1
|
Yan M, Huang J, Ding M, Wang J, Song D. 3D-printed model is a useful addition in orthopedic resident education for the understanding of tibial plateau fractures. Sci Rep 2024; 14:24880. [PMID: 39438597 PMCID: PMC11496501 DOI: 10.1038/s41598-024-76217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
This study aimed to explore the role of the three-dimension (3D) printed models in orthopedic resident training of tibial plateau fractures. A total of 41 residents from our institution were divided into two groups. The intervention group, consisting of 20 residents, had access to 3D-printed models illustrating thirteen tibial plateau fractures. In contrast, the control group, comprising 21 residents, received digital images of thirteen identical tibial plateau fractures. Evaluation of learning outcomes included the accurate identification of tibial plateau fracture patterns, deduction of traumatic mechanisms, preoperative plan, assessment time, and subjective questionnaire responses. The participants with 3D printed models scored significantly higher in both the Schatzker classification and Luo three-column classification compared to those without 3D printed models. Residents in the intervention group performed better in accuracy in deducing traumatic mechanisms compared to the control group. In addition, the sum score of preoperative plan in the intervention group was significantly higher than that in the control group. Specifically, participants with 3D printed models scored higher in surgical approach choice and implants placement than these in the control group. Residents exposed to 3D printed models also spent less time to complete the assessment than those with access only to digital imaging. Subjective assessments indicated that 3D-printed models boosted confidence in fracture identification, improved preoperative plan for fracture management and enhanced the understanding in injury mechanism of tibial plateau fractures. Furthermore, residents agreed that the use of 3D-printed models heightened their interest in learning tibial plateau fractures. Therefore, the addition of 3D printed models significantly contributed to a comprehensive understanding of tibial plateau fractures, the improvement in fracture identification, inferring injury mechanisms and preoperative plan.
Collapse
Affiliation(s)
- Mingming Yan
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, PR China
| | - Jun Huang
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, PR China
| | - Muliang Ding
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, PR China
| | - Junjie Wang
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, PR China
| | - Deye Song
- Department of Orthopedic Surgery, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, PR China.
| |
Collapse
|
2
|
Barger JB, Edwards DN. Development, implementation, and perceptions of a 3D-printed human skull in a large dental gross anatomy course. ANATOMICAL SCIENCES EDUCATION 2024; 17:1215-1228. [PMID: 38715139 DOI: 10.1002/ase.2434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 08/30/2024]
Abstract
Skull anatomy is a difficult region for anatomy students to learn and understand but is necessary for a variety of health professional students. To improve learning, a 3D-printed human skull was developed, produced, and distributed to a course of 83 dental students for use as a take-home study tool over the 10-week anatomy course. The 70% scale human skull derived from CT data had a fully articulating mandible, simulated temporomandibular joint, and accurate cranial structures. At the course end, students completed a perception survey and responses were compared with those who made a grade of A, B, or C in the course. Students overall reported using the model less than 3 h per week, but those who scored an A in the course reported using the model more frequently than those who scored a B or C. Free responses revealed that students used the model in a variety of ways, but found that the model was quick and easily accessible to check understanding while studying at home in the absence of direct observation by faculty. Overall, this study provides evidence on the feasibility of large-scale 3D printing and the benefits of the use of a 3D-printed model as a take-home study aid.
Collapse
Affiliation(s)
- J Bradley Barger
- Department of Cell, Developmental, and Integrative Biology, Birmingham Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Danielle N Edwards
- Department of Cell, Developmental, and Integrative Biology, Birmingham Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Wang J, Li W, Dun A, Zhong N, Ye Z. 3D visualization technology for Learning human anatomy among medical students and residents: a meta- and regression analysis. BMC MEDICAL EDUCATION 2024; 24:461. [PMID: 38671399 PMCID: PMC11055294 DOI: 10.1186/s12909-024-05403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND 3D visualization technology applies computers and other devices to create a realistic virtual world for individuals with various sensory experiences such as 3D vision, touch, and smell to gain a more effective understanding of the relationships between real spatial structures and organizations. The purpose of this study was to comprehensively evaluate the effectiveness of 3D visualization technology in human anatomy teaching/training and explore the potential factors that affect the training effects to better guide the teaching of classroom/laboratory anatomy. METHODS We conducted a meta-analysis of randomized controlled studies on teaching human anatomy using 3D visualization technology. We extensively searched three authoritative databases, PubMed, Web of Science, and Embase; the main outcomes were the participants' test scores and satisfaction, while the secondary outcomes were time consumption and enjoyment. Heterogeneity by I² was statistically determined because I²> 50%; therefore, a random-effects model was employed, using data processing software such as RevMan, Stata, and VOSviewer to process data, apply standardized mean difference and 95% confidence interval, and subgroup analysis to evaluate test results, and then conduct research through sensitivity analysis and meta-regression analysis. RESULTS Thirty-nine randomized controlled trials (2,959 participants) were screened and included in this study. The system analysis of the main results showed that compared with other methods, including data from all regions 3D visualization technology moderately improved test scores as well as satisfaction and enjoyment; however, the time that students took to complete the test was not significantly reduced. Meta-regression analysis also showed that regional factorsaffected test scores, whereas other factors had no significant impact. When the literature from China was excluded, the satisfaction and happiness of the 3D virtual-reality group were statistically significant compared to those of the traditional group; however, the test results and time consumption were not statistically significant. CONCLUSION 3D visualization technology is an effective way to improve learners' satisfaction with and enjoyment of human anatomical learning, but it cannot reduce the time required for testers to complete the test. 3D visualization technology may struggle to improve the testers' scores. The literature test results from China are more prone to positive results and affected by regional bias.
