ACS Chem Neurosci 2018. [PMID: 29528213 DOI: 10.1021/acschemneuro.7b00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All functions of the nervous system are contingent upon the precise organization of neuronal connections that are initially patterned during development, and then continually modified throughout life. Determining the mechanisms that specify the formation and functional modulation of synaptic circuitry are critical to advancing both our fundamental understanding of the nervous system as well as the various neurodevelopmental, neurological, neuropsychiatric, and neurodegenerative disorders that are met in clinical practice when these processes go awry. Defining the cellular and molecular mechanisms underlying nervous system development, function, and pathology has proven challenging, due mainly to the complexity of the vertebrate brain. Simple model system approaches with invertebrate preparations, on the other hand, have played pivotal roles in elucidating the fundamental mechanisms underlying the formation and plasticity of individual synapses, and the contributions of individual neurons and their synaptic connections that underlie a variety of behaviors, and learning and memory. In this Review, we discuss the experimental utility of the invertebrate mollusc Lymnaea stagnalis, with a particular emphasis on in vitro cell culture, semi-intact and in vivo preparations, which enable molecular and electrophysiological identification of the cellular and molecular mechanisms governing the formation, plasticity, and specificity of individual synapses at a single-neuron or single-synapse resolution.
Collapse
Affiliation(s)
- Angela M. Getz
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Pierre Wijdenes
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Saba Riaz
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Naweed I. Syed
- Department of Cell Biology & Anatomy, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
6
|
Armstrong R, Riaz S, Hasan S, Iqbal F, Rice T, Syed N. Mechanisms of Anesthetic Action and Neurotoxicity: Lessons from Molluscs. Front Physiol 2018; 8:1138. [PMID: 29410627 PMCID: PMC5787087 DOI: 10.3389/fphys.2017.01138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023] Open
Abstract
Anesthesia is a prerequisite for most surgical procedures in both animals and humans. Significant strides have been made in search of effective and safer compounds that elicit rapid induction and recovery from anesthesia. However, recent studies have highlighted possible negative effects of several anesthetic agents on the developing brain. The precise nature of this cytotoxicity remains to be determined mainly due to the complexity and the intricacies of the mammalian brain. Various invertebrates have contributed significantly toward our understanding of how both local and general anesthetics affect intrinsic membrane and synaptic properties. Moreover, the ability to reconstruct in vitro synapses between individually identifiable pre- and postsynaptic neurons is a unique characteristic of molluscan neurons allowing us to ask fundamental questions vis-à-vis the long-term effects of anesthetics on neuronal viability and synaptic connectivity. Here, we highlight some of the salient aspects of various molluscan organisms and their contributions toward our understanding of the fundamental mechanisms underlying the actions of anesthetic agents as well as their potential detrimental effects on neuronal growth and synaptic connectivity. We also present some novel preliminary data regarding a newer anesthetic agent, dexmedetomidine, and its effects on synaptic transmission between Lymnaea neurons. The findings presented here underscore the importance of invertebrates for research in the field of anesthesiology while highlighting their relevance to both vertebrates and humans.
Collapse
Affiliation(s)
- Ryden Armstrong
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Saba Riaz
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Sean Hasan
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Fahad Iqbal
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tiffany Rice
- Department of Anesthesia, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Naweed Syed
- Vi Riddell Pain Program, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Shrivastava SK, Srivastava P, Upendra T, Tripathi PN, Sinha SK. Design, synthesis and evaluation of some N -methylenebenzenamine derivatives as selective acetylcholinesterase (AChE) inhibitor and antioxidant to enhance learning and memory. Bioorg Med Chem 2017; 25:1471-1480. [DOI: 10.1016/j.bmc.2017.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
8
|
A novel bio-mimicking, planar nano-edge microelectrode enables enhanced long-term neural recording. Sci Rep 2016; 6:34553. [PMID: 27731326 PMCID: PMC5059639 DOI: 10.1038/srep34553] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/15/2016] [Indexed: 11/30/2022] Open
Abstract
Our inability to accurately monitor individual neurons and their synaptic activity precludes fundamental understanding of brain function under normal and various pathological conditions. However, recent breakthroughs in micro- and nano-scale fabrication processes have advanced the development of neuro-electronic hybrid technology. Among such devices are three-dimensional and planar electrodes, offering the advantages of either high fidelity or longer-term recordings respectively. Here, we present the next generation of planar microelectrode arrays with “nano-edges” that enable long-term (≥1 month) and high fidelity recordings at a resolution 15 times higher than traditional planar electrodes. This novel technology enables better understanding of brain function and offers a tremendous opportunity towards the development of future bionic hybrids and drug discovery devices.
Collapse
|
9
|
Getz AM, Visser F, Bell EM, Xu F, Flynn NM, Zaidi W, Syed NI. Two proteolytic fragments of menin coordinate the nuclear transcription and postsynaptic clustering of neurotransmitter receptors during synaptogenesis between Lymnaea neurons. Sci Rep 2016; 6:31779. [PMID: 27538741 PMCID: PMC4990912 DOI: 10.1038/srep31779] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022] Open
Abstract
Synapse formation and plasticity depend on nuclear transcription and site-specific protein targeting, but the molecular mechanisms that coordinate these steps have not been well defined. The MEN1 tumor suppressor gene, which encodes the protein menin, is known to induce synapse formation and plasticity in the CNS. This synaptogenic function has been conserved across evolution, however the underlying molecular mechanisms remain unidentified. Here, using central neurons from the invertebrate Lymnaea stagnalis, we demonstrate that menin coordinates subunit-specific transcriptional regulation and synaptic clustering of nicotinic acetylcholine receptors (nAChR) during neurotrophic factor (NTF)-dependent excitatory synaptogenesis, via two proteolytic fragments generated by calpain cleavage. Whereas menin is largely regarded as a nuclear protein, our data demonstrate a novel cytoplasmic function at central synapses. Furthermore, this study identifies a novel synaptogenic mechanism in which a single gene product coordinates the nuclear transcription and postsynaptic targeting of neurotransmitter receptors through distinct molecular functions of differentially localized proteolytic fragments.
Collapse
Affiliation(s)
- Angela M Getz
- Department of Cell Biology &Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Frank Visser
- Department of Physiology &Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Erin M Bell
- Department of Cell Biology &Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Fenglian Xu
- Department of Physiology &Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Department of Biology, Saint Louis University, Saint Louis, Missouri, 63103, USA
| | - Nichole M Flynn
- Department of Cell Biology &Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.,Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Wali Zaidi
- Department of Cell Biology &Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Naweed I Syed
- Department of Cell Biology &Anatomy, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|