1
|
Graton ME, Spaans F, He R, Chatterjee P, Kirschenman R, Quon A, Phillips TJ, Case CP, Davidge ST. Sex-specific differences in the mechanisms for enhanced thromboxane A 2-mediated vasoconstriction in adult offspring exposed to prenatal hypoxia. Biol Sex Differ 2024; 15:52. [PMID: 38898532 PMCID: PMC11188502 DOI: 10.1186/s13293-024-00627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Prenatal hypoxia, a common pregnancy complication, leads to impaired cardiovascular outcomes in the adult offspring. It results in impaired vasodilation in coronary and mesenteric arteries of the adult offspring, due to reduced nitric oxide (NO). Thromboxane A2 (TxA2) is a potent vasoconstrictor increased in cardiovascular diseases, but its role in the impact of prenatal hypoxia is unknown. To prevent the risk of cardiovascular disease by prenatal hypoxia, we have tested a maternal treatment using a nanoparticle-encapsulated mitochondrial antioxidant (nMitoQ). We hypothesized that prenatal hypoxia enhances vascular TxA2 responses in the adult offspring, due to decreased NO modulation, and that this might be prevented by maternal nMitoQ treatment. METHODS Pregnant Sprague-Dawley rats received a single intravenous injection (100 µL) of vehicle (saline) or nMitoQ (125 µmol/L) on gestational day (GD)15 and were exposed to normoxia (21% O2) or hypoxia (11% O2) from GD15 to GD21 (term = 22 days). Coronary and mesenteric arteries were isolated from the 4-month-old female and male offspring, and vasoconstriction responses to U46619 (TxA2 analog) were evaluated using wire myography. In mesenteric arteries, L-NAME (pan-NO synthase (NOS) inhibitor) was used to assess NO modulation. Mesenteric artery endothelial (e)NOS, and TxA2 receptor expression, superoxide, and 3-nitrotyrosine levels were assessed by immunofluorescence. RESULTS Prenatal hypoxia resulted in increased U46619 responsiveness in coronary and mesenteric arteries of the female offspring, and to a lesser extent in the male offspring, which was prevented by nMitoQ. In females, there was a reduced impact of L-NAME in mesenteric arteries of the prenatal hypoxia saline-treated females, and reduced 3-nitrotyrosine levels. In males, L-NAME increased U46619 responses in mesenteric artery to a similar extent, but TxA2 receptor expression was increased by prenatal hypoxia. There were no changes in eNOS or superoxide levels. CONCLUSIONS Prenatal hypoxia increased TxA2 vasoconstrictor capacity in the adult offspring in a sex-specific manner, via reduced NO modulation in females and increased TP expression in males. Maternal placental antioxidant treatment prevented the impact of prenatal hypoxia. These findings increase our understanding of how complicated pregnancies can lead to a sex difference in the programming of cardiovascular disease in the adult offspring.
Collapse
Affiliation(s)
- Murilo E Graton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Rose He
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Paulami Chatterjee
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Anita Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Tom J Phillips
- UK Dementia Research Institute, Cardiff University, Cardiff, W1T 7NF, UK
| | - C Patrick Case
- Musculoskeletal Research Unit, University of Bristol, Bristol, BS8 1QU, UK
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, T6G 2R3, Canada.
| |
Collapse
|
2
|
Feng X, Liu X, Wang F, Zhang X, Zhu L, Shu H, Wang C, Duan L, Wang H, Ren Q, Dong F, Zhang Z, Man D, Qu M. Prenatal High-Sucrose Diet Induced Vascular Dysfunction of Renal Interlobar Arteries in the Offspring via PPARγ-RXRg-ROS/Akt Signaling. Mol Nutr Food Res 2024; 68:e2300871. [PMID: 38704749 DOI: 10.1002/mnfr.202300871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Indexed: 05/07/2024]
Abstract
SCOPE Prenatal nutrition imbalance correlates with developmental origin of cardiovascular diseases; however whether maternal high-sucrose diet (HS) during pregnancy causes vascular damage in renal interlobar arteries (RIA) from offspring still keeps unclear. METHODS AND RESULTS Pregnant rats are fed with normal drinking water or 20% high-sucrose solution during the whole gestational period. Swollen mitochondria and distributed myofilaments are observed in vascular smooth muscle cells of RIA exposed to prenatal HS. Maternal HS increases phenylephrine (PE)-induced vasoconstriction in the RIA from adult offspring. NG-Nitro-l-arginine (L-Name) causes obvious vascular tension in response to PE in offspring from control group, not in HS. RNA-Seq of RIA is performed to reveal that the gene retinoid X receptor g (RXRg) is significantly decreased in the HS group, which could affect vascular function via interacting with PPARγ pathway. By preincubation of RIA with apocynin (NADPH inhibitor) or capivasertib (Akt inhibitor), the results indicate that ROS and Akt are the vital important factors to affect the vascular function of RIA exposure to prenatal HS. CONCLUSION Maternal HS during the pregnancy increases PE-mediated vasoconstriction of RIA from adult offspring, which is mainly related to the enhanced Akt and ROS regulated by the weakened PPARγ-RXRg.
Collapse
Affiliation(s)
- Xueqin Feng
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Xinying Liu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
- Department of Clinical Medicine, Jining Medical University, Jining, 272001, China
| | - Fuling Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Xiaoyun Zhang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Liangxi Zhu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Hua Shu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Chunxia Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Liting Duan
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Haixia Wang
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Qinggui Ren
- Department of Mammary gland Surgery, Affiliated Hospital of Jining Medical University, Jining, 272001, China
| | - Fangxiang Dong
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Ziteng Zhang
- Departments of Thoracic Surgery, Qinghai Red Cross Hospital, Xining, 272001, China
| | - Dongmei Man
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| | - Miaomiao Qu
- Department of Obstetrics, Affiliated Hospital of Jining Medical University, Guhuai Road 89, Jining, 272001, China
| |
Collapse
|
3
|
The renin-angiotensin system modulates endotoxic postconditioning of exacerbated renal vasoconstriction in preeclamptic offspring. Sci Rep 2023; 13:881. [PMID: 36650223 PMCID: PMC9845233 DOI: 10.1038/s41598-023-27923-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
We recently reported exacerbated endotoxic signs of neuroinflammation and autonomic defects in offspring of preeclamptic (PE) dams. Here, we investigated whether PE programming similarly modifies hemodynamic and renal vasoconstrictor responsiveness to endotoxemia in PE offspring and whether this interaction is modulated by gestational angiotensin 1-7 (Ang1-7). Preeclampsia was induced by gestational treatment with L-NAME. Adult offspring was challenged with lipopolysaccharides (LPS, 5 mg/kg) and systolic blood pressure (SBP) and renal vasoconstrictions were assessed 4 h later. Male, but not female, offspring of PE rats exhibited SBP elevations that were blunted by LPS. Renal vasoconstrictions induced by angiotensin II (Ang II), but not phenylephrine, were intensified in perfused kidneys of either sex. LPS blunted the heightened Ang II responses in male, but not female, kidneys. While renal expressions of AT1-receptors and angiotensin converting enzyme (ACE) were increased in PE offspring of both sexes, ACE2 was upregulated in female offspring only. These molecular effects were diminished by LPS in male offspring. Gestational Ang1-7 caused sex-unrelated attenuation of phenylephrine vasoconstrictions and preferentially downregulated Ang II responses and AT1-receptor and nuclear factor-kB (NFkB) expressions in females. Together, endotoxemia and Ang1-7 offset in sexually-related manners imbalances in renal vasoconstriction and AT1/ACE/ACE2 signaling in PE offspring.