Collapse
Affiliation(s)
- Junming Wang
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China
- School of clinical and basic medicine, Shandong First Medical University, Jinan, China
| | - Wenjun Li
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China
- School of clinical and basic medicine, Shandong First Medical University, Jinan, China
| | - Aishe Dun
- School of Stomatology, Shandong First Medical University, Jinan, China
| | - Ning Zhong
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China.
| | - Zhen Ye
- Department of Health Management, The First Affiliated Hospital, Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, 250013, Jinan, Shandong, China.
| |
Collapse
|
4
|
Henningsen MJ, Thorlacius-Ussing L, Jensen LG, Hansen K, Jacobsen C, Lou S, Villa C. 3D printed skulls in court - a benefit to stakeholders? Int J Legal Med 2023; 137:1865-1873. [PMID: 37391670 PMCID: PMC10567900 DOI: 10.1007/s00414-023-03054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Forensic pathologists may use 3D prints as demonstrative aids when providing expert testimony in court of law, but the effects remain unclear despite many assumed benefits. In this qualitative study, the effects of using a 3D print, demonstrating a blunt force skull fracture, in court were explored by thematic analysis of interviews with judges, prosecutors, defence counsels, and forensic pathologists with the aim of improving the expert testimony. Five semi-structured focus groups and eight one-to-one interviews with a total of 29 stakeholders were transcribed ad verbatim and analysed using thematic analysis. The study found that a highly accurate 3D print of a skull demonstrated autopsy findings in detail and provided a quick overview, but sense of touch was of little benefit as the 3D print had different material characteristics than the human skull. Virtual 3D models were expected to provide all the benefits of 3D prints, be less emotionally confronting, and be logistically feasible. Both 3D prints and virtual 3D models were expected to be less emotionally confronting than autopsy photos. Regardless of fidelity, an expert witness was necessary to translate technical language and explain autopsy findings, and low-fidelity models may be equally suited as demonstrative aids. The court infrequently challenged the expert witnesses' conclusions and, therefore, rarely had a need for viewing autopsy findings in detail, therefore rarely needing a 3D print.
Collapse
Affiliation(s)
- Mikkel Jon Henningsen
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Lykke Thorlacius-Ussing
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Groth Jensen
- DEFACTUM, Public Health & Health Services Research, Central Denmark Region, Aarhus, Denmark
| | - Kasper Hansen
- Department of Forensic Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Christina Jacobsen
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stina Lou
- DEFACTUM, Public Health & Health Services Research, Central Denmark Region, Aarhus, Denmark
| | - Chiara Villa
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Yang MY, Tseng HC, Liu CH, Tsai SY, Chen JH, Chu YH, Li ST, Lee JJ, Liao WC. Effects of the individual three-dimensional printed craniofacial bones with a quick response code on the skull spatial knowledge of undergraduate medical students. ANATOMICAL SCIENCES EDUCATION 2023; 16:858-869. [PMID: 36905326 DOI: 10.1002/ase.2269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Understanding the three-dimensional (3D) structure of the human skull is imperative for medical courses. However, medical students are overwhelmed by the spatial complexity of the skull. Separated polyvinyl chloride (PVC) bone models have advantages as learning tools, but they are fragile and expensive. This study aimed to reconstruct 3D-printed skull bone models (3D-PSBs) using polylactic acid (PLA) with anatomical characteristics for spatial recognition of the skull. Student responses to 3D-PSB application were investigated through a questionnaire and tests to understand the requirement of these models as a learning tool. The students were randomly divided into 3D-PSB (n = 63) and skull (n = 67) groups to analyze pre- and post-test scores. Their knowledge was improved, with the gain scores of the 3D-PSB group (50.0 ± 3.0) higher than that of the skull group (37.3 ± 5.2). Most students agreed that using 3D-PSBs with quick response codes could improve immediate feedback on teaching (88%; 4.41 ± 0.75), while 85.9% of the students agreed that individual 3D-PSBs clarified the structures hidden within the skull (4.41 ± 0.75). The ball drop test revealed that the mechanical strength of the cement/PLA model was significantly greater than that of the cement or PLA model. The prices of the PVC, cement, and cement/PLA models were 234, 1.9, and 10 times higher than that of the 3D-PSB model, respectively. These findings imply that low-cost 3D-PSB models could revolutionize skull anatomical education by incorporating digital technologies like the QR system into the anatomical teaching repertoire.
