1
|
Hossein Garakani M, Kakavand K, Sabbaghian M, Ghaheri A, Masoudi NS, Shahhoseini M, Hassanzadeh V, Zamanian M, Meybodi AM, Moradi SZ. Comprehensive analysis of chromosomal breakpoints and candidate genes associated with male infertility: insights from cytogenetic studies and expression analyses. Mamm Genome 2024; 35:764-783. [PMID: 39358566 DOI: 10.1007/s00335-024-10074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The study aimed to investigate prevalent chromosomal breakpoints identified in balanced structural chromosomal anomalies and to pinpoint potential candidate genes linked with male infertility. This was acchieved through a comprehensive approach combining RNA-seq and microarray data analysis, enabling precise identification of candidate genes. The Cytogenetics data from 2,500 infertile males referred to Royan Research Institute between 2009 and 2022 were analyzed, with 391 cases meeting the inclusion criteria of balanced chromosomal rearrangement. Of these, 193 cases exhibited normal variations and were excluded from the analysis. By examining the breakpoints, potential candidate genes were suggested. Among the remaining 198 cases, reciprocal translocations were the most frequent anomaly (129 cases), followed by Robertsonian translocations (43 cases), inversions (34 cases), and insertions (3 cases).Some patients had more than one chromosomal abnormality. Chromosomal anomalies were most frequently observed in chromosomes 13 (21.1%), 14 (20.1%), and 1 (16.3%) with 13q12, 14q12, and 1p36.3 being the most prevalent breakpoints, respectively. Chromosome 1 contributed the most to reciprocal translocations (20.2%) and inversions (17.6%), while chromosome 14 was the most involved in the Robertsonian translocations (82.2%). The findings suggested that breakpoints at 1p36.3 and 14q12 might be associated with pregestational infertility, whereas breakpoints at 13q12 could be linked to both gestational and pregestational infertility. Several candidate genes located on common breakpoints were proposed as potentially involved in male infertility. Bioinformatics analyses utilizing three databases were conducted to examine the expression patterns of 78 candidate genes implicated in various causes of infertility. In azoospermic individuals, significant differential expression was observed in 19 genes: 15 were downregulated (TSSK2, SPINK2, TSSK4, CDY1, CFAP70, BPY2, BTG4, FKBP6, PPP2R1B, SPECC1L, CENPJ, SKA3, FGF9, NODAL, CLOCK), while four genes were upregulated (HSPB1, MIF, PRF1, ENTPD6). In the case of Asthenozoospermia, seven genes showed significant upregulation (PRF1, DDX21, KIT, SRD5A3, MTCH1, DDX50, NODAL). Though RNA-seq data for Teratozoospermia were unavailable, microarray data revealed differential expression insix genes: three downregulated (BUB1, KLK4, PIWIL2) and three upregulated (AURKC, NPM2, RANBP2). These findings enhance our understanding of the molecular basis of male infertility and could provide valuable insights for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Melika Hossein Garakani
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21, Libechov, Czech Republic
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Azadeh Ghaheri
- Department of Epidemiology and Reproductive Health, Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Najmeh Sadat Masoudi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Shahhoseini
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Biochemistry, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Vahideh Hassanzadeh
- Department of Cell and Molecular Biology, Faculty of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammadreza Zamanian
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Shabnam Zarei Moradi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| |
Collapse
|
2
|
de Souza LP, Domingues WB, Blödorn EB, da Silva Nunes L, Ortiz HG, Komninou ER, Campos VF. Expression of sperm microRNAs related to bull fertility: A systematic review. Res Vet Sci 2024; 166:105077. [PMID: 37948882 DOI: 10.1016/j.rvsc.2023.105077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
In this study we proposed to address the following question: "Are there differentially expressed sperm microRNAs related to fertility in bulls?". A systematic review of scientific literature until November 2022 was performed, in accordance with PRISMA guidelines. The main outcome was differentially expressed sperm microRNA from bulls with low versus high fertility profiles identified by using different methods such as field fertility evaluation and sperm laboratory analysis. Were identified 786 documents, of which 13 were selected for qualitative analysis. A total of 182 unique differentially expressed miRNAs were identified, among these, 49 miRNAs were found in common between at least two studies. It is believed that from these 49 miRNAs, it is possible that miRNAs such as miR-10a, -10b, -103, -15b, -122, -125b, -126-5p, -151-5p, -193a-5p, -196a, -27a-5p and -99b could be potential universal biomarkers to assess the reproductive potential of males.
Collapse
Affiliation(s)
- Lucas Petitemberte de Souza
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo Bierhals Blödorn
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Leandro da Silva Nunes
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Hadassa Gabriela Ortiz
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
3
|
Dahlen CR, Amat S, Caton JS, Crouse MS, Diniz WJDS, Reynolds LP. Paternal effects on fetal programming. Anim Reprod 2023; 20:e20230076. [PMID: 37700908 PMCID: PMC10494885 DOI: 10.1590/1984-3143-ar2023-0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/18/2023] [Indexed: 09/13/2023] Open
Abstract
Paternal programming is the concept that the environmental signals from the sire's experiences leading up to mating can alter semen and ultimately affect the phenotype of resulting offspring. Potential mechanisms carrying the paternal effects to offspring can be associated with epigenetic signatures (DNA methylation, histone modification and non-coding RNAs), oxidative stress, cytokines, and the seminal microbiome. Several opportunities exist for sperm/semen to be influenced during development; these opportunities are within the testicle, the epididymis, or accessory sex glands. Epigenetic signatures of sperm can be impacted during the pre-natal and pre-pubertal periods, during sexual maturity and with advancing sire age. Sperm are susceptible to alterations as dictated by their developmental stage at the time of the perturbation, and sperm and seminal plasma likely have both dependent and independent effects on offspring. Research using rodent models has revealed that many factors including over/under nutrition, dietary fat, protein, and ingredient composition (e.g., macro- or micronutrients), stress, exercise, and exposure to drugs, alcohol, and endocrine disruptors all elicit paternal programming responses that are evident in offspring phenotype. Research using livestock species has also revealed that sire age, fertility level, plane of nutrition, and heat stress can induce alterations in the epigenetic, oxidative stress, cytokine, and microbiome profiles of sperm and/or seminal plasma. In addition, recent findings in pigs, sheep, and cattle have indicated programming effects in blastocysts post-fertilization with some continuing into post-natal life of the offspring. Our research group is focused on understanding the effects of common management scenarios of plane of nutrition and growth rates in bulls and rams on mechanisms resulting in paternal programming and subsequent offspring outcomes. Understanding the implication of paternal programming is imperative as short-term feeding and management decisions have the potential to impact productivity and profitability of our herds for generations to come.
Collapse
Affiliation(s)
- Carl Robertson Dahlen
- Center for Nutrition and Pregnancy and Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | - Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, United States
| | - Joel S. Caton
- Center for Nutrition and Pregnancy and Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | - Matthew S. Crouse
- U.S. Meat Animal Research Center, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE, United States
| | | | - Lawrence P. Reynolds
- Center for Nutrition and Pregnancy and Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
4
|
Solaimani F, Habibi E, Ghasemi M, Mahboubi S, Zamani E, Shaki F. The Protective Effects of Trametes Versicolor on Arsenic-Induced Male Reproductive Toxicity through Regulation of Oxidative Stress: A Biochemical and Histopathological Survey. Andrologia 2023; 2023:1-13. [DOI: 10.1155/2023/7579366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Exposure to arsenic is linked to a wide range of diseases, in particular male reproductive toxicities. Trametes versicolor is a traditional medicinal fungus with a remarkable potential for antioxidant activity. The purpose of this study was to examine the ameliorating effects of water and methanol extracts of T. versicolor on arsenic-induced male reproductive toxicities via the abrogation of oxidative stress. The mice were divided as follows: control: normal saline, As: arsenic (15 mg/kg), WE: water extract (400 mg/kg), ME: methanol extract (400 mg/kg), As + WE: arsenic (15 mg/kg) + water extract (100, 200, 400 mg/kg), As + ME: arsenic (15 mg/kg) + methanol extract (100, 200, 400 mg/kg), and positive control: arsenic (15 mg/kg) + vitamin C (500 mg/kg). Animals were treated via the intraperitoneal route. About 24 hr later, the mice were euthanized, and oxidative stress parameters (reactive oxygen species [ROS], lipid peroxidation, glutathione concentration, protein carbonylation, glutathione peroxidase, and superoxide dismutase activity), histopathological changes and sperm parameters (count, motility, and morphology) were examined in the testicular tissue. Arsenic caused significant pathological changes in the testicular tissue and sperm morphology and significantly reduced sperm count and motility. Moreover, arsenic mediated oxidative stress via significant increases in ROS generation, lipid peroxidation, and protein carbonyl content, as well as significant depletion in glutathione concentration and superoxide dismutase and glutathione peroxidase activities. Although, coadministration of water and methanol extracts of T. versicolor at 200 and 400 mg/kg counteracted arsenic-induced oxidative and histopathological damages and improved sperm parameters. Our study indicated that T. versicolor ameliorated arsenic-induced testis toxicity and sperm dysfunction via attenuation of oxidative damage.