Collapse
|
4
|
Rudloff S, Jahnen-Dechent W, Huynh-Do U. Tissue chaperoning—the expanded functions of fetuin-A beyond inhibition of systemic calcification. Pflugers Arch 2022; 474:949-962. [PMID: 35403906 PMCID: PMC8995415 DOI: 10.1007/s00424-022-02688-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023]
Abstract
AbstractTraditionally, fetuin-A embodies the prototype anti-calcification protein in the blood, preventing cardiovascular calcification. Low serum fetuin-A is generally associated with mineralization dysbalance and enhanced mortality in end stage renal disease. Recent evidence indicates that fetuin-A is a crucial factor moderating tissue inflammation and fibrosis, as well as a systemic indicator of acute inflammatory disease. Here, the expanded function of fetuin-A is discussed in the context of mineralization and inflammation biology. Unbalanced depletion of fetuin-A in this context may be the critical event, triggering a vicious cycle of progressive calcification, inflammation, and tissue injury. Hence, we designate fetuin-A as tissue chaperone and propose the potential use of exogenous fetuin-A as prophylactic agent or emergency treatment in conditions that are associated with acute depletion of endogenous protein.
Collapse
Affiliation(s)
- Stefan Rudloff
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen, University Medical Faculty, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland.
| |
Collapse
|
5
|
Li S, Chen Y, Zhang Y, Qiu F, Zeng F, Shi L. Prenatal exercise reprograms the development of hypertension progress and improves vascular health in SHR offspring. Vascul Pharmacol 2021; 139:106885. [PMID: 34116258 DOI: 10.1016/j.vph.2021.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Upregulation of L-type voltage-gated Ca2+ (CaV1.2) channel in the arterial myocytes is a hallmark feature of hypertension. However, whether maternal exercise during pregnancy has a sustained beneficial effect on the offspring of spontaneously hypertensive rats (SHRs) through epigenetic regulation of CaV1.2 channel is largely unknown. METHODS Pregnant SHRs and Wistar-Kyoto rats were subjected to swimming and the vascular molecular and functional properties of male offspring were evaluated at embryonic (E) 20.5 day, 3 months (3 M), and 6 months (6 M). RESULTS Exercise during pregnancy significantly decreased the resting blood pressure at 3 M but not 6 M in the offspring of SHR. Prenatal exercise significantly reduced the cardiovascular reactivity, the contribution of CaV1.2 channel to the vascular tone, and the whole-cell current density of CaV1.2 channel in both 3 M and 6 M offspring of SHR. Moreover, maternal exercise triggered hypermethylation of the promoter region of the CaV1.2 α1C gene (CACNA1C), with a concomitant decrease in its protein and mRNA expressions in SHR offspring at E20.5, 3 M, and 6 M. Tissue culture experiments further confirmed that 5-Aza-2'-deoxycytidine increased the structure and functional expression of CaV1.2 channel by inhibiting the DNA methylation of CACNA1C. However, the improvement of prenatal exercise on the blood pressure, function, and expression of CaV1.2 channel was attenuated in the offspring of SHRs at 6 M compared to the 3 M readout. CONCLUSIONS These data suggest that prenatal exercise improves the vascular function by the hypermethylation of CACNA1C in the arterial myocytes and delays the development of hypertension in the offspring of SHRs. However, these effects fade out with age.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; Department of Sports and Health, Shandong Sport University, Jinan 250102, China
| | - Yu Chen
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Yanyan Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Fang Qiu
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Fanxing Zeng
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China
| | - Lijun Shi
- Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China; Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China.
| |
Collapse
|
6
|
Li H, Ji B, Xu T, Zhao M, Zhang Y, Sun M, Xu Z, Gao Q. Antenatal Hypoxia Affects Pulmonary Artery Contractile Functions via Downregulating L-type Ca 2+ Channels Subunit Alpha1 C in Adult Male Offspring. J Am Heart Assoc 2021; 10:e019922. [PMID: 33843249 PMCID: PMC8174167 DOI: 10.1161/jaha.120.019922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Antenatal intrauterine fetal hypoxia is a common pregnancy complication that has profound adverse effects on an individual's vascular health later in life. Pulmonary arteries are sensitive to hypoxia, but adverse effects of antenatal hypoxia on pulmonary vasoreactivities in the offspring remain unknown. This study aimed to determine the effects and related mechanisms of antenatal hypoxia on pulmonary artery functions in adult male offspring. Methods and Results Pregnant Sprague‐Dawley rats were housed in a normoxic or hypoxic (10.5% O2) chamber from gestation days 10 to 20. Male offspring were euthanized at 16 weeks old (adult offspring). Pulmonary arteries were collected for vascular function, electrophysiology, target gene expression, and promoter methylation studies. In pulmonary artery rings, contractions to serotonin hydrochloride, angiotensin II, or phenylephrine were reduced in the antenatal hypoxic offspring, which resulted from inactivated L‐type Ca2+ channels. In pulmonary artery smooth muscle cells, the basal whole‐cell Ca2+ currents, as well as vasoconstrictor‐induced Ca2+ transients were significantly reduced in antenatal hypoxic offspring. In addition, increased promoter methylations within L‐type Ca2+ channel subunit alpha1 C were compatible with its reduced expressions. Conclusions This study indicated that antenatal hypoxia programmed long‐lasting vascular hypocontractility in the male offspring that is linked to decreases of L‐type Ca2+ channel subunit alpha1 C in the pulmonary arteries. Antenatal hypoxia resulted in pulmonary artery adverse outcomes in postnatal offspring, was strongly associated with reprogrammed L‐type Ca2+ channel subunit alpha1 C expression via a DNA methylation‐mediated epigenetic mechanism, advancing understanding toward the effect of antenatal hypoxia in early life on long‐term vascular health.