Collapse
Affiliation(s)
- Mao-Yi Yang
- Department of Medical Education, Changhua Christian Hospital, Changhua City, Taiwan
- Department of Orthopedic Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsien-Chun Tseng
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Radiation Oncology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiung-Hui Liu
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shao-Yu Tsai
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Jyun-Hsiung Chen
- Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yin-Hung Chu
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shao-Ti Li
- Department of Radiation Oncology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jian-Jr Lee
- Faculty of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Department of Plastic & Reconstruction Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Wen-Chieh Liao
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
Bao G, Yang P, Yi J, Peng S, Liang J, Li Y, Guo D, Li H, Ma K, Yang Z. Full-sized realistic 3D printed models of liver and tumour anatomy: a useful tool for the clinical medicine education of beginning trainees. BMC MEDICAL EDUCATION 2023; 23:574. [PMID: 37582729 PMCID: PMC10428657 DOI: 10.1186/s12909-023-04535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Simulation-based medical education (SBME) and three-dimensional printed (3DP) models are increasingly used in continuing medical education and clinical training. However, our understanding of their role and value in improving trainees' understanding of the anatomical and surgical procedures associated with liver surgery remains limited. Furthermore, gender bias is also a potential factor in the evaluation of medical education. Therefore, the aim of this study was to evaluate the educational benefits trainees receive from the use of novel 3DP liver models while considering trainees' experience and gender. METHODS Full-sized 3DP liver models were developed and printed using transparent material based on anonymous CT scans. We used printed 3D models and conventional 2D CT scans of the liver to investigate thirty trainees with various levels of experience and different genders in the context of both small group teaching and formative assessment. We adopted a mixed methods approach involving both questionnaires and focus groups to collect the views of different trainees and monitors to assess trainees' educational benefits and perceptions after progressing through different training programs. We used Objective Structured Clinical Examination (OSCE) and Likert scales to support thematic analysis of the responses to the questionnaires by trainees and monitors, respectively. Descriptive analyses were conducted using SPSS statistical software version 21.0. RESULTS Overall, a 3DP model of the liver is of great significance for improving trainees' understanding of surgical procedures and cooperation during operation. After viewing the personalized full-sized 3DP liver model, all trainees at the various levels exhibited significant improvements in their understanding of the key points of surgery (p < 0.05), especially regarding the planned surgical procedure and key details of the surgical procedures. More importantly, the trainees exhibited higher levels of satisfaction and self-confidence during the operation regardless of gender. However, with regard to gender, the results showed that the improvement of male trainees after training with the 3DP liver model was more significant than that of female trainees in understanding and cooperation during the surgical procedure, while no such trend was found with regard to their understanding of the base knowledge. CONCLUSION Trainees and monitors agreed that the use of 3DP liver models was acceptable. The improvement of the learning effect for practical skills and theoretical understanding after training with the 3DP liver models was significant. This study also indicated that training with personalized 3DP liver models can improve all trainees' presurgical understanding of liver tumours and surgery and males show more advantage in understanding and cooperation during the surgical procedure as compared to females. Full-sized realistic 3DP models of the liver are an effective auxiliary teaching tool for SBME teaching in Chinese continuing medical education.