Collapse
Affiliation(s)
- Fatemeh Solaimani
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Emran Habibi
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Ghasemi
- Department of Pathology, Immunogenetics Research Center, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saba Mahboubi
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Li T, Wang H, Luo R, Shi H, Su M, Wu Y, Li Q, Ma K, Zhang Y, Ma Y. Identification and Functional Assignment of Genes Implicated in Sperm Maturation of Tibetan Sheep. Animals (Basel) 2023; 13:ani13091553. [PMID: 37174590 PMCID: PMC10177108 DOI: 10.3390/ani13091553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
While traveling through the epididymis, immature sheep spermatozoa undergo a sequence of processes that ultimately give them the capacity to swim and fertilize an egg. Different gene expression patterns may be found in the epididymal caput, corpus, and cauda, conferring variant or unique biological roles during epididymis development and sperm maturation. To search for candidate genes associated with ovine sperm maturation and assess their possible modulating mechanisms, we characterized gene expression in each epididymal segment derived from pre- and post-pubertal Tibetan sheep by RNA sequencing. Compared with pre-puberty, 7730 (3724 upregulated and 4006 downregulated), 7516 (3909 upregulated and 3607 downregulated), and 7586 (4115 elevated and 3471 downregulated) genes were found to be differentially expressed in the post-pubertal caput, corpus, and cauda epididymis, respectively, and real-time quantitative PCR verified the validity of the gathered expression patterns. Based on their functional annotations, most differential genes were assigned to the biological processes and pathways associated with cellular proliferation, differentiation, immune response, or metabolic activities. As for the post-pubertal epididymis, 2801, 197, and 186 genes were specifically expressed in the caput, corpus, and cauda, respectively. Functional annotation revealed that they were mainly enriched to various distinct biological processes associated with reproduction (including the caput binding of sperm to the zona pellucida; fertilization in the caput and corpus; and meiosis in the caput and cauda) and development (such as cell differentiation and developmental maturation in the caput; cell proliferation and metabolism in the corpus; and regulation of tube size and cell division/cell cycle in the cauda). Additionally, we focused on the identification of genes implicated in immunity and sperm maturation, and subsequent functional enrichment analysis revealed that immune-related genes mainly participated in the biological processes or pathways associated with the immune barrier (such as JAM3 and ITGA4/6/9) and immunosuppression (such as TGFB2, TGFBR1, TGFBR2, and SMAD3), thus protecting auto-immunogenic spermatozoa. Additionally, sperm maturation was mostly controlled by genes linked with cellular processes, including cell growth, proliferation, division, migration, morphogenesis, and junction. Altogether, these results suggest that most genes were differentially expressed in developmental epididymal regions to contribute to microenvironment development and sperm maturation. These findings help us better understand the epididymal biology, including sperm maturation pathways and functional differences between the epididymal regions in Tibetan sheep and other sheep breeds.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Huihui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Ruirui Luo
- Animal Husbandry, Pasture and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
| | - Huibin Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Manchun Su
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Keyan Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong Zhang
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
6
|
Coen S, Keogh K, Lonergan P, Fair S, Kenny DA. Early life nutrition affects the molecular ontogeny of testicular development in the young bull calf. Sci Rep 2023; 13:6748. [PMID: 37185277 PMCID: PMC10130005 DOI: 10.1038/s41598-022-23743-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/04/2022] [Indexed: 05/17/2023] Open
Abstract
Enhanced early life nutrition accelerates sexual development in the bull calf through neuroendocrine-signalling mediated via the hypothalamic-pituitary-testicular axis. Our aim was to assess the impact of contrasting feeding regimes in bull calves during the first 12 weeks of life on the testes transcriptome and proteome. Holstein-Friesian bull calves were offered either a high (HI) or moderate (MOD) plane of nutrition, designed to support target growth rates of 1.0 and 0.5 kg/day, respectively. At 12 weeks of age all calves were euthanized, testicular parenchyma sampled, and global transcriptome (miRNAseq and mRNAseq) and proteome analyses undertaken. Bioinformatic analyses revealed 7 differentially expressed (DE) miRNA and 20 DE mRNA. There were no differentially abundant proteins between the two dietary groups. Integration of omics results highlighted a potential role for the cadherin gene, CDH13, in earlier reproductive development. Furthermore, co-regulatory network analysis of the proteomic data revealed CDH13 as a hub protein within a network enriched for processes related to insulin, IGF-1, androgen and Sertoli cell junction signalling pathways as well as cholesterol biosynthesis. Overall, results highlight a potential role for CDH13 in mediating earlier reproductive development as a consequence of enhanced early life nutrition in the bull calf.
Collapse
Affiliation(s)
- Stephen Coen
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kate Keogh
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - David A Kenny
- Teagasc Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
7
|
La Y, Ma X, Bao P, Chu M, Guo X, Liang C, Yan P. Identification and profiling of microRNAs during yak's testicular development. BMC Vet Res 2023; 19:53. [PMID: 36803968 PMCID: PMC9940382 DOI: 10.1186/s12917-023-03602-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/01/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Normal testicular development is highly crucial for male reproduction and is a precondition for spermatogenesis that is the production of spermatozoa in the testes. MiRNAs have been implicated in several testicular biological processes, including cell proliferation, spermatogenesis, hormone secretion, metabolism and reproductive regulation. In the present study, we used deep sequencing data to study the functions of miRNAs during testicular development and spermatogenesis, by analyzing the expression patterns of small RNAs in 6-, 18- and 30-month-old yak testis tissues. RESULTS A total of 737 known and 359 novel miRNAs were obtained from 6-, 18- and 30-month-old yak testes. In all, we obtained 12, 142 and 139 differentially expressed (DE) miRNAs in 30- vs. 18-, 18- vs. 6-, and 30- vs. 6-month-old testes, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of all DE miRNA target genes revealed BMP2, TGFB2, GDF6, SMAD6, TGFBR2 and other target genes as participants in different biological processes, including TGF-β, GnRH, Wnt, PI3K-Akt, MAPK signaling pathways and several other reproductive pathways. In addition, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to detect the expression of seven randomly selected miRNAs in 6-, 18- and 30-month-old testes, and the results were consistent with the sequencing data. CONCLUSIONS The differential expression of miRNAs in yak testes at different development stages was characterized and investigated using deep sequencing technology. We believe that the results will contribute to further understanding the functions of miRNAs in regulating the development of yak testes and improving the reproductive performance of male yaks.