Collapse
Affiliation(s)
- Huan Li
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Bingyu Ji
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Ting Xu
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Meng Zhao
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Yingying Zhang
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Miao Sun
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Zhice Xu
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| | - Qinqin Gao
- From the Institute for Fetology First Hospital of Soochow University Suzhou China
| |
Collapse
|
7
|
Rudloff S, Janot M, Rodriguez S, Dessalle K, Jahnen-Dechent W, Huynh-Do U. Fetuin-A is a HIF target that safeguards tissue integrity during hypoxic stress. Nat Commun 2021; 12:549. [PMID: 33483479 PMCID: PMC7822914 DOI: 10.1038/s41467-020-20832-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Intrauterine growth restriction (IUGR) is associated with reduced kidney size at birth, accelerated renal function decline, and increased risk for chronic kidney and cardiovascular diseases in adults. Precise mechanisms underlying fetal programming of adult diseases remain largely elusive and warrant extensive investigation. Setting up a mouse model of hypoxia-induced IUGR, fetal adaptations at mRNA, protein and cellular levels, and their long-term functional consequences are characterized, using the kidney as a readout. Here, we identify fetuin-A as an evolutionary conserved HIF target gene, and further investigate its role using fetuin-A KO animals and an adult model of ischemia-reperfusion injury. Beyond its role as systemic calcification inhibitor, fetuin-A emerges as a multifaceted protective factor that locally counteracts calcification, modulates macrophage polarization, and attenuates inflammation and fibrosis, thus preserving kidney function. Our study paves the way to therapeutic approaches mitigating mineral stress-induced inflammation and damage, principally applicable to all soft tissues.
Collapse
Affiliation(s)
- Stefan Rudloff
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Mathilde Janot
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Stephane Rodriguez
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Onco-haematology, Geneva Medical University, Geneva, Switzerland
| | - Kevin Dessalle
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland
| | - Willi Jahnen-Dechent
- Helmholtz-Institute for Biomedical Engineering, Biointerface Laboratory, RWTH Aachen University Medical Faculty, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Uyen Huynh-Do
- Department of Nephrology and Hypertension, Bern University Hospital, Freiburgstrasse 15, 3010, Bern, Switzerland.
- Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010, Bern, Switzerland.
| |
Collapse
|
8
|
Chen X, Qi L, Su H, He Y, Li N, Gao Q, Li H, Xu T, Lu L, Xu Z, Tang J. Prenatal hypoxia attenuated contraction of offspring coronary artery associated with decreased PKCβ Ser 660 phosphorylation and intracellular calcium. Life Sci 2020; 261:118364. [PMID: 32866516 DOI: 10.1016/j.lfs.2020.118364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 01/15/2023]
Abstract
AIMS Prenatal hypoxia (PH) could affect peripheral vascular tone of the offspring, thus increasing the risk of cardiovascular diseases in adult. However, it's still unknown whether functions of coronary arteries (COA) in adult offspring would be influenced by PH. The present study aimed at effects of PH on vascular tone of COA and its related mechanisms. METHODS Coronary arteries of adult offspring exposed to hypoxic or normoxic circumstances during gestational day 5 to 21 were collected. Wire myograph system, whole-cell patch clamp technique, IonOptix MyoCam system, PCR, and western blot were used to detect vascular function of adult offspring COA. KEY FINDINGS PH significantly attenuated serotonin- and phorbol 12, 13-dibutyrate (PDBu)-induced constriction. Iberiotoxin potentiated PDBu-induced constriction and the effect was augmented by PH, however, no significant differences were found in whole-cell BKCa channel currents and its protein expression. Nifedipine inhibited PDBu-mediated constriction and the inhibitory effect was reduced in PH group, and whole-cell calcium channel current was decreased in offspring COA. Besides, PH reduced the capability of calcium release from the endoplasmic reticulum in COA. The phosphorylated PKCβ protein expression at Ser660 site, not Thr641 site, was significantly decreased in PH offspring. Chronic hypoxia during pregnancy attenuated PDBu-mediated constriction in offspring COA, presumably through decreased phosphorylated PKCβ at serine660 sites and decreased intracellular calcium-related weaker PKC activation. SIGNIFICANCE The findings provided new information on the influence of prenatal hypoxia on COA, and suggested potential use of PKCβ-serine660 for early prevention of coronary heart diseases in developmental origins.
Collapse
Affiliation(s)
- Xueyi Chen
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China; School of Preclinical Medicine, Wannan Medical College, Wuhu, Anhui, China
| | - Linglu Qi
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongyu Su
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qinqin Gao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huan Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Gatford KL, Andraweera PH, Roberts CT, Care AS. Animal Models of Preeclampsia: Causes, Consequences, and Interventions. Hypertension 2020; 75:1363-1381. [PMID: 32248704 DOI: 10.1161/hypertensionaha.119.14598] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Preeclampsia is a common pregnancy complication, affecting 2% to 8% of pregnancies worldwide, and is an important cause of both maternal and fetal morbidity and mortality. Importantly, although aspirin and calcium are able to prevent preeclampsia in some women, there is no cure apart from delivery of the placenta and fetus, often necessitating iatrogenic preterm birth. Preclinical models of preeclampsia are widely used to investigate the causes and consequences of preeclampsia and to evaluate safety and efficacy of potential preventative and therapeutic interventions. In this review, we provide a summary of the published preclinical models of preeclampsia that meet human diagnostic criteria, including the development of maternal hypertension, together with new-onset proteinuria, maternal organ dysfunction, and uteroplacental dysfunction. We then discuss evidence from preclinical models for multiple causal factors of preeclampsia, including those implicated in early-onset and late-onset preeclampsia. Next, we discuss the impact of exposure to a preeclampsia-like environment for later maternal and progeny health. The presence of long-term impairment, particularly cardiovascular outcomes, in mothers and progeny after an experimentally induced preeclampsia-like pregnancy, implies that later onset or reduced severity of preeclampsia will improve later maternal and progeny health. Finally, we summarize published intervention studies in preclinical models and identify gaps in knowledge that we consider should be targets for future research.