Collapse
Affiliation(s)
- Guoqiang Bao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Ping Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Jiangpu Yi
- 3D Printing Research Center of Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Shujia Peng
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Jiahe Liang
- 3D Printing Research Center of Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Yajie Li
- Xi 'an Ma Ke Medical Technology Ltd, Room 21516, Block C, Chaoyang International Plaza, Xi'an, Shaanxi, China
| | - Dian Guo
- Xi 'an Ma Ke Medical Technology Ltd, Room 21516, Block C, Chaoyang International Plaza, Xi'an, Shaanxi, China
| | - Haoran Li
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Kejun Ma
- Xi 'an Ma Ke Medical Technology Ltd, Room 21516, Block C, Chaoyang International Plaza, Xi'an, Shaanxi, China
| | - Zhenyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
7
|
Nayak VV, Slavin BV, Bergamo ET, Torroni A, Runyan CM, Flores RL, Kasper FK, Young S, Coelho PG, Witek L. Three-Dimensional Printing Bioceramic Scaffolds Using Direct-Ink-Writing for Craniomaxillofacial Bone Regeneration. Tissue Eng Part C Methods 2023; 29:332-345. [PMID: 37463403 PMCID: PMC10495199 DOI: 10.1089/ten.tec.2023.0082] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Defects characterized as large osseous voids in bone, in certain circumstances, are difficult to treat, requiring extensive treatments which lead to an increased financial burden, pain, and prolonged hospital stays. Grafts exist to aid in bone tissue regeneration (BTR), among which ceramic-based grafts have become increasingly popular due to their biocompatibility and resorbability. BTR using bioceramic materials such as β-tricalcium phosphate has seen tremendous progress and has been extensively used in the fabrication of biomimetic scaffolds through the three-dimensional printing (3DP) workflow. 3DP has hence revolutionized BTR by offering unparalleled potential for the creation of complex, patient, and anatomic location-specific structures. More importantly, it has enabled the production of biomimetic scaffolds with porous structures that mimic the natural extracellular matrix while allowing for cell growth-a critical factor in determining the overall success of the BTR modality. While the concept of 3DP bioceramic bone tissue scaffolds for human applications is nascent, numerous studies have highlighted its potential in restoring both form and function of critically sized defects in a wide variety of translational models. In this review, we summarize these recent advancements and present a review of the engineering principles and methodologies that are vital for using 3DP technology for craniomaxillofacial reconstructive applications. Moreover, we highlight future advances in the field of dynamic 3D printed constructs via shape-memory effect, and comment on pharmacological manipulation and bioactive molecules required to treat a wider range of boney defects.
Collapse
Affiliation(s)
- Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Blaire V. Slavin
- University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Edmara T.P. Bergamo
- Biomaterials Division, New York University College of Dentistry, New York, New York, USA
- Department of Prosthodontics and Periodontology, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Andrea Torroni
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, New York, New York, USA
| | - Christopher M. Runyan
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Roberto L. Flores
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, New York, New York, USA
| | - F. Kurtis Kasper
- Department of Orthodontics, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Simon Young
- Bernard and Gloria Pepper Katz Department of Oral and Maxillofacial Surgery, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Paulo G. Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida, USA
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Lukasz Witek
- Biomaterials Division, New York University College of Dentistry, New York, New York, USA
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, New York, New York, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA
| |
Collapse
|
8
|
Adnan S, Xiao J. A scoping review on the trends of digital anatomy education. Clin Anat 2023; 36:471-491. [PMID: 36583721 DOI: 10.1002/ca.23995] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022]
Abstract
Digital technologies are changing the landscape of anatomy education. To reveal the trend of digital anatomy education across medical science disciplines, searches were performed using PubMed, EMBASE, and MEDLINE bibliographic databases for research articles published from January 2010 to June 2021 (inclusive). The search was restricted to publications written in English language and to articles describing teaching tools in undergraduate and postgraduate anatomy and pre-vocational clinical anatomy training courses. Among 156 included studies across six health disciplines, 35% used three-dimensional (3D) digital printing tools, 24.2% augmented reality (AR), 22.3% virtual reality (VR), 11.5% web-based programs, and 4.5% tablet-based apps. There was a clear discipline-dependent preference in the choice and employment of digital anatomy education. AR and VR were the more commonly adopted digital tools for medical and surgical anatomy education, while 3D printing is more broadly used for nursing, allied health and dental health education compared to other digital resources. Digital modalities were predominantly adopted for applied interactive anatomy education and primarily in advanced anatomy curricula such as regional anatomy and neuroanatomy. Moreover, there was a steep increase in VR anatomy combining digital simulation for surgical anatomy training. There is a consistent increase in the adoption of digital modalities in anatomy education across all included health disciplines. AR and VR anatomy incorporating digital simulation will play a more prominent role in medical education of the future. Combining multimodal digital resources that supports blended and interactive learning will further modernize anatomy education, moving medical education further away from its didactic history.