Collapse
Affiliation(s)
- Yongfu La
- grid.464362.1Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- grid.464362.1Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- grid.464362.1Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- grid.464362.1Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- grid.464362.1Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China ,grid.410727.70000 0001 0526 1937Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China. .,Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China. .,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China. .,Key Laboratory of Animal Genetics and Breeding On Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou, China. .,Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
8
|
A Comprehensive Sequencing Analysis of Testis-Born miRNAs in Immature and Mature Indigenous Wandong Cattle ( Bos taurus). Genes (Basel) 2022; 13:genes13122185. [PMID: 36553452 PMCID: PMC9777600 DOI: 10.3390/genes13122185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Micro RNAs (miRNAs) have been recognized as important regulators that are indispensable for testicular development and spermatogenesis. miRNAs are endogenous transcriptomic elements and mainly regulate the gene expression at post-transcriptional levels; however, the key role of miRNA in bovine testicular growth is not clearly understood. Thus, supposing to unveil the transcriptomics expression changes in the developmental processes of bovine testes, we selected three immature calves and three sexually mature bulls of the local Wandong breed for testicular-tissue sample collection. The cDNA libraries of experimental animals were established for RNA-sequencing analysis. We detected the miRNA expression in testes by using high-throughput sequencing technology, and bioinformatics analysis followed. The differentially expressed (DE) data showed that 151 miRNAs linked genes were significantly DE between immature and mature bull testes. Further, in detail, 64 were significantly up-regulated and 87 were down-regulated in the immature vs. mature testes (p-value < 0.05). Pathway analyses for miRNA-linked genes were performed and identified JAG2, BCL6, CFAP157, PHC2, TYRO3, SEPTIN6, and BSP3; these genes were involved in biological pathways such as TNF signaling, T cell receptor, PI3KAkt signaling, and functions affecting testes development and spermatogenesis. The DE miRNAs including MIR425, MIR98, MIR34C, MIR184, MIR18A, MIR136, MIR15A, MIR1388 and MIR210 were associated with cattle-bull sexual maturation and sperm production. RT-qPCR validation analysis showed a consistent correlation to the sequencing data findings. The current study provides a good framework for understanding the mechanism of miRNAs in the development of testes and spermatogenesis.
Collapse
|
9
|
Jia CY, He Y, Wu SN, He YT, Wang Y. Prognostic potential of miR-144 in various cancers: A meta-analysis. Medicine (Baltimore) 2022; 101:e31728. [PMID: 36401491 PMCID: PMC9678549 DOI: 10.1097/md.0000000000031728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND MicrorNA-144 (MiR-144) has been shown to be an attractive prognostic tumor biomarker and play a fundamental role in various cancers, However, the conclusion was inconsistency. The aim of this study was to identify the prognostic role of miR-144 in cancers. METHODS Relevant studies were searched in PubMed, EMBASE and Web of Science up to April 20, 2022. Hazard ratios (HR), odds ratio (OR) and 95% confidence intervals were pooled from the selected studies. RESULTS A total of 15 articles involving 1846 participants fulfilled the inclusion criteria. The results revealed that low miR-144 expression was significantly associated with favorable overall survival (HR: 0.68, 95% confidence interval [CI]: 0.53-0.88) in various cancers. Low miR-144 expression had better predictive value in patients with urinary system cancer (HR: 0.48, 95% CI: 0.35-0.64). In addition, low miR-144 expression was associated with tumor diameter (big vs small) (OR: 1.69, 95% CI: 1.08-2.75), tumor stage (III-IV vs I-II) (OR: 2.52, 95% CI: 3.76-8.14) and invasion depth (T3 + T4 vs T2 + T1) (OR: 3.24, 95% CI: 1.72-4.89). CONCLUSION miR-144 may serve as a prognostic biomarker in cancers.
Collapse
Affiliation(s)
- Chong-Yang Jia
- Department of General Surgery, the Second Hospital of Lanzhou, Lanzhou, China
| | - Yan He
- Department of General Surgery, the Second Hospital of Lanzhou, Lanzhou, China
| | - Shi-Nan Wu
- Department of Clinical Medicine, The First Clinical Medical College of Nanchang University, Nanchang, China
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Ting He
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, China
- * Correspondence: Yan-Ting He, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China (e-mail: )
| | - Ying Wang
- Department of Clinical laboratory, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
10
|
Güngör BH, Tektemur A, Arkali G, Dayan Cinkara S, Acisu TC, Koca RH, Etem Önalan E, Özer Kaya S, Kizil M, Sönmez M, Gür S, Çambay Z, Yüce A, Türk G. Effect of freeze-thawing process on lipid peroxidation, miRNAs, ion channels, apoptosis and global DNA methylation in ram spermatozoa. Reprod Fertil Dev 2021; 33:747-759. [PMID: 34585662 DOI: 10.1071/rd21091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
This study was carried out to investigate the effect of the semen freeze-thawing process on the functionality and molecular structure of ram spermatozoa. The temperature of pooled and diluted semen at 38°C (group 1, control) was lowered to 5°C (group 2), and it was subjected to glycerolisation-equilibration (group 3), frozen and thawed (group 4). Compared to the control, deterioration in spermatological parameters and significant increases in lipid peroxidation and global DNA methylation levels were observed in groups 3 and 4. When compared with the control, significant downregulation in the levels of miR-485 of group 2, miR-29a of group 3 and let-7a, miR-485 and miR-29a of group 4, and significant upregulation in the levels of miR-107 of group 3 and miR-127 of groups 3 and 4 were detected. In comparison to the control, significant upregulation in the levels of CatSper1, CatSper2, CatSper3, CatSper4, ANO1 and TRPM3 of group 2, CatSper4, ANO1 and TRPM3 of group 3 and KCNJ11 of group 4, and significant downregulation in the CatSper 3 level of group 4 were determined. As a result, the semen freeze-thawing process causes motility and morphological disorders in rams. This may be due to molecular changes associated with lipid peroxidation in spermatozoa.
Collapse
Affiliation(s)
- Brahim Halil Güngör
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Ahmet Tektemur
- Faculty of Medicine, Department of Medical Biology, Firat University, Elazig, Turkey
| | - Gözde Arkali
- Faculty of Veterinary Medicine, Department of Physiology, Firat University, Elazig, Turkey
| | - Serap Dayan Cinkara
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Tutku Can Acisu
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Recep Hakki Koca
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Bingöl University, Bingöl, Turkey
| | - Ebru Etem Önalan
- Faculty of Medicine, Department of Medical Biology, Firat University, Elazig, Turkey
| | - Seyma Özer Kaya
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Meltem Kizil
- Faculty of Veterinary Medicine, Department of Physiology, Firat University, Elazig, Turkey
| | - Mustafa Sönmez
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Seyfettin Gür
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| | - Zafer Çambay
- Department of Medical Services and Technics, Firat University, High School of Medical Services, Elazig, Turkey
| | - Abdurrauf Yüce
- Faculty of Veterinary Medicine, Department of Physiology, Firat University, Elazig, Turkey
| | - Gaffari Türk
- Faculty of Veterinary Medicine, Department of Reproduction and Artificial Insemination, Firat University, Elazig, Turkey
| |
Collapse
|
11
|
Melatonin alleviated oxidative stress induced by energy restriction on sheep Leydig cells through Sirt1/Sod2 pathway. Theriogenology 2021; 173:83-92. [PMID: 34352672 DOI: 10.1016/j.theriogenology.2021.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/18/2021] [Indexed: 01/19/2023]
Abstract
Energy balance is essential for normal reproduction of ram. However, the effect of energy restriction (ER) on reactive oxygen species (ROS) of sheep Leydig cells (LCs) and the rescuee methods are still unclear. To investigate the in vitro effect of melatonin on cellular ROS in fER-treated sheep LCs and explore the underlying mechanism, Hu sheep LCs were restricted energy using no serum culture medium and resaved with 10 ng/ml melatonin, respectively. The results showed that ER significantly increased MDA level, while decreased CAT, GHS-px expression and ΔΨm (p < 0.05). Meanwhile, ER decreased testosterone concentration and cell proliferation rate (p < 0.05). And the expression of testosterone synthesis-related enzymes was also down-regulated by ER (p < 0.05). Furthermore, we revealed that melatonin reversed the defective phenotypes in ER-treated LCs via Sirt1/Sod2 pathway. The interference of Sirt1 abolished the melatonin-mediated improvement of cellular ROS and testosterone secretion. Taken together, our study firstly indicated that melatonin could alleviate the excessive ROS accumulation and promote testosterone biosynthesis in ER-treated sheep LCs via the activation of Sirt1/Sod2 pathway.