Collapse
Affiliation(s)
- Kathryn L Gatford
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Prabha H Andraweera
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Claire T Roberts
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| | - Alison S Care
- From the Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Australia
| |
Collapse
|
10
|
Ma'ayeh M, Krishnan V, Gee SE, Russo J, Shellhaas C, Rood KM. Fetal renal artery impedance in pregnancies affected by preeclampsia. J Perinat Med 2020; 48:/j/jpme.ahead-of-print/jpm-2020-0024/jpm-2020-0024.xml. [PMID: 32171001 DOI: 10.1515/jpm-2020-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/11/2020] [Indexed: 12/29/2022]
Abstract
Background Preeclampsia (PE) is a pregnancy-specific vascular endothelial disorder characterized by multi-organ system involvement. This includes the maternal kidneys, with changes such as continuous vasospasm of renal arteries and reduced renal blood flow. However, it is unclear whether similar renal vascular changes are seen in the fetus. This study sought to compare renal artery impedance in fetuses of women with and without PE. Methods This was a prospective Doppler assessment study of the fetal renal artery impedance in 48 singleton fetuses. The group with PE consisted of 24 appropriately grown fetuses in pregnancy complicated by both mild and severe PE and a control group of 24 uncomplicated pregnancies. Doppler studies included renal artery systolic/diastolic (S/D) ratio, pulsatility index (PI), resistance index (RI), and identification of end-diastolic blood flow. Results Fetuses of mothers with PE were more likely to have a lower renal artery Doppler S/D ratio (7.85 [6.4-10.2] vs. 10.8 [7.75-22.5], P = 0.03) and lower RI (0.875 [0.842-0.898] vs. 0.905 [0.872-0.957], P = 0.03). However, there was no statistically significant difference in PI. There was also no difference in the incidence of absent end-diastolic flow. Conclusion This study suggests that PE results in changes in blood flow to the renal arteries of the fetus. This may be associated with long-term adverse health effects later in adulthood.
Collapse
Affiliation(s)
- Marwan Ma'ayeh
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vidhya Krishnan
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Stephen E Gee
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jessica Russo
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Cynthia Shellhaas
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kara M Rood
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
11
|
Mechanisms linking exposure to preeclampsia in utero and the risk for cardiovascular disease. J Dev Orig Health Dis 2020; 11:235-242. [PMID: 32070456 DOI: 10.1017/s2040174420000094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Preeclampsia (PE) is now recognised as a cardiovascular risk factor for women. Emerging evidence suggests that children exposed to PE in utero may also be at increased risk of cardiovascular disease (CVD) in later life. Individuals exposed to PE in utero have higher systolic and diastolic blood pressure and higher body mass index (BMI) compared to those not exposed to PE in utero. The aim of this review is to discuss the potential mechanisms driving the relationship between PE and offspring CVD. Exposure to an adverse intrauterine environment as a consequence of the pathophysiological changes that occur during a pregnancy complicated by PE is proposed as one mechanism that programs the fetus for future CVD risk. Consistent with this hypothesis, animal models of PE where progeny have been studied demonstrate causality for programming of offspring cardiovascular health by the preeclamptic environment. Shared alleles between mother and offspring, and shared lifestyle factors between mother and offspring provide alternate pathways explaining associations between PE and offspring CVD risk. In addition, adverse lifestyle habits can also act as second hits for those programmed for increased CVD risk. PE and CVD are both multifactorial diseases and, hence, identifying the relative contribution of PE to offspring risk for CVD is a very complex task. However, considering the emerging strong association between PE and CVD, those exposed to PE in utero may benefit from targeted primary CVD preventive strategies.
Collapse
|
12
|
Zhang W, Feng X, Zhang Y, Sun M, Li L, Gao Q, Tang J, Zhang P, Lv J, Zhou X, Xu Z. Prenatal hypoxia inhibited propionate-evoked BK channels of mesenteric artery smooth muscle cells in offspring. J Cell Mol Med 2020; 24:3192-3202. [PMID: 31975557 PMCID: PMC7077603 DOI: 10.1111/jcmm.14994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022] Open
Abstract
As a common complication of pregnancy, gestational hypoxia has been shown to predispose offspring to vascular dysfunction. Propionate, one of short‐chain fatty acids, exerts cardioprotective effects via reducing blood pressure. This study examined whether prenatal hypoxia impaired propionate‐stimulated large‐conductance Ca2+‐activated K+ (BK) channel activities in vascular smooth muscle cells (VSMCs) of offspring. Pregnant rats were exposed to hypoxia (10.5% oxygen) and normoxia (21% oxygen) from gestational day 7‐21. At 6 weeks of age, VSMCs in mesenteric arteries of offspring were analysed for BK channel functions and gene expressions. It was shown firstly that propionate could open significantly BK single channel in VSMCs in a concentration‐dependent manner. Antagonists of G protein βγ subunits and inositol trisphosphate receptor could completely suppress the activation of BK by propionate, respectively. Gαi/o and ryanodine receptor were found to participate in the stimulation on BK. Compared to the control, vasodilation and increments of BK NPo (the open probability) evoked by propionate were weakened in the offspring by prenatal hypoxia with down‐regulated Gβγ and PLCβ. It was indicated that prenatal hypoxia inhibited propionate‐stimulated BK activities in mesenteric VSMCs of offspring via reducing expressions of Gβγ and PLCβ, in which endoplasmic reticulum calcium release might be involved.