Collapse
Affiliation(s)
- Sharmeen Adnan
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia
| | - Junhua Xiao
- Department of Health Sciences and Biostatistics, School of Health Sciences, Swinburne University of Technology, Hawthorn, Australia.,School of Allied Health, La Trobe University, Bundoora, Australia
| |
Collapse
|
9
|
Rodriguez Colon R, Nayak VV, Parente PEL, Leucht P, Tovar N, Lin CC, Rezzadeh K, Hacquebord JH, Coelho PG, Witek L. The presence of 3D printing in orthopedics: A clinical and material review. J Orthop Res 2023; 41:601-613. [PMID: 35634867 DOI: 10.1002/jor.25388] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 04/13/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023]
Abstract
The field of additive manufacturing, 3D printing (3DP), has experienced an exponential growth over the past four decades, in part due to increased accessibility. Developments including computer-aided design and manufacturing, incorporation of more versatile materials, and improved printing techniques/equipment have stimulated growth of 3DP technologies within various industries, but most specifically the medical field. Alternatives to metals including ceramics and polymers have been garnering popularity due to their resorbable properties and physiologic similarity to extracellular matrix. 3DP has the capacity to utilize an assortment of materials and printing techniques for a multitude of indications, each with their own associated benefits. Within the field of medicine, advances in medical imaging have facilitated the integration of 3DP. In particular, the field of orthopedics has been one of the earliest medical specialties to implement 3DP. Current indications include education for patients, providers, and trainees, in addition to surgical planning. Moreover, further possibilities within orthopedic surgery continue to be explored, including the development of patient-specific implants. This review aims to highlight the use of current 3DP technology and materials by the orthopedic community, and includes comments on current trends and future direction(s) within the field.
Collapse
Affiliation(s)
- Ricardo Rodriguez Colon
- Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA
| | - Vasudev Vivekanand Nayak
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Paulo E L Parente
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA.,Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Philipp Leucht
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, New York, USA.,Department of Cell Biology, NYU Grossman School of Medicine, New York, New York, USA
| | - Nick Tovar
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Charles C Lin
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Kevin Rezzadeh
- Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Jacques H Hacquebord
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA.,Department of Orthopedic Surgery, NYU Grossman School of Medicine, New York, New York, USA
| | - Paulo G Coelho
- Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, New York, USA.,Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA.,Department of Mechanical and Aerospace Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Lukasz Witek
- Biomaterials Division - Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA.,Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
10
|
Yan M, Huang J, Ding M, Wang J, Ni J, Wu H, Song D. Three-Dimensional Printing Model Enhances Correct Identification and Understanding of Pelvic Fracture in Medical Students. JOURNAL OF SURGICAL EDUCATION 2023; 80:331-337. [PMID: 36470716 DOI: 10.1016/j.jsurg.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/12/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Understanding the anatomy behind a pelvic fracture can be a significant challenge to medical students. Recent advances in three-dimensional printing technology offers a novel approach to facilitate the learning of complex fracture. We have described here how the 3-dimension printing (3Dp) models can help medical students improve their understanding in and identification of pelvic fractures. DESIGN One hundred students were randomized into 2 teaching module groups (with or without 3Dp models). Prior to randomization assignment, a 50-minute didactic lecture covering elementary knowledge of anatomy, Young-Burgess classification, and traumatic mechanism of pelvic fracture was delivered to all students. The 3Dp group received X-rays, CT images, and 3Dp models of the eight pelvic fractures during presentation, while the students in the control group only obtained X-rays and CT scans of the same 8 pelvic fractures. Young-Burgess classification system and injury mechanism of pelvic fracture, time for evaluation, and subjective questions were conducted to assess the learning outcomes. SETTING A medical student program based in a LevelⅠtrauma center PARTICIPANTS: One hundred students in their 4th year of a 5-year clinical medicine program (for a medical bachelor degree) RESULTS: Students receiving 3Dp model had a higher rate of identifying the correct pelvic fracture via Young-Burgess identification compared to these without 3Dp model. Moreover, the accuracy of identifying the injury mechanism was significantly higher in the 3Dp group than that in group without 3Dp model. Participant in 3Dp group had faster assessment time compared to the control group. Subjective survey results suggested that 3Dp model would increase the learning interest and enhance the understanding of pelvic fracture. In addition, majority of students (83%) reported that they would like to use 3Dp model in other surgical course education. CONCLUSIONS 3Dp model increased the perceived accuracy of pelvic fracture identification and understanding of injury mechanism. Moreover, 3Dp model promoted the subjective interest and motivation of students in pelvic fracture learning. Therefore, 3Dp model can be considered as a valuable educational tool for learning pelvic fracture in medical students.