Collapse
|
12
|
Integrated Analysis of Long Non-Coding RNA and mRNA Expression Profiles in Testes of Calves and Sexually Mature Wandong Bulls ( Bos taurus). Animals (Basel) 2021; 11:ani11072006. [PMID: 34359134 PMCID: PMC8300165 DOI: 10.3390/ani11072006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The mRNAs and long non-coding RNAs axes are playing a vital role in the regulating of post-transcriptional gene expression. Thereby, elucidating the expression pattern of mRNAs and long non-coding RNAs underlying testis development is crucial. In this study, mRNA and long non-coding RNAs expression profiles were investigated in 3-month-old calves and 3-year-old mature bulls' testes by total RNA sequencing. Additionally, during the gene level analysis, 21,250 mRNAs and 20,533 long non-coding RNAs were identified. As a result, 7908 long non-coding RNAs (p-adjust < 0.05) and 5122 mRNAs (p-adjust < 0.05) were significantly differentially expressed between the distinct age groups. In addition, gene ontology and biological pathway analyses revealed that the predicted target genes are enriched in the lysine degradation, cell cycle, propanoate metabolism, adherens junction and cell adhesion molecules pathways. Correspondingly, the RT-qPCR validation results showed a strong consistency with the sequencing data. The source genes for the mRNAs (CCDC83, DMRTC2, HSPA2, IQCG, PACRG, SPO11, EHHADH, SPP1, NSD2 and ACTN4) and the long non-coding RNAs (COX7A2, COX6B2, TRIM37, PRM2, INHBA, ERBB4, SDHA, ATP6VOA2, FGF9 and TCF21) were found to be actively associated with bull sexual maturity and spermatogenesis. This study provided a comprehensive catalog of long non-coding RNAs in the bovine testes and also offered useful resources for understanding the differences in sexual development caused by the changes in the mRNA and long non-coding RNA interaction expressions between the immature and mature stages.
Collapse
|
13
|
Xu Z, Hu Q, Zang X, Zhou C, Liu D, Liu G, Hong L. Analysis of Transcripts of Uncertain Coding Potential Using RNA Sequencing During the Preattachment Phase in Goat Endometrium. DNA Cell Biol 2021; 40:998-1008. [PMID: 34115954 DOI: 10.1089/dna.2020.6463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcripts of uncertain coding potential (TUCP) are part of long noncoding RNAs, which include short open reading frames and could be translated into small peptides. In recent years, a growing number of TUCPs has been implicated in multiple biological activities, such as embryogenesis and transcriptional regulation. However, the abundance of TUCPs and their roles in goat endometrium during pregnancy recognition (day 16) remain undocumented. In this study, bioinformatics analyses were conducted to identify the differentially expressed (DE) TUCPs between pregnant animals and corresponding nonpregnant controls. A total of 5551 TUCPs were identified; 114 TUCPs were DE in goat endometrium, of which 74 TUCPs were upregulated in pregnant endometrium, whereas 40 TUCPs were downregulated. The related genes of TUCP were predicted by using coexpression and colocalization methods. In summary, 419 genes were predicted by colocalization, and 9464 genes were predicted by coexpression. The kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO) analysis showed that TUCPs, which are highly expressed in pregnant endometrium, were mainly associated with endometrial remodeling, nutrient synthesis, and transportation. However, TUCPs that were lowly expressed in pregnant endometrium were mainly associated with immune tolerance, which is necessary for the protection and development of the embryo in the uterus. These findings may be used for the comparative analysis of TUCP transcripts in endometrium and assist in the selection of applicable candidate genes associated with embryo implantation for further functional analyses.
Collapse
Affiliation(s)
- Zheng Xu
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Qun Hu
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Xupeng Zang
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Chen Zhou
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Dewu Liu
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Guangbin Liu
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- College of Animal Science, and South China Agricultural University, Guangzhou, China.,National Local Joint Engineering Research Center of Livestock and Poultry, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Delgadillo JA, Sifuentes PI, Flores MJ, Espinoza-Flores LA, Andrade-Esparza JD, Hernández H, Keller M, Chemineau P. Nutritional supplementation improves the sexual response of bucks exposed to long days in semi-extensive management and their ability to stimulate reproduction in goats. Animal 2020; 15:100114. [PMID: 33573958 DOI: 10.1016/j.animal.2020.100114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022] Open
Abstract
In confined management systems, well-nourished bucks rendered sexually active by exposure to long days are efficient in fertilizing out-of-season goats. However, underfeeding is common in semi-extensive management systems and may reduce the reproductive efficiency of bucks. The objective of the present study was to determine whether nutritional supplementation improved the sexual activity of bucks submitted to long days in semi-extensive management systems and their ability to stimulate the reproduction of goats in semi-extensive or confined conditions. In experiment 1, three groups of bucks were placed in different flocks and grazed daily with females for 7 h. Each day after grazing, males were separated from females and moved into open pens. One group did not receive any treatment (control group; n = 6). Two other groups were submitted to artificially long days from 15 November to 15 January. From 16 January, one group did not receive nutritional supplementation (long-day group; n = 5), whereas bucks from the other group each received 600 g of a commercial concentrate (long-day+supplementation group; n = 5). The fourth group was kept in confined conditions, exposed to long days and fed alfalfa hay (long-day confined group; n = 6). On 26 March, anovulatory goats from other flocks were assigned to four groups (n = 27 each) and confined separately in open pens. Three bucks of each group were housed with the females. Pregnancy rates were greater in the goats housed with the long-day group than those housed with the control group (P < 0.01). However, pregnancy rates did not differ between the long-day confined group (89%) and long-day+supplementation group (70%; P = 0.09), but these rates were greater than those from the long-day (37%) and control groups (0%; P < 0.05). In experiment 2, two groups of males (n = 3 each) were incorporated into two flocks under semi-extensive management and grazed daily with females for 7 h. One group of males did not receive any treatment (control group). The other group was submitted to long days and nutritional supplementation as in experiment 1 (long-day+supplementation group). Males remained with females during the whole study. The pregnancy rate was greater in the goats joined by males of the long-day+supplementation group (78%) than in those from the control group (0%; P < 0.001). We conclude that long days and nutritional supplementation improve the ability of bucks kept in semi-extensive management to stimulate reproduction of out-of-season goats in confined or semi-extensive management systems.
Collapse
Affiliation(s)
- J A Delgadillo
- Centro de Investigación en Reproducción Caprina (CIRCA), Programa de Posgrado en Ciencias Agrarias, Universidad Autónoma Agraria Antonio Narro, Periférico Raúl López Sánchez y Carretera a Santa Fe, 27054 Torreón, Coahuila, Mexico.
| | - P I Sifuentes
- Centro de Investigación en Reproducción Caprina (CIRCA), Programa de Posgrado en Ciencias Agrarias, Universidad Autónoma Agraria Antonio Narro, Periférico Raúl López Sánchez y Carretera a Santa Fe, 27054 Torreón, Coahuila, Mexico
| | - M J Flores
- Campo Experimental La Laguna, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Blvd. José Santos Valdez 1200, 27440 Matamoros, Coahuila, Mexico
| | - L A Espinoza-Flores
- Centro de Investigación en Reproducción Caprina (CIRCA), Programa de Posgrado en Ciencias Agrarias, Universidad Autónoma Agraria Antonio Narro, Periférico Raúl López Sánchez y Carretera a Santa Fe, 27054 Torreón, Coahuila, Mexico
| | - J D Andrade-Esparza
- Centro de Investigación en Reproducción Caprina (CIRCA), Programa de Posgrado en Ciencias Agrarias, Universidad Autónoma Agraria Antonio Narro, Periférico Raúl López Sánchez y Carretera a Santa Fe, 27054 Torreón, Coahuila, Mexico
| | - H Hernández
- Centro de Investigación en Reproducción Caprina (CIRCA), Programa de Posgrado en Ciencias Agrarias, Universidad Autónoma Agraria Antonio Narro, Periférico Raúl López Sánchez y Carretera a Santa Fe, 27054 Torreón, Coahuila, Mexico
| | - M Keller
- UMR Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| | - P Chemineau
- UMR Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 37380 Nouzilly, France
| |
Collapse
|
15
|
Cai J, Wang D, Liang S, Peng J, Zhao F, Liu J. Excessive supply of glucose elicits an NF-κB2-dependent glycolysis in lactating goat mammary glands. FASEB J 2020; 34:8671-8685. [PMID: 32359096 DOI: 10.1096/fj.201903088r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/30/2020] [Accepted: 04/18/2020] [Indexed: 11/11/2022]
Abstract
During lactation, an improper glucose supply often threatens mammary gland (MG) health. However, information is limited on the metabolic trajectories and molecules that regulate lactating MGs with an excessive glucose supply. Based on the network analysis of transcriptome and microRNAs, we found that the oversupply of glucose-induced severe glucose metabolic disorders in MGs of lactating goats, shifting lactose synthesis to acute fermentative glycolysis which caused increased flux of glucose metabolism into lactate. Moreover, NF-κB2 played a key role in regulating glycolysis, exhibiting a metabolic shift when MGs had an excessive supply of glucose. In primary mammary epithelial cells, fermentative glycolysis, and intracellular concentration of reactive oxygen species (ROS) were reduced by ganoderic acid A through blocking NF-κB2, while activation of NF-κB2 with phorbol myristate acetate (PMA) upregulated fermentative glycolysis and increased cellular ROS accumulation under excessive glucose. Thus, we established an NF-κB2-targeting method to reform the metabolic shift toward glycolysis caused by glucose oversupply by integrating NF-κB2 blockade and intracellular ROS scavenging.