Collapse
Affiliation(s)
- Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yumeng Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qinqin Gao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| |
Collapse
|
13
|
Zhong Y, Feng X, Xu T, Yang C, Zhang W, Chen X, Fan X, Lu L, Zhang M, Li L, Xu Z. Inherited risk plus prenatal insult caused malignant dysfunction in mesenteric arteries in adolescent SHR offspring. PLoS One 2019; 14:e0215994. [PMID: 31017969 PMCID: PMC6481862 DOI: 10.1371/journal.pone.0215994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/11/2019] [Indexed: 11/19/2022] Open
Abstract
Prenatal hypoxia can induce cardiovascular diseases in the offspring. This study determined whether and how prenatal hypoxia may cause malignant hypertension and impaired vascular functions in spontaneous hypertension rat (SHR) offspring at adolescent stage. Pregnant SHR were placed in a hypoxic chamber (11% O2) or normal environment (21% O2) from gestational day 6 until birth. Body weight and blood pressure (BP) of SHR offspring were measured every week from 5 weeks old. Mesenteric arteries were tested. Gestational hypoxia resulted in growth restriction during 6-12 weeks and a significant elevation in systolic pressure in adolescent offspring at 12 weeks old. Notably, endothelial vasodilatation of mesenteric arteries was impaired in SHR adolescent offspring exposed to prenatal hypoxia, vascular responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were reduced, as well as plasma nitric oxide levels and expression of endothelial nitric oxide synthase (eNOS) in vessels were decreased. Moreover, mesenteric arteries in SHR offspring following prenatal hypoxia showed enhanced constriction responses to phenylephrine (PE), associated with up-regulated activities of L-type calcium channel (Ca2+-dependent), RhoA/Rock pathway signaling (Ca2+-sensitization), and intracellular Ca2+ flow. Pressurized myograph demonstrated altered mechanical properties with aggravated stiffness in vessels, while histological analysis revealed vascular structural disorganization in prenatal hypoxia offspring. The results demonstrated that blood pressure and vascular function in young SHR offspring were affected by prenatal hypoxia, providing new information on development of hypertension in adolescent offspring with inherited hypertensive backgrounds.
Collapse
Affiliation(s)
- Yuan Zhong
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- Obstetrics and Gynecology, Municipal Hospital, Suzhou, Jiangsu, China
| | - Xueqin Feng
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chunli Yang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenna Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xueyi Chen
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaorong Fan
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Meng Zhang
- Obstetrics and Gynecology, Tengzhou Central People’s Hospital, Zaozhuang, Shandong, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- * E-mail: (ZX); (LL)
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, Jiangsu, China
- Center for Prenatal Biology, Loma Linda University, Loma Linda, CA, United States of America
- * E-mail: (ZX); (LL)
| |
Collapse
|
14
|
Prenatal hypoxia affected endothelium-dependent vasodilation in mesenteric arteries of aged offspring via increased oxidative stress. Hypertens Res 2019; 42:863-875. [DOI: 10.1038/s41440-018-0181-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022]
|
15
|
Abstract
The prevalence of age-associated disease is increasing at a striking rate globally and there is evidence to suggest that the ageing process may actually begin before birth. It has been well-established that the status of both the maternal and early postnatal environments into which an individual is exposed can have huge implications for the risk of developing age-associated disease, including cardiovascular disease (CVD), type-2 diabetes (T2D) and obesity in later life. Therefore, the dissection of underlying molecular mechanisms to explain this phenomenon, known as 'developmental programming' is a highly investigated area of research. This book chapter will examine the epidemiological evidence and the animal models of suboptimal maternal and early postnatal environments and will discuss the progress being made in the development of safe and effective intervention strategies which ultimately could target those 'programmed' individuals who are known to be at-risk of age-associated disease.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK.
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
16
|
Ducsay CA, Goyal R, Pearce WJ, Wilson S, Hu XQ, Zhang L. Gestational Hypoxia and Developmental Plasticity. Physiol Rev 2018; 98:1241-1334. [PMID: 29717932 PMCID: PMC6088145 DOI: 10.1152/physrev.00043.2017] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.
Collapse
Affiliation(s)
- Charles A. Ducsay
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Ravi Goyal
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - William J. Pearce
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Sean Wilson
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Xiang-Qun Hu
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| |
Collapse
|
17
|
Gao Q, Tang J, Li N, Zhou X, Zhu X, Li W, Liu B, Feng X, Tao J, Han B, Zhang H, Sun M, Xu Z. New conception for the development of hypertension in preeclampsia. Oncotarget 2018; 7:78387-78395. [PMID: 27861155 PMCID: PMC5346647 DOI: 10.18632/oncotarget.13410] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022] Open
Abstract
Placental vascular dysfunction was suggested to be critical for placental ischemia-initiated hypertension in preeclampsia, although the contributions of endothelium involved are unclear. The present study found, unlike non-placental vessels, acetylcholine showed no vasodilatation effect on placental vessels, indicating that endothelial-derived nitric oxide (NO) was extremely weak in placental vessels. Placental vascular responses to exogenous NO from sodium nitroprusside (SNP) were significantly different from non-placental vessels. These results were further confirmed in sheep, and rat vessels. In preeclamptic placental vessels, acetylcholine also showed no vasodilatation effects, while vascular responses to SNP were suppressed, associated with impaired cGMP/sGC pathway in vascular smooth muscle cells (VSMCs). The current theory on placental ischemia-initiated hypertension in preeclampsia focused on changes in placental vascular functions, including endothelial dysfunction. This study found the placental endothelium contributed very poorly to vasodilatation, and altered vascular functions in preeclampsia mainly occurred in VSMCs instead of endothelial cells. The findings contribute importantly to understanding the special feature of placental vascular functions and its pathophysiological changes in the development of hypertension in preeclampsia.
