1
|
Pauli-limit upper critical field of high-temperature superconductor La 1.84Sr 0.16CuO 4. Sci Rep 2019; 9:16949. [PMID: 31740679 PMCID: PMC6861275 DOI: 10.1038/s41598-019-52973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/26/2019] [Indexed: 11/09/2022] Open
Abstract
The upper critical field of a cuprate high-temperature superconductor, La1.84Sr0.16CuO4, was investigated by high-frequency self-resonant contactless electrical conductivity measurements in magnetic fields up to 102 T. An irreversible transition was observed at 85 T (T = 4.2 K), defined as the upper critical field. The temperature-dependent upper critical field was argued on the basis of the Werthamer-Helfand-Hohenberg theory. The Pauli-limiting pair-breaking process with a small contribution of the spin-orbit coupling explained the first-order phase transition exhibiting a hysteresis observed at low temperatures.
Collapse
|
2
|
Gotlieb K, Lin CY, Serbyn M, Zhang W, Smallwood CL, Jozwiak C, Eisaki H, Hussain Z, Vishwanath A, Lanzara A. Revealing hidden spin-momentum locking in a high-temperature cuprate superconductor. Science 2018; 362:1271-1275. [PMID: 30545882 DOI: 10.1126/science.aao0980] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/24/2018] [Accepted: 11/07/2018] [Indexed: 11/02/2022]
Abstract
Cuprate superconductors have long been thought of as having strong electronic correlations but negligible spin-orbit coupling. Using spin- and angle-resolved photoemission spectroscopy, we discovered that one of the most studied cuprate superconductors, Bi2212, has a nontrivial spin texture with a spin-momentum locking that circles the Brillouin zone center and a spin-layer locking that allows states of opposite spin to be localized in different parts of the unit cell. Our findings pose challenges for the vast majority of models of cuprates, such as the Hubbard model and its variants, where spin-orbit interaction has been mostly neglected, and open the intriguing question of how the high-temperature superconducting state emerges in the presence of this nontrivial spin texture.
Collapse
Affiliation(s)
- Kenneth Gotlieb
- Graduate Group in Applied Science and Technology, University of California, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chiu-Yun Lin
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Maksym Serbyn
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Wentao Zhang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Christopher L Smallwood
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Physics, University of California, Berkeley, CA 94720, USA
| | - Christopher Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Hiroshi Eisaki
- Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - Zahid Hussain
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | - Alessandra Lanzara
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. .,Department of Physics, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor. Nat Commun 2016; 7:12244. [PMID: 27448102 PMCID: PMC4961849 DOI: 10.1038/ncomms12244] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/15/2016] [Indexed: 12/01/2022] Open
Abstract
The observation of a reconstructed Fermi surface via quantum oscillations in hole-doped cuprates opened a path towards identifying broken symmetry states in the pseudogap regime. However, such an identification has remained inconclusive due to the multi-frequency quantum oscillation spectra and complications accounting for bilayer effects in most studies. We overcome these impediments with high-resolution measurements on the structurally simpler cuprate HgBa2CuO4+δ (Hg1201), which features one CuO2 plane per primitive unit cell. We find only a single oscillatory component with no signatures of magnetic breakdown tunnelling to additional orbits. Therefore, the Fermi surface comprises a single quasi-two-dimensional pocket. Quantitative modelling of these results indicates that a biaxial charge density wave within each CuO2 plane is responsible for the reconstruction and rules out criss-crossed charge stripes between layers as a viable alternative in Hg1201. Lastly, we determine that the characteristic gap between reconstructed pockets is a significant fraction of the pseudogap energy. The identification of broken symmetry states in underdoped cuprate superconductors via quantum oscillation measurements remains inconclusive. Here, Chan et al. report the reconstructed Fermi surface of HgBa2CuO4+δ comprises only a single pocket indicating a biaxial charge-density-wave order within each CuO2 plane.
Collapse
|