Collapse
Affiliation(s)
- Jie Cai
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Diming Wang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shulin Liang
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinrong Peng
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fengqi Zhao
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT, USA
| | - Jianxin Liu
- Ministry of Education Key Laboratory of Molecular Animal Nutrition, Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
16
|
Li B, He X, Zhao Y, Bai D, Li D, Zhou Z, Manglai D. Analysis of the miRNA transcriptome during testicular development and spermatogenesis of the Mongolian horse. Reprod Fertil Dev 2020; 32:582-593. [PMID: 32209208 DOI: 10.1071/rd19133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/01/2019] [Indexed: 12/25/2022] Open
Abstract
Numerous studies have shown that microRNAs (miRNAs) are essential for testicular development and spermatogenesis. In order to further characterise these physiological processes, three immature and three mature testes of the Mongolian horse were collected and six libraries were established. Using small RNA sequencing technology, 531 mature miRNAs were identified, including 46 novel miRNAs without previously ascribed functions. Among the 531 miRNAs, 421 were expressed in both immature and mature libraries, 65 miRNAs were found solely in immature testis libraries and 45 miRNAs were found solely in mature testis libraries. Furthermore, among the miRNAs that were identified in both immature and mature libraries, 107 were significantly differentially expressed (corrected P value (padj)<0.05). Among the miRNAs that were only expressed in immature testes, two miRNAs were differentially expressed, whereas among the miRNAs that were only expressed in mature testes, nine miRNAs were differentially expressed. Comprehensive analysis of miRNA and mRNA expression profiles predicted 107 miRNA-mRNA interaction sites. Gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis of the predicted target genes suggested roles of the differentially expressed miRNAs in testicular development and spermatogenesis. These findings identify miRNAs as key factors in the development of the testes and spermatogenesis in the Mongolian horse, which may also help us to understand the mechanisms of fertility in related mammalian species.
Collapse
Affiliation(s)
- Bei Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Zhaowuda RD.306, Hohhot, Inner Mongolia, PR China
| | - Xiaolong He
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Zhaojun RD.22, Hohhot, Inner Mongolia, PR China
| | - Yiping Zhao
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Zhaowuda RD.306, Hohhot, Inner Mongolia, PR China
| | - Dongyi Bai
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Zhaowuda RD.306, Hohhot, Inner Mongolia, PR China
| | - Dandan Li
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Zhaowuda RD.306, Hohhot, Inner Mongolia, PR China
| | - Zhiyu Zhou
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Zhaowuda RD.306, Hohhot, Inner Mongolia, PR China
| | - Dugarjaviin Manglai
- College of Animal Science, Inner Mongolia Key Laboratory of Equine Genetics, Breeding and Reproduction, Scientific Observing and Experimental Station of Equine Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Equine Research Centre, Inner Mongolia Agricultural University, Zhaowuda RD.306, Hohhot, Inner Mongolia, PR China; and Corresponding author.
| |
Collapse
|
17
|
Yang Y, Qin X, Meng X, Zhu X, Zhang X, Li Y, Zhang Z. MicroRNA Expression Profile in Peripheral Blood Lymphocytes of Sheep Vaccinated with Nigeria 75/1 Peste Des Petits Ruminants Virus. Viruses 2019; 11:v11111025. [PMID: 31694166 PMCID: PMC6893480 DOI: 10.3390/v11111025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/25/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Peste des petits ruminants (PPR) is one of the highly contagious transboundary viral diseases of small ruminants. Host microRNA (miRNA) expression patterns may change in response to virus infection, and it mainly works as a post-transcriptional moderator in gene expression and affects viral pathogenesis and replication. In this study, the change of miRNA expression profile in peripheral blood lymphocyte (PBMC) from sheep inoculated with PPR vaccine virus in vivo as well as primary sheep testicular (ST) cells inoculated with PPR vaccine virus in vitro were determined via deep sequencing technology. In PBMC cells, 373 and 115 differentially expressed miRNAs (DEmiRNAs) were identified 3 days and 5 days post inoculated (dpi), respectively. While, 575 DEmiRNAs were identified when comparing miRNA profiles on 5 dpi with 3 dpi. Some of the DEmiRNAs were found to change significantly via time-course during PPR vaccine virus inoculated. Similarly, in ST cells, 136 DEmiRNAs were identified at 3 dpi in comparison with mock-inoculation. A total of 12 DEmiRNAs were validated by real-time quantitative PCR (RT-qPCR). The oar-miR-150, oar-miR-370-3p and oar-miR-411b-3p were found common differentially expressed in both PPR vaccine virus-inoculated PBMC cells and ST cells. Targets prediction and functional analysis of the DEmiRNAs uncovered mainly gathering in antigen processing and presentation pathways, protein processing in endoplasmic reticulum pathways and cell adhesion molecules pathways. Our study supplies information about the DEmiRNAs in PPR vaccine virus-inoculated PBMC cells and ST cells, and provides clues for further understanding the function of miRNAs in PPR vaccine virus replication.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanmin Li
- Correspondence: ; Tel.: +86-0931-8374622
| | | |
Collapse
|
18
|
Oncofertility: Pharmacological Protection and Immature Testicular Tissue (ITT)-Based Strategies for Prepubertal and Adolescent Male Cancer Patients. Int J Mol Sci 2019; 20:ijms20205223. [PMID: 31640294 PMCID: PMC6834329 DOI: 10.3390/ijms20205223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 10/12/2019] [Accepted: 10/18/2019] [Indexed: 01/15/2023] Open
Abstract
While the incidence of cancer in children and adolescents has significantly increased over the last decades, improvements made in the field of cancer therapy have led to an increased life expectancy for childhood cancer survivors. However, the gonadotoxic effect of the treatments may lead to infertility. Although semen cryopreservation represents the most efficient and safe fertility preservation method for males producing sperm, it is not feasible for prepubertal boys. The development of an effective strategy based on the pharmacological protection of the germ cells and testicular function during gonadotoxic exposure is a non-invasive preventive approach that prepubertal boys could benefit from. However, the progress in this field is slow. Currently, cryopreservation of immature testicular tissue (ITT) containing spermatogonial stem cells is offered to prepubertal boys as an experimental fertility preservation strategy by a number of medical centers. Several in vitro and in vivo fertility restoration approaches based on the use of ITT have been developed so far with autotransplantation of ITT appearing more promising. In this review, we discuss the pharmacological approaches for fertility protection in prepubertal and adolescent boys and the fertility restoration approaches developed on the utilization of ITT.