Collapse
Affiliation(s)
- Qinqin Gao
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaolin Zhu
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Weisheng Li
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueqin Feng
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianying Tao
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Obstetrics and Gynecology, First and Second Affiliated Hospital of Soochow University, Municipal Hospital, Suzhou, China
| | - Bing Han
- Department of Obstetrics and Gynecology, First and Second Affiliated Hospital of Soochow University, Municipal Hospital, Suzhou, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, First and Second Affiliated Hospital of Soochow University, Municipal Hospital, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China.,Center for Perinatal Biology, Loma Linda University, California, USA
| |
Collapse
|
18
|
Chen L, Zadi ZH, Zhang J, Scharf SM, Pae EK. Intermittent hypoxia in utero damages postnatal growth and cardiovascular function in rats. J Appl Physiol (1985) 2017; 124:821-830. [PMID: 29357521 DOI: 10.1152/japplphysiol.01066.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Obstructive sleep apnea (OSA) is common in pregnancy and may compromise fetal and even postnatal development. We developed an animal model to determine if maternal OSA could have lasting effects in offspring. Pregnant Sprague-Dawley rats were exposed to reduced ambient O2 from 21 to 4-5%, approximately once per minute [chronic intermittent hypoxia (CIH)] for 8 h/day during gestation days 3-19. Similarly handled animals exposed to ambient air served as controls (HC). Offspring were studied for body growth and cardiovascular function for 8 postnatal weeks. Compared with HC, prenatal CIH led to growth restriction, indicated by smaller body weight and tibial length, and higher arterial blood pressure in both male and female offspring. Compared with same-sex HC, CIH males showed abdominal obesity (greater ratio of abdominal fat weight to body weight or tibial length), left ventricular (LV) hypertrophy (greater heart weight-to-tibial length ratio and LV posterior wall diastolic thickness), elevated LV contractility (increases in LV ejection fraction, end-systolic pressure-volume relations, and preload recruitable stroke work), elevated LV and arterial stiffness (increased end-diastolic pressure-volume relationship and arterial elasticity), and LV oxidative stress (greater lipid peroxide content). Compared with female CIH offspring, male CIH offspring had more profound changes in blood pressure (BP), cardiac function, myocardial lipid peroxidase (LPO) content, and abdominal adiposity. Rodent prenatal CIH exposure, mimicking human maternal OSA, exerts detrimental morphological and cardiovascular effects on developing offspring; the model may provide useful insights of OSA effects in humans. NEW & NOTEWORTHY Obstructive sleep apnea is common in human pregnancy. Following maternal exposure to chronic intermittent hypoxia, a hallmark of sleep apnea, both sexes of rat offspring showed growth retardation, with males being more vulnerable to hypertension and dysfunctional left ventricular changes. This model is useful to study detrimental effects of maternal obstructive sleep apnea on developing offspring in humans.
Collapse
Affiliation(s)
- Ling Chen
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Zahra Heidari Zadi
- Department of Orthodontics and Pediatric Dentistry, University of Maryland School of Dentistry , Baltimore, Maryland
| | - Jin Zhang
- Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Steven M Scharf
- Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
| | - Eung-Kwon Pae
- Department of Orthodontics and Pediatric Dentistry, University of Maryland School of Dentistry , Baltimore, Maryland
| |
Collapse
|
19
|
Kobayashi H, Liu J, Urrutia AA, Burmakin M, Ishii K, Rajan M, Davidoff O, Saifudeen Z, Haase VH. Hypoxia-inducible factor prolyl-4-hydroxylation in FOXD1 lineage cells is essential for normal kidney development. Kidney Int 2017; 92:1370-1383. [PMID: 28847650 PMCID: PMC5696043 DOI: 10.1016/j.kint.2017.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/26/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022]
Abstract
Hypoxia in the embryo is a frequent cause of intra-uterine growth retardation, low birth weight, and multiple organ defects. In the kidney, this can lead to low nephron endowment, predisposing to chronic kidney disease and arterial hypertension. A key component in cellular adaptation to hypoxia is the hypoxia-inducible factor pathway, which is regulated by prolyl-4-hydroxylase domain (PHD) dioxygenases PHD1, PHD2, and PHD3. In the adult kidney, PHD oxygen sensors are differentially expressed in a cell type-dependent manner and control the production of erythropoietin in interstitial cells. However, the role of interstitial cell PHDs in renal development has not been examined. Here we used a genetic approach in mice to interrogate PHD function in FOXD1-expressing stroma during nephrogenesis. We demonstrate that PHD2 and PHD3 are essential for normal kidney development as the combined inactivation of stromal PHD2 and PHD3 resulted in renal failure that was associated with reduced kidney size, decreased numbers of glomeruli, and abnormal postnatal nephron formation. In contrast, nephrogenesis was normal in animals with individual PHD inactivation. We furthermore demonstrate that the defect in nephron formation in PHD2/PHD3 double mutants required intact hypoxia-inducible factor-2 signaling and was dependent on the extent of stromal hypoxia-inducible factor activation. Thus, hypoxia-inducible factor prolyl-4-hydroxylation in renal interstitial cells is critical for normal nephron formation.
Collapse
Affiliation(s)
- Hanako Kobayashi
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Jiao Liu
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana, USA; The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Andres A Urrutia
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Mikhail Burmakin
- Division of Vascular Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ken Ishii
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Malini Rajan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Olena Davidoff
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Zubaida Saifudeen
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana, USA; The Hypertension and Renal Centers of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana, USA
| | - Volker H Haase
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Medical and Research Services, Department of Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee, USA; Department of Cancer Biology and Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
20
|
Tang J, Li N, Chen X, Gao Q, Zhou X, Zhang Y, Liu B, Sun M, Xu Z. Prenatal Hypoxia Induced Dysfunction in Cerebral Arteries of Offspring Rats. J Am Heart Assoc 2017; 6:e006630. [PMID: 28974495 PMCID: PMC5721865 DOI: 10.1161/jaha.117.006630] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hypoxia during pregnancy could cause abnormal development and lead to increased risks of vascular diseases in adults. This study determined angiotensin II (AII)-mediated vascular dysfunction in offspring middle cerebral arteries (MCA). METHODS AND RESULTS Pregnant rats were subjected to hypoxia. Vascular tension in offspring MCA by AII with or without inhibitors, calcium channel activities, and endoplasmic reticulum calcium stores were tested. Whole-cell patch clamping was used to investigate voltage-dependent calcium channel currents. mRNA expression was tested using quantitative real-time polymerase chain reaction. AII-mediated MCA constriction was greater in male offspring exposed to prenatal hypoxia. AT1 and AT2 receptors were involved in the altered AII-mediated vasoconstriction. Prenatal hypoxia increased baseline activities of L-type calcium channel currents in MCA smooth muscle cells. However, calcium currents stimulated by AII were not significantly changed, whereas nifedipine inhibited AII-mediated vasoconstrictions in the MCA. Activities of IP3/ryanodine receptor-operated calcium channels, endoplasmic reticulum calcium stores, and sarcoendoplasmic reticulum membrane Ca2+-ATPase were increased. Prenatal hypoxia also caused dysfunction of vasodilatation via the endothelium NO synthase. The mRNA expressions of AT1A, AT1B, AT2R, Cav1.2α1C, Cav3.2α1H, and ryanodine receptor RyR2 were increased in the prenatal-hypoxia group. CONCLUSIONS Hypoxia in pregnancy could induce dysfunction in both contraction and dilation in the offspring MCA. AII-increased constriction in the prenatal-hypoxia group was not mainly dependent on the L-type and T-type calcium channels; it might predominantly rely on the AII receptors, IP3/ryanodine receptors, and the endoplasmic reticulum calcium store as well as calcium ATPase.