Collapse
Affiliation(s)
- Mingming Yan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Jun Huang
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Institute of Orthopaedic Traumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Muliang Ding
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Junjie Wang
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Jiangdong Ni
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Institute of Orthopaedic Traumatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China
| | - Hongtao Wu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China..
| | - Deye Song
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
11
|
Lin GX, Chen CM, Rui G, Hu BS. Research relating to three-dimensional (3D) printing in spine surgery: a bibliometric analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:395-407. [PMID: 36109389 DOI: 10.1007/s00586-022-07376-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE Although numerous publications on three-dimensional printing (3DP) in spine surgery have been published, bibliometric analysis studies are scarce. Thus, this study aimed to present a bibliometric analysis of the status, hot spots, and frontiers of 3DP in spine surgery and associated research disciplines. METHODS All publications relating to the utilization of 3DP in spine surgery from 1999 to May 9, 2022, were retrieved from the Web of Science. The bibliometric analysis was performed using CiteSpace software, and information on the country, institution, author, journal, and keywords for each publication was collected. RESULTS A total of 270 articles were identified. From 2016 onward, a significant increase in publications on spinal surgery was observed. China was the most productive and influential country (98 publications) and H-index (22), followed by the USA and Australia. The most productive institution was Capital Medical University (9 publications). P. S. D'urso (8 publications, 46 citations) and R. J. Mobbs (8 publications, 39 citations) were the most prolific authors. European Spine Journal contributed the highest number of publications. The eight main clusters were: "rapid prototyping" #0, "3D printed" #1, "spine fusion" #2, "scoliosis" #3, "spine surgery" #4, "patient-specific" #5, "nervous system" #6, and "neuronavigation" #7. The strongest keyword bursts in 3DP in spine surgery were "fixation," "drill template," "instrumentation," "fusion," "complication," and "atlantoaxial instability." CONCLUSION This analysis provides information on research trends and frontiers in the application of 3DP in spine surgery, as well as research and collaboration partners, institutions, and countries.
Collapse
Affiliation(s)
- Guang-Xun Lin
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,The Third Clinical Medical College, The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Chien-Min Chen
- Division of Neurosurgery, Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan.,Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung, Taiwan.,College of nursing and health sciences, Dayeh University, Changhua, Taiwan
| | - Gang Rui
- Department of Orthopedics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,The Third Clinical Medical College, The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Bao-Shan Hu
- The Third Clinical Medical College, The School of Clinical Medicine, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
12
|
Xia J, Mao J, Chen H, Xu X, Zhang J, Yang J, Wang Z. Development and evaluation of a portable and soft 3D-printed cast for laparoscopic choledochojejunostomy model in surgical training. BMC MEDICAL EDUCATION 2023; 23:77. [PMID: 36721193 PMCID: PMC9889129 DOI: 10.1186/s12909-023-04055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Laparoscopic choledochojejunostomy (LCJ) is an essential basic skill for biliary surgeons. Therefore, we established a convenient and effective LCJ 3D printing model to evaluate whether the model could simulate the actual operation situation and determine its effectiveness and validity in surgical training. METHODS A 3D printing dry laboratory model was established to simulate LCJ. The face and content validity of the model were evaluated by six experienced biliary surgeons based on 5-point Likert scale questionnaires. A total of 15 surgeons with different levels of experience performed LCJ on the model and evaluated the structural validity of the model using the objective structured assessment of technical skills (OSATS). Simultaneously, the operation time of each surgery was also recorded. A study was also performed to further evaluate the learning curve of residents. RESULTS The operating space score of the model was 4.83 ± 0.41 points. The impression score of bile duct and intestinal canal was 4.33 ± 0.52 and 4.17 ± 0.41 points, respectively. The tactile sensation score of bile duct suture and intestinal canal suture was 4.00 ± 0.63 and 3.83 ± 0.41points, respectively. The OSATS score for model operation in the attending group was 29.20 ± 0.45 points, which was significantly higher than that in the fellow group (26.80 ± 1.10, P = 0.007) and the resident group (19.80 ± 1.30, P < 0.001). In addition, there was a statistical difference in operation time among surgeons of different experience levels (P < 0.05). Residents could significantly improve the surgical score and shorten the time of LCJ through repeated training. CONCLUSIONS The 3D printing LCJ model can simulate the real operation scenes and distinguish surgeons with different levels of experience. The model is expected to be one of the training methods for biliary tract surgery in the future.