Collapse
|
19
|
Yang H, Lin S, Lei X, Yuan C, Yu Y, Zhao Z, Chen J. Nutritional status affects the microRNA profile of the hypothalamus of female sheep. Reprod Fertil Dev 2019; 30:946-957. [PMID: 29366447 DOI: 10.1071/rd17179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/21/2017] [Indexed: 12/19/2022] Open
Abstract
Recent studies on the seasonal regulation of the oestrous cycle in sheep have focussed mainly on the responses to photoperiod. However, the brain systems that control reproductive activity also respond to nutritional inputs, although the molecular mechanisms involved are not completely understood. One possibility is that small, non-coding RNAs, such as micro-RNAs (miRNAs), have significant influence. In the present study, the amounts and characteristics of miRNAs in hypothalamus from oestrous and anestrous ewes, fed low- or high-nutrient diets, were compared using Illumina HiSeq sequencing technology. In total, 398 miRNAs, including 261 novel miRNAs, were identified in ewes with an enhanced nutritional status (HEN), whereas 384 miRNAs, including 247 novel miRNAs, were identified in the ewes with a lesser nutritional status (HAN). There were eight conserved and 140 novel miRNAs expressed differentially between the two libraries. Based on quantitative real-time polymerase chain reaction, six miRNAs were assessed to verify the accuracy of the library database. Moreover, the correlation between the miRNA target and several upstream and downstream genes in the oestrus-related pathways were also verified in hypothalamus nerve cells. According to the results, nutritional status plays an important role in oestrous regulation in sheep, and the hypothalamic processes and pathways induced by nutritional signals (folic acid and tyrosine) are different from those induced by photoperiodic regulation of oestrus. We have expanded the repertoire of sheep miRNAs that could contribute to the molecular mechanisms that regulate the initiation of oestrous cycles in anestrous ewes in response to the influence of nutritional status.
Collapse
Affiliation(s)
- Heng Yang
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Shan Lin
- College of Life Sciences, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Xiaoping Lei
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Cong Yuan
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Yaosheng Yu
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Jingbo Chen
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| |
Collapse
|
20
|
Yang H, Wang F, Li F, Ren C, Pang J, Wan Y, Wang Z, Feng X, Zhang Y. Comprehensive analysis of long noncoding RNA and mRNA expression patterns in sheep testicular maturation. Biol Reprod 2019; 99:650-661. [PMID: 29668837 DOI: 10.1093/biolre/ioy088] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/12/2018] [Indexed: 02/03/2023] Open
Abstract
Long noncoding RNAs (LncRNAs) have been identified as important regulators of testis development; however, their expression patterns and roles in sheep are not yet clear. Thus, we used stranded specific RNA-seq to profile the testis transcriptome (lncRNAs and mRNAs) in premature and mature sheep. Hormone levels and the testis index were examined, and histological analyses were performed at five stages of testis development, 5-day-old (D5), 3-month-old (3M), 6-month-old (6M), 9-month-old (9M), and 2-year-old (2Y), the results of which indicate a significant difference in hormone levels and testis morphometries between the 3M and 9M stages (P < 0.05). Based on the comparison between 3M and 9M samples, we found 1,118 differentially expressed (DE) lncRNAs and 7,253 DE mRNAs in the testes, and qRT-PCR analysis showed that the results correlated well with the transcriptome data. Furthermore, we constructed lncRNA-protein-coding gene interaction networks. Forty-seven DE lncRNA-targeted genes enriched for male reproduction were obtained by cis- and trans-acting; 51 DE lncRNAs and 45 cis-targets, 2 DE lncRNAs and 2 trans-targets were involved in this network. Of these, 5 lncRNAs and their targets, PRKCD, NANOS3, SERPINA5, and CYP19A1, were enriched for spermatogenesis and male gonad development signaling pathways. We further examined the expression levels of 5 candidate lncRNAs and their target genes during testis development. Lastly, the interaction of lncRNA TCONS__00863147 and its target gene PRKCD was validated in vitro in sheep Leydig cells. This study provides a valuable resource for further study of lncRNA function in sheep testis development and spermatogenesis.
Collapse
Affiliation(s)
- Hua Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Fengzhe Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Caifang Ren
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Jing Pang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Ziyu Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Xu Feng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| | - Yanli Zhang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, NO. 1 Weigang, Nanjing, 210095, P.R. China
| |
Collapse
|
21
|
Champagne FA. Interplay between paternal germline and maternal effects in shaping development: The overlooked importance of behavioural ecology. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Sagrillo-Fagundes L, Bienvenue-Pariseault J, Legembre P, Vaillancourt C. An insight into the role of the death receptor CD95 throughout pregnancy: Guardian, facilitator, or foe. Birth Defects Res 2019; 111:197-211. [PMID: 30702213 DOI: 10.1002/bdr2.1470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/16/2019] [Indexed: 12/24/2022]
Abstract
The prototype death receptor CD95 (Fas) and its ligand, CD95L (FasL), have been thoroughly studied due to their role in immune homeostasis and elimination of infected and transformed cells. The fact that CD95 is present in female reproductive cells and modulated during embryogenesis and pregnancy has raised interest in its role in immune tolerance to the fetoplacental unit. CD95 has been shown to be critical for proper embryonic formation and survival. Moreover, altered expression of CD95 or its ligand causes autoimmunity and has also been directly involved in recurrent pregnancy losses and pregnancy disorders. The objective of this review is to summarize studies that evaluate the mechanisms involved in the activation of CD95 to provide an updated global view of its effect on the regulation of the maternal immune system. Modulation of the CD95 system components may be the immune basis of several common pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Josianne Bienvenue-Pariseault
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| | - Patrick Legembre
- Oncogenesis, Stress & Signaling Laboratory INSERM ERL440, Centre Eugène Marquis, Inserm U1242, Equipe Ligue Contre Le Cancer, Rennes, France
| | - Cathy Vaillancourt
- Department of Environmental toxicology and Chemical Pharmacology, INRS - Institut Armand-Frappier and Center for Interdisciplinary Research on Well-Being, Health, Society and Environment, Laval, Quebec, Canada
| |
Collapse
|
23
|
Xu XY, Wu D, Xu SY, Che LQ, Fang ZF, Feng B, Li J, Wu CM, Lin Y. Comparison of microRNA transcriptomes reveals differential regulation of microRNAs in different-aged boars. Theriogenology 2018; 119:105-113. [DOI: 10.1016/j.theriogenology.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022]
|
24
|
Reza AMMT, Choi YJ, Han SG, Song H, Park C, Hong K, Kim JH. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos. Biol Rev Camb Philos Soc 2018; 94:415-438. [PMID: 30151880 PMCID: PMC7379200 DOI: 10.1111/brv.12459] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are active regulators of numerous biological and physiological processes including most of the events of mammalian reproduction. Understanding the biological functions of miRNAs in the context of mammalian reproduction will allow a better and comparative understanding of fertility and sterility in male and female mammals. Herein, we summarize recent progress in miRNA‐mediated regulation of mammalian reproduction and highlight the significance of miRNAs in different aspects of mammalian reproduction including the biogenesis of germ cells, the functionality of reproductive organs, and the development of early embryos. Furthermore, we focus on the gene expression regulatory feedback loops involving hormones and miRNA expression to increase our understanding of germ cell commitment and the functioning of reproductive organs. Finally, we discuss the influence of miRNAs on male and female reproductive failure, and provide perspectives for future studies on this topic.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| |
Collapse
|
25
|
Influences of different dietary energy level on sheep testicular development associated with AMPK/ULK1/autophagy pathway. Theriogenology 2017; 108:362-370. [PMID: 29304491 DOI: 10.1016/j.theriogenology.2017.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 11/21/2022]
Abstract
Energy balance is an important feature for spermatozoa production in the testis. The 5'-AMP-activated protein kinase (AMPK) is a sensor of cell energy, has been implicated as a mediator between gonadal function and energy balance. Herein, we intended to determine the physiological effects of AMPK on testicular development in feed energy restricted and compensated pre-pubertal rams. Lambs had restricted feeding for 2 months and then provided compensatory feeding for another 3 months. Feed levels were 100%(control), 15% and 30% of energy restriction (ER) diets, respectively. The results showed that lambs fed the 30% ER diet had significantly lower testicular weight (P < .05) and spermatids number in the seminiferous tubules, but there were no differences between control and 15% ER groups. Meanwhile, 15% ER and 30% ER diets induced testis autophagy and apoptosis through activating AMPK-ULK1(ULK1, Unc-51 like autophagy activating kinase) signal pathway with characterization of increased Beclin-1 and Light chain 3-Ⅱ/Light chain 3-Ⅰ (LC3-II/LC3-I) ratio, up-regulated the ratio of pro-apoptotic Bcl-2-associated X protein (BAX) and anti-apoptotic B-cell lymphoma 2 (Bcl-2), as well as activated AMPK, phosphorylated AMPK(p-AMPK) and ULK1. Furthermore, a compensation of these parameters occurred when the lambs were re-fed with normal energy requirement after restriction. Taken together, dietary energy levels influence testicular development through autophagy and apoptosis interplay mediated by AMPK-ULK1 signal pathway, which also indicates the important role of the actions of AMPK in the testis homeostasis.