Collapse
MESH Headings
- Animals
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, T-Type/genetics
- Calcium Channels, T-Type/metabolism
- Calcium Signaling
- Cerebrovascular Disorders/etiology
- Cerebrovascular Disorders/metabolism
- Cerebrovascular Disorders/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Fetal Hypoxia/complications
- Fetal Hypoxia/metabolism
- Fetal Hypoxia/physiopathology
- Gestational Age
- Humans
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Membrane Potentials
- Membrane Transport Modulators/pharmacology
- Middle Cerebral Artery/drug effects
- Middle Cerebral Artery/metabolism
- Middle Cerebral Artery/physiopathology
- Pregnancy
- Prenatal Exposure Delayed Effects
- Rats, Sprague-Dawley
- Receptors, Angiotensin/genetics
- Receptors, Angiotensin/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Jiaqi Tang
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xueyi Chen
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qinqin Gao
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yingying Zhang
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bailin Liu
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute of Fetology, First Hospital of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Regulation of cerebral arterial BKCa channels by angiotensin II signaling in adult offspring exposed to prenatal high sucrose diets. Biosci Rep 2017; 37:BSR20160624. [PMID: 28515221 PMCID: PMC5479054 DOI: 10.1042/bsr20160624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 11/17/2022] Open
Abstract
Prenatal insults have been shown to affect vascular functions, leading to increased risks of cardiovascular diseases in offspring. The present study determined whether high sucrose (HS) intake in pregnancy affected central vascular functions in middle cerebral artery (MCA) of offspring. Sprague-Dawley rats were fed a standard food and tap water with normal or high (20%) sucrose content during pregnancy. Offspring were maintained with normal diets and tap water. Central vascular functions and related ion channels were assessed in male offspring at 5 months old. Compared with the control, angiotensin II (AII)-induced vasoconstrictions were significantly higher in the MCA of the offspring exposed to prenatal HS. In the MCA, large conductance Ca2+-activated K+ channels (BKCa) currents were decreased with a reduction of opening frequency, sensitivity to intracellular Ca2+/membrane voltage, and BKβ1 expression. mRNA levels of AT1α and AT2, as well as AT1/AT2 ratio, were significantly increased in the MCA of offspring following exposure to prenatal HS diets. The data suggested that prenatal HS diets could alter microvascular activities in the MCA, probably via changes of BKCa channels in the brain.
Collapse
|
22
|
Li X, Zhang M, Pan X, Xu Z, Sun M. “Three Hits” Hypothesis for Developmental Origins of Health and Diseases in View of Cardiovascular Abnormalities. Birth Defects Res 2017; 109:744-757. [PMID: 28509412 DOI: 10.1002/bdr2.1037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 03/24/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Xiang Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Mengshu Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xinghua Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences
- Key Laboratory of Biochip Technology in Guangdong province; Southern Medical University; Guangzhou China
- Department of Genetics; Yale University School of Medicine; New Haven Connecticut
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Miao Sun
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| |
Collapse
|
23
|
Feng X, Zhou X, Zhang W, Li X, He A, Liu B, Shi R, Wu L, Wu J, Zhu D, Li N, Sun M, Xu Z. Maternal high-sucrose diets altered vascular large-conductance Ca2+-activated K+ channels via reactive oxygen species in offspring rats†. Biol Reprod 2017; 96:1085-1095. [DOI: 10.1093/biolre/iox031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
|
24
|
Gao Q, Lv J, Li W, Zhang P, Tao J, Xu Z. Disrupting the circadian photo-period alters the release of follicle-stimulating hormone, luteinizing hormone, progesterone, and estradiol in maternal and fetal sheep. J Reprod Dev 2016; 62:487-493. [PMID: 27319751 PMCID: PMC5081736 DOI: 10.1262/jrd.2016-009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although a large number of studies show that photo-period disruption potentially affects hormone secretion in mammals, information about the effects of
circadian photo-period disruption during pregnancy on fetal blood reproductive hormone levels is scarce. This study used ewes and their fetuses to determine the
effects of circadian photo-period disruption (deprivation of darkness) on follicle-stimulating hormone, luteinizing hormone, estradiol, and progesterone in
maternal and fetal circulation at late gestation. Pregnant ewes (gestational age: 135 ± 3 days) were randomly placed into control and dark deprivation groups.
The control (N = 5) and dark deprivation (N = 5) groups were exposed to a fixed 12 h light/12 h dark cycle and a 24 h constant light cycle, respectively, for 2
days. Dark deprivation up-regulated follicle-stimulating hormone and estradiol levels and down-regulated progesterone levels in both maternal and fetal
circulation, and up-regulated luteinizing hormone levels in fetal but not maternal circulation. These results provide new information about how circadian
photo-period disruption during pregnancy could alter the release of certain reproductive hormones into fetal blood, which may influence the development of fetal
organs in utero, as well as long-term health.