Collapse
Affiliation(s)
- Jianfu Xia
- Department of General Surgery, The Second Affiliated Hospital of Shanghai University (Wenzhou Central Hospital), Wenzhou, 325000, China
- Soochow University, Suzhou, 215000, China
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310000, China
| | - Jinlei Mao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Hao Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Xiaodong Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jin Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhifei Wang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital, Hangzhou, 310000, China.
| |
Collapse
|
13
|
Ye Z, Jiang H, Bai S, Wang T, Yang D, Hou H, Zhang Y, Yi S. Meta-analyzing the efficacy of 3D printed models in anatomy education. Front Bioeng Biotechnol 2023; 11:1117555. [PMID: 36890917 PMCID: PMC9986435 DOI: 10.3389/fbioe.2023.1117555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Three-dimensional printing models (3DPs) have been widely used in medical anatomy training. However, the 3DPs evaluation results differ depending on such factors as the training objects, experimental design, organ parts, and test content. Thus, this systematic evaluation was carried out to better understand the role of 3DPs in different populations and different experimental designs. Controlled (CON) studies of 3DPs were retrieved from PubMed and Web of Science databases, where the participants were medical students or residents. The teaching content is the anatomical knowledge of human organs. One evaluation indicator is the mastery of anatomical knowledge after training, and the other is the satisfaction of participants with 3DPs. On the whole, the performance of the 3DPs group was higher than that of the CON group; however, there was no statistical difference in the resident subgroup, and there was no statistical difference for 3DPs vs. 3D visual imaging (3DI). In terms of satisfaction rate, the summary data showed that the difference between the 3DPs group (83.6%) vs. the CON group (69.6%) (binary variable) was not statistically significant, with p > 0.05. 3DPs has a positive effect on anatomy teaching, although there are no statistical differences in the performance tests of individual subgroups; participants generally had good evaluations and satisfaction with 3DPs. 3DPs still faces challenges in production cost, raw material source, authenticity, durability, etc. The future of 3D-printing-model-assisted anatomy teaching is worthy of expectation.
Collapse
Affiliation(s)
- Zhen Ye
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Hanming Jiang
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Suyun Bai
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Tao Wang
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Duxiao Yang
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Haifeng Hou
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Yuanying Zhang
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Shuying Yi
- School of clinical and basic medicine, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
14
|
Mogali SR, Chandrasekaran R, Radzi S, Peh ZK, Tan GJS, Rajalingam P, Yee Yeong W. Investigating the effectiveness of three-dimensionally printed anatomical models compared with plastinated human specimens in learning cardiac and neck anatomy: A randomized crossover study. ANATOMICAL SCIENCES EDUCATION 2022; 15:1007-1017. [PMID: 34363315 DOI: 10.1002/ase.2128] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Three-dimensional printing (3DP) technology has been increasingly applied in health profession education. Yet, 3DP anatomical models compared with the plastinated specimens as learning scaffolds are unclear. A randomized-controlled crossover study was used to evaluate the objective outcomes of 3DP models compared with the plastinated specimens through an introductory lecture and team study for learning relatively simple (cardiac) and complex (neck) anatomies. Given the novel multimaterial and multicolored 3DP models are replicas of the plastinated specimens, it is hypothesized that 3DP models have the same educational benefits to plastinated specimens. This study was conducted in two phases in which participants were randomly assigned to 3DP (n = 31) and plastinated cardiac groups (n = 32) in the first phase, whereas same groups (3DP, n = 15; plastinated, n = 18) used switched materials in the second phase for learning neck anatomy. The pretest, educational activities and posttest were conducted for each phase. Miller's framework was used to assess the cognitive outcomes. There was a significant improvement in students' baseline knowledge by 29.7% and 31.3% for Phase 1; 31.7% and 31.3% for Phase 2 plastinated and 3DP models. Posttest scores for cardiac (plastinated, 3DP mean ± SD: 57.0 ± 13.3 and 60.8 ± 13.6, P = 0.27) and neck (70.3 ± 15.6 and 68.3 ± 9.9, P = 0.68) phases showed no significant difference. In addition, no difference observed when cognitive domains compared for both cases. These results reflect that introductory lecture plus either the plastinated or 3DP modes were effective for learning cardiac and neck anatomy.