Collapse
|
26
|
Guan Y, Martin GB. Cellular and molecular responses of adult testis to changes in nutrition: novel insights from the sheep model. Reproduction 2017; 154:R133-R141. [DOI: 10.1530/rep-17-0061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 08/20/2017] [Accepted: 08/29/2017] [Indexed: 12/30/2022]
Abstract
This review explores the cellular and molecular mechanisms that regulate spermatogenesis in the post-pubertal testis that is regressing in response to mild undernutrition, using the sexually mature male sheep as a model. Testis regression leads to reductions in daily sperm production and in the quality of ejaculated spermatozoa (poorer movement, DNA damage). There is also a reduction in spermatogenic efficiency that appears to be caused, at least partially, by increases in germ cell apoptosis. Sertoli cell number does not change with testis regression, although about 1% of Sertoli cells do appear to retain proliferative ability after puberty. On the other hand, Sertoli cell function is disrupted during testis regression, as evidenced by a disorganization of tight junctions and indications that cell differentiation and maturation are reversed. Disrupted Sertoli cell function can explain, at least partially, the increase in germ cell apoptosis and any decrease in the rate of spermatogenesis, the two major contributors to spermatogenic efficiency. These outcomes seem to be mediated by changes in two RNA-based processes: (i) the expression of small non-coding RNAs that are involved in the regulation of Sertoli cell function, spermatogenesis and germ cell apoptosis and (ii) alternative pre-mRNA splicing that affects the regulation of spermatogenesis but does not appear to affect germ cell apoptosis, at least during testis progression induced by undernutrition in the male sheep. These research outcomes can be extended to other animal models and are relevant to issues in human male fertility.
Collapse
|
27
|
Lech T, Styrna J, Kotarska K. The contribution of p53 and Y chromosome long arm genes to regulation of apoptosis in mouse testis. Reprod Fertil Dev 2017; 30:469-476. [PMID: 28763629 DOI: 10.1071/rd17217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/15/2017] [Indexed: 11/23/2022] Open
Abstract
Apoptosis of excessive or defective germ cells is a natural process occurring in mammalian testes. Tumour suppressor protein p53 is involved in this process both in developing and adult male gonads. Its contribution to testicular physiology is known to be modified by genetic background. The aim of this study was to evaluate the combined influence of the p53 and Y chromosome long arm genes on male germ cell apoptosis. Knockout of the transformation related protein 53 (Trp53) gene was introduced into congenic strains: B10.BR (intact Y chromosome) and B10.BR-Ydel (Y chromosome with a deletion in the long arm). The level of apoptosis in the testes of 19-day-old and 3-month-old male mice was determined using the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick-end labelling (TUNEL) method. The study revealed that although p53 is involved in germ cell apoptosis in peripubertal testes, this process can also be mediated by p53-independent mechanisms. However, activation of p53-independent apoptotic pathways in the absence of the p53 protein requires engagement of the multicopy Yq genes and was not observed in gonads of B10.BR-Ydel-p53-/- males. The role of Yq genes in the regulation of testicular apoptosis seems to be restricted to the initial wave of spermatogenesis and is not evident in adult gonads. The study confirmed, instead, that p53 does participate in spontaneous apoptosis in mature testes.
Collapse
Affiliation(s)
- Tomasz Lech
- Department of Microbiology, Faculty of Commodity Science, Cracow University of Economics, Rakowicka 27, PL 31-510, Krakow, Poland
| | - Józefa Styrna
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL 30-387, Krakow, Poland
| | - Katarzyna Kotarska
- Department of Genetics and Evolution, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL 30-387, Krakow, Poland
| |
Collapse
|
28
|
Long noncoding RNA expression profile changes associated with dietary energy in the sheep testis during sexual maturation. Sci Rep 2017; 7:5180. [PMID: 28701734 PMCID: PMC5507887 DOI: 10.1038/s41598-017-05443-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023] Open
Abstract
Spermatogenesis can be affected by nutrition, which operates through normal physiological processes by changing the testicular mass and hormone levels profoundly. However, little is known regarding how testis development is regulated by long noncoding RNA (lncRNA). In this study, we investigated the effects of high-grain (HG) feeding on testis development during sexual maturation mediated by lncRNA. The HG diet group showed an increase in growth hormone (GH), insulin-like growth factor-1 (IGF-1) and testosterone (T) levels, and in the number of sperm in the seminiferous tubules compared with the hay-fed group (p
< 0.05). Moreover, we found 59 differentially expressed (DE) lncRNAs and 229 DE mRNAs in sheep testis between the two groups. qRT-PCR results of 20 randomly selected DE lncRNAs and mRNAs were also consistent with the RNA-seq data. Through functional enrichment analysis and lncRNA-mRNA interaction network analysis, we screened several lncRNAs that may be enriched for male reproduction such as spermatogenesis, sperm motility, steroid hormones, MAPK and ErbB signaling pathways. This study provides a first insight into the development of the testis with HG feeding in sheep and shows that these changes are associated with alterations in lncRNA expression.