Collapse
Affiliation(s)
- Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Jiangsu 215006, China
| | | | | | | | | | | |
Collapse
|
25
|
Li W, Lv J, Wu J, Zhou X, Jiang L, Zhu X, Tu Q, Tang J, Liu Y, He A, Zhong Y, Xu Z. Maternal high-salt diet altered PKC/MLC20 pathway and increased ANG II receptor-mediated vasoconstriction in adult male rat offspring. Mol Nutr Food Res 2016; 60:1684-94. [PMID: 26991838 DOI: 10.1002/mnfr.201500998] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Weisheng Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jue Wu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lin Jiang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiaolin Zhu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qing Tu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yanping Liu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Axin He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yuan Zhong
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
- Center for Prenatal Biology, Loma Linda University, CA, USA
| |
Collapse
|
26
|
Zhang X, Zhou X, Li L, Sun M, Gao Q, Zhang P, Tang J, He Y, Zhu D, Xu Z. Chronic hypoxia in pregnancy affects thymus development in Balb/c mouse offspring via IL2 Signaling. Mol Reprod Dev 2016; 83:337-46. [PMID: 26918321 DOI: 10.1002/mrd.22630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/29/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Xiaopeng Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Xiuwen Zhou
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Lingjun Li
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Miao Sun
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Qingqing Gao
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Pengjie Zhang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Jiaqi Tang
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Yu He
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Di Zhu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
| | - Zhice Xu
- Institute for Fetology; First Hospital of Soochow University; Suzhou China
- Center for Perinatal Biology; Loma Linda University; California
| |
Collapse
|
27
|
Stembridge M, Ainslie PN, Donnelly J, MacLeod NT, Joshi S, Hughes MG, Sherpa K, Shave R. Cardiac structure and function in adolescent Sherpa; effect of habitual altitude and developmental stage. Am J Physiol Heart Circ Physiol 2016; 310:H740-6. [PMID: 26801313 DOI: 10.1152/ajpheart.00938.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/16/2016] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to examine ventricular structure and function in Sherpa adolescents to determine whether age-specific differences in oxygen saturation (SpO2 ) and pulmonary artery systolic pressure (PASP) influence cardiac adaptation to chronic hypoxia early in life. Two-dimensional, Doppler, and speckle-tracking echocardiography were performed on adolescent (9-16 yr) highland Sherpa (HLS; 3,840 m; n = 26) and compared with age-matched lowland Sherpa (LLS; 1,400 m; n = 10) and lowland Caucasian controls (LLC; sea level; n = 30). The HLS were subdivided into pre- and postadolescence; SpO2 was also recorded. Only HLS exhibited a smaller relative left ventricular (LV) end-diastolic volume; however, both HLS and LLS demonstrated a lower peak LV untwisting velocity compared with LLC (92 ± 26 and 100 ± 45 vs. 130 ± 43°/s, P < 0.05). Although SpO2 was similar between groups, PASP was higher in post- vs. preadolescent HLS (30 ± 5 vs. 25 ± 5 mmHg, P < 0.05), which negatively correlated with right ventricular strain rate (r = 0.50, P < 0.01). Much like their adult counterparts, HLS and LLS adolescents exhibit slower LV diastolic relaxation, despite residing at different altitudes. These findings suggest fundamental differences exist in the diastolic function of Sherpa that are present at an early age and may be retained after migration to lower altitudes. The higher PASP in postadolescent Sherpa is in contrast to previous reports of lowland children at high altitude and, unlike that in lowlanders, was not explained by differences in SpO2 ; thus different regulatory mechanisms seem to exist between these two distinct populations.
Collapse
Affiliation(s)
- Mike Stembridge
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom;
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan Campus, Kelowna, British Columbia, Canada
| | - Joseph Donnelly
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Suchita Joshi
- Patan Academy of Health Sciences, Kathmandu, Nepal; and
| | - Michael G Hughes
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| | | | - Rob Shave
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, United Kingdom
| |
Collapse
|
28
|
Zhu X, Gao Q, Tu Q, Zhong Y, Zhu D, Mao C, Xu Z. Prenatal hypoxia enhanced angiotensin II-mediated vasoconstriction via increased oxidative signaling in fetal rats. Reprod Toxicol 2016; 60:21-8. [PMID: 26796766 DOI: 10.1016/j.reprotox.2016.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/29/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
Toxic factors could cause in utero hypoxia, and prenatal hypoxia (PH) increased incidence of cardiovascular diseases in late life. It is unclear whether/how PH causes vascular injury during fetal life. This study found that PH significantly increased angiotensin II (Ang II)-mediated vessel contractions in fetal thoracic aortas, which was blocked by losartan, not PD123319, indicating that AT1 receptors played a dominant role in the enhanced fetal vasoconstriction following hypoxia. Prenatal hypoxia increased superoxide production and decreased superoxide dismutase (SOD) expression, associated with the enhanced NADPH oxidase (Nox) 4, but not Nox1 or Nox2 in fetal aortas. Ang II-increased vasoconstriction was inhibited by Nox inhibitor apocynin and SOD mimetic blocker tempol. These findings suggested that PH resulted in Ang II/AT1R-mediated fetal vascular hypertensive re-activity via pathways of Nox4-dependent oxidative stress, providing new information regarding the impact of PH on the functional and molecular development of fetal vascular systems.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Institute for Fetology and Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qinqin Gao
- Institute for Fetology and Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Tu
- Institute for Fetology and Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Zhong
- Institute for Fetology and Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Di Zhu
- Institute for Fetology and Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Caiping Mao
- Institute for Fetology and Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology and Reproductive Medicine Center, The First Affiliated Hospital of Soochow University, Suzhou, China; Center for Perinatal Biology, Loma Linda University, CA, USA.
| |
Collapse
|
29
|
Zhang P, Zhu D, Chen X, Li Y, Li N, Gao Q, Li L, Zhou X, Lv J, Sun M, Mao C, Xu Z. Prenatal hypoxia promotes atherosclerosis via vascular inflammation in the offspring rats. Atherosclerosis 2015; 245:28-34. [PMID: 26691907 DOI: 10.1016/j.atherosclerosis.2015.11.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/06/2015] [Accepted: 11/24/2015] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hypoxia is a critical contributor to increased risks of cardiovascular diseases, including atherosclerosis, but the detailed mechanism that hypoxia leads to atherosclerosis remains unknown. METHODS Pregnant rats were treated with hypoxia (10.5% oxygen) during pregnancy, and HUVEC cells treated with 1% of oxygen. Blood lipids were tested at fetal stage and adult stage of offspring rats; the level of pro-inflammatory cytokines of HUVEC and offspring rats were investigated, and HIF-1α and NFκB mRNA level were also measured by Q-PCR and Elisa. RESULTS We found that TC, LDL-C, ox-LDL-C, and the receptors of ox-LDL-C (lox-1) of the adult offspring were significantly higher than that of the control, while HDL-C was significantly reduced in hypoxia group. The internal elastic lamina was blocked by smooth muscle cells; and the migration of smooth muscle cells into the intima were observed in hypoxia offspring. Luciferase reporter gene experiment showed that HIF-1α activated NFκB transcription at four discrete binding sites of NFκBp65 promoter, although there was no obvious difference among the four discrete binding sites. Using transfection of pCDNA3.1-HIF-1α on HUVEC cells, HIF-1α significantly activated NFκB transcription at hypoxic conditions (1% O2), and concurrent with increased expression of IL-1β and TNF-α. CONCLUSION Hypoxia during pregnancy activated NFκB transcription to induce pro-inflammatory cytokines, leading to the early stage of atherosclerosis.
Collapse
Affiliation(s)
- Pengjie Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Di Zhu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xionghui Chen
- Emergency Department, First Hospital of Soochow University, Suzhou, China
| | - Yongmei Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Na Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Qinqin Gao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiuwen Zhou
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Juanxiu Lv
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Caiping Mao
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China; Center for Prenatal Biology, Loma Linda University, CA, USA.
| |
Collapse
|