Collapse
|
29
|
Guan Y, Liang G, Martin GB, Guan LL. Functional changes in mRNA expression and alternative pre-mRNA splicing associated with the effects of nutrition on apoptosis and spermatogenesis in the adult testis. BMC Genomics 2017; 18:64. [PMID: 28068922 PMCID: PMC5223305 DOI: 10.1186/s12864-016-3385-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 12/07/2016] [Indexed: 01/02/2023] Open
Abstract
Background The effects of nutrition on testis mass in the sexually mature male have long been known, however, the cellular and molecular processes of the testis response to nutrition was not fully understood. Methods We tested whether the defects in spermatogenesis and increases in germ cell apoptosis in the testis that are induced by under-nutrition are associated with changes in mRNA expression and pre-mRNA alternative splicing using groups of 8 male sheep fed for a 10% increase or 10% decrease in body mass over 65 days. Results We identified 2,243 mRNAs, including TP53 and Claudin 11, that were differentially expressed in testis from underfed and well-fed sheep (FDR < 0.1), and found that their expression changed in parallel with variations in germ cell numbers, testis size, and spermatogenesis. Furthermore, pairs of 269 mRNAs and 48 miRNAs were identified on the basis of target prediction. The regulatory effect of miRNAs on mRNA expression, in combination with functional analysis, suggests that these miRNAs are involved in abnormal reproductive morphology, apoptosis and male infertility. Nutrition did not affect the total number of alternative splicing events, but affected 206 alternative splicing events. A total of 159 genes, including CREM, SPATA6, and DDX4, were differentially spliced between dietary treatments, with functions related to RNA splicing and spermatogenesis. In addition, three gene modules were positively correlated with spermatogenesis-related phenotypic traits and negatively related to apoptosis-related phenotypic traits. Among these gene modules, seven (CFLAR, PTPRC, F2R, MAP3K1, EPHA7, APP, BCAP31) were also differentially expressed between nutritional treatments, indicating their potential as markers of spermatogenesis or apoptosis. Conclusions Our findings on significant changes in mRNAs and pre-mRNA alternative splicing under-nutrition suggest that they may partly explain the disruption of spermatogenesis and the increase germ cell apoptosis. However, more research is required to verify their causal effects in regulating spermatogenesis and germ cell apoptosis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3385-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongjuan Guan
- UWA Institute of Agriculture and School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.,, Present address: 304 Rosenthal, 3800 Spruce Street, Philadelphia, PA, 19104, USA
| | - Guanxiang Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Graeme B Martin
- UWA Institute of Agriculture and School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
30
|
Capra E, Turri F, Lazzari B, Cremonesi P, Gliozzi TM, Fojadelli I, Stella A, Pizzi F. Small RNA sequencing of cryopreserved semen from single bull revealed altered miRNAs and piRNAs expression between High- and Low-motile sperm populations. BMC Genomics 2017; 18:14. [PMID: 28052756 PMCID: PMC5209821 DOI: 10.1186/s12864-016-3394-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/07/2016] [Indexed: 01/01/2023] Open
Abstract
Background Small RNAs present in bovine ejaculate can be linked to sperm abnormalities and fertility disorders. At present, quality parameters routinely used in semen evaluation are not fully reliable to predict bull fertility. In order to provide additional quality measurements for cryopreserved semen used for breeding, a method based on deep sequencing of sperm microRNA (miRNA) and Piwi-interacting RNA (piRNA) from individual bulls was developed. To validate our method, two populations of spermatozoa isolated from high and low motile fractions separated by Percoll were sequenced, and their small RNAs content characterized. Results Sperm cells from frozen thawed semen samples of 4 bulls were successfully separated in two fractions. We identified 83 miRNAs and 79 putative piRNAs clusters that were differentially expressed in both fractions. Gene pathways targeted by 40 known differentially expressed miRNAs were related to apoptosis. Dysregulation of miR-17-5p, miR-26a-5p, miR-486-5p, miR-122-5p, miR-184 and miR-20a-5p was found to target three pathways (PTEN, PI3K/AKT and STAT). Conclusions Small RNAs sequencing data obtained from single bulls are consistent with previous findings. Specific miRNAs are differentially represented in low versus high motile sperm, suggesting an alteration of cell functions and increased germ cell apoptosis in the low motile fraction. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3394-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E Capra
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - F Turri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - B Lazzari
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy.,Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy
| | - P Cremonesi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - T M Gliozzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy
| | - I Fojadelli
- Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy
| | - A Stella
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy.,Parco Tecnologico Padano, via Einstein, 26900, Lodi, Italy
| | - F Pizzi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Einstein, 26900, Lodi, Italy.
| |
Collapse
|
31
|
Wang D, Liang G, Wang B, Sun H, Liu J, Guan LL. Systematic microRNAome profiling reveals the roles of microRNAs in milk protein metabolism and quality: insights on low-quality forage utilization. Sci Rep 2016; 6:21194. [PMID: 26884323 PMCID: PMC4756660 DOI: 10.1038/srep21194] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/14/2016] [Indexed: 11/30/2022] Open
Abstract
In this study, we investigated the molecular regulatory mechanisms of milk protein production in dairy cows by studying the miRNAomes of five key metabolic tissues involved in protein synthesis and metabolism from dairy cows fed high- and low-quality diets. In total, 340, 338, 337, 330, and 328 miRNAs were expressed in the rumen, duodenum, jejunum, liver, and mammary gland tissues, respectively. Some miRNAs were highly correlated with feed and nitrogen efficiency, with target genes involved in transportation and phosphorylation of amino acid (AA). Additionally, low-quality forage diets (corn stover and rice straw) influenced the expression of feed and nitrogen efficiency-associated miRNAs such as miR-99b in rumen, miR-2336 in duodenum, miR-652 in jejunum, miR-1 in liver, and miR-181a in mammary gland. Ruminal miR-21-3p and liver miR-2285f were predicted to regulate AA transportation by targeting ATP1A2 and SLC7A8, respectively. Furthermore, bovine-specific miRNAs regulated the proliferation and morphology of rumen epithelium, as well as the metabolism of liver lipids and branched-chain AAs, revealing bovine-specific mechanisms. Our results suggest that miRNAs expressed in these five tissues play roles in regulating transportation of AA for downstream milk production, which is an important mechanism that may be associated with low milk protein under low-quality forage feed.
Collapse
Affiliation(s)
- Diming Wang
- Institute of Dairy Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, P R, China
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Guanxiang Liang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Bing Wang
- Institute of Dairy Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, P R, China
| | - Huizeng Sun
- Institute of Dairy Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, P R, China
| | - Jianxin Liu
- Institute of Dairy Sciences, College of Animal Sciences, Zhejiang University, Hangzhou, P R, China
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
32
|
Different fixative methods influence histological morphology and TUNEL staining in mouse testes. Reprod Toxicol 2016; 60:53-61. [PMID: 26820454 DOI: 10.1016/j.reprotox.2016.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/11/2016] [Accepted: 01/22/2016] [Indexed: 10/22/2022]
Abstract
Society of Toxicologic Pathology has recommended mDF to fix testes since 2002. However, subsequent studies showed that false TUNEL-positive cells were observed in mDF-fixed testes. This study compared the effects of different fixation methods on histology and TUNEL staining in mouse testes. Results showed that fixation for 24 or 36h in mDF provided better morphologic details in untreated testes, but markedly enhanced false TUNEL-positive staining. To optimize the fixation, testes were fixed using mDF for 6h and then PFA for 18h. Interestingly, fixation using mDF/PFA manifested better morphologic details, and rarely caused false TUNEL-positive cells in testes. Finally, we examined germ cell apoptosis in testes using mDF/PFA fixation in cadmium-treated mice. As expected, cadmium triggered germ cell apoptosis which was well visualized in the mDF/PFA fixed testes. Taken together, mDF plus PFA fixation not only minimizes false TUNEL-positive cells, but also provides integrated morphologic details in testes.
Collapse
|
33
|
Song YC, Li WJ, Li LZ. Regulatory effect of miRNA 320a on expression of aquaporin 4 in brain tissue of epileptic rats. ASIAN PAC J TROP MED 2015; 8:807-12. [PMID: 26522295 DOI: 10.1016/j.apjtm.2015.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/20/2015] [Accepted: 09/15/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To study the expression of miRNA 320a in the brain tissue of epileptic rats and analyze its effect on the expression of aquaporin 4 (AQP4). METHODS All rats were performed with the intraperitoneal injection of lithium chloride (3 mmol/kg) and then the intraperitoneal injection of pilocarpine (30 mg/kg) 24 h later (injected twice) to prepare the epileptic model of Wistar rats. Rats in the control group were injected with the equal volume of normal saline. According to the Racine scale, rats with over stage 3 of epilepsy were chosen and the brain tissue was separated quickly and then stored at -80 °C. The immunohistochemistry was used to detect the expression of aquaporin in the brain tissue of epileptic model and the Real-time PCR was employed to determine the difference in the expression of miRNA 320a and AQP4 in the brain tissue of rats between the epileptic model group and control group. Five 5-day neonatal Wistar rats were chosen to collect the cerebral cortex and their primary astrocytes were separated and cultured. They were transfected with miRNA mimic and imitated to the endogenous miRNA 320a to up-regulate the expression of miRNA 320a. RESULTS In the model group, the expression of AQP4 was significantly higher than the control group (P < 0.01). However, the expression of miRNA 320a in the model group was lower than control group (P < 0.05), which was negatively correlated to AQP4. In the primary astrocytes, the transfection of miRNA 320a mimic could significantly reduce the expression of AQP4, while its inhibitor could up-regulate the expression of AQP4, which indicated that miRNA 320a could reduce the expression of AQP4. CONCLUSIONS In the primary astrocytes of rats, the miRNA 320a could inhibit the expression of AQP4 and after adding the inhibitor of miRNA 320a, the expression of AQP4 was up-regulated.
Collapse
Affiliation(s)
- Yu-Cheng Song
- Department of Neurology, Shandong Ankang Hospital, Jining 272051, China
| | - Wen-Juan Li
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining 272000, China.
| | - Liu-Zhi Li
- Department of Neurology, Shandong Ankang Hospital, Jining 272051, China
| |
Collapse
|