Collapse
Affiliation(s)
| | - Ramya Chandrasekaran
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Shairah Radzi
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Zhen Kai Peh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Gerald Jit Shen Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore
| | - Preman Rajalingam
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore
| | - Wai Yee Yeong
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
15
|
Asghar A, Naaz S, Patra A, Ravi KS, Khanal L. Effectiveness of 3D-printed models prepared from radiological data for anatomy education: A meta-analysis and trial sequential analysis of 22 randomized, controlled, crossover trials. JOURNAL OF EDUCATION AND HEALTH PROMOTION 2022; 11:353. [PMID: 36567994 PMCID: PMC9768753 DOI: 10.4103/jehp.jehp_199_22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/06/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Many academicians suggested the supplementary use of 3D-printed models reconstructed from radiological images for optimal anatomy education. 3D-printed model is newer technology available to us. The purpose of this systematic review was to capture the usefulness or effectiveness of this newer technology in anatomy education. MATERIALS AND METHODS Twenty-two studies met the inclusion and exclusion criteria for quantitative synthesis. The included studies were sub-grouped according to the interventions and participants. No restrictions were applied based on geographical location, language and publication years. Randomized, controlled trial, cross-sectional and cross-over designs were included. The effect size of each intervention in both participants was computed as a standardized mean difference (SMD). RESULTS Twenty-two randomized, controlled trials were included for quantitative estimation of effect size of knowledge acquisition as standardized mean difference in 1435 participants. The pooled effect size for 3D-printed model was 0.77 (0.45-1.09, 95% CI, P < 0.0001) with 86% heterogeneity. The accuracy score was measured in only three studies and estimated effect size was 2.81 (1.08-4.54, 95% CI, P = 0.001) with 92% heterogeneity. The satisfaction score was examined by questionnaire in 6 studies. The estimated effect size was 2.00 (0.69-3.32, 95% CI, P = 0.003) with significant heterogeneity. CONCLUSION The participants exposed to the 3D-printed model performed better than participants who used traditional methodologies. Thus, the 3D-printed model is a potential tool for anatomy education.
Collapse
Affiliation(s)
- Adil Asghar
- Department of Anatomy, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Shagufta Naaz
- Department of Anaesthesiology, All India Institute of Medical Sciences, Patna, Bihar, India
| | - Apurba Patra
- Department of Anatomy, All India Institute of Medical Sciences, Bathinda, Punjab, India
| | - Kumar S. Ravi
- Department of Anatomy, All India Institute of Medical Sciences Rishikesh, Uttarakhand, India
| | - Laxman Khanal
- Department of Anatomy, BP Koirala Institute of Health Sciences, Nepal
| |
Collapse
|
16
|
Salazar D, Thompson M, Rosen A, Zuniga J. Using 3D Printing to Improve Student Education of Complex Anatomy: a Systematic Review and Meta-analysis. MEDICAL SCIENCE EDUCATOR 2022; 32:1209-1218. [PMID: 36276759 PMCID: PMC9583986 DOI: 10.1007/s40670-022-01595-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 05/29/2023]
Abstract
Objective Additive manufacturing has played an increasingly important role in the field of health care. One of the most recent applications has been the development of 3D printed anatomical models specifically to improve student education. The purpose of this review was to assess the potential for 3D printed models to improve understanding of complex anatomy in undergraduate and medical/professional students. Methods A systematic review was performed to investigate the different implementations of 3D printed anatomical models in educational curricula. In addition, a meta-analysis was conducted to assess the differences in comprehension between students who received 3D printed models as part of their instruction and those taught with traditional methods. Results Of the 10 groups included in the meta-analysis, students whose educational experience included a 3D printed model scored roughly 11% better on objective assessments compared to students who did not use such models (Hedge's g = 0.742, p < 0.001). Conclusion Based on these findings, the use of 3D printed anatomical models as a method of education is likely to improve students' understanding of complex anatomical structures.
Collapse
Affiliation(s)
- David Salazar
- Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182 USA
| | - Michael Thompson
- Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182 USA
| | - Adam Rosen
- School of Health and Kinesiology, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182 USA
| | - Jorge Zuniga
- Department of Biomechanics, University of Nebraska at Omaha, 6160 University Dr S, Omaha, NE 68182 USA
| |
Collapse
|
17
|
Patchana T, Ramnot A, Farr S, Ku A, Ghauri M, Crouch A, Miulli DE. Thoracic Pedicle Screw Placement Utilizing Hands-On Training Session on Three-Dimensional Models. Cureus 2022; 14:e28544. [PMID: 36185942 PMCID: PMC9514153 DOI: 10.7759/cureus.28544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/28/2022] [Indexed: 11/05/2022] Open
Abstract
The utilization of three-dimensional (3D) models has been an important element of medical education. We demonstrate a three-dimensionally-printed (3DP) thoracic spine model for use in the teaching of freehand pedicle screw placement. Neurosurgical residents with varying years of experience practiced screw placement on these models. Residents were timed, and models were evaluated for medial and lateral breaches. Overall, this technical report describes the utility of 3D spine models in the training of thoracic pedicle screw placement. The tactile feedback from the 3D models was designed to represent both cortical and cancellous bones.
Collapse
|
18
|
Valverde I, Gomez G, Byrne N, Anwar S, Silva Cerpa MA, Martin Talavera M, Pushparajah K, Velasco Forte MN. Criss-cross heart three-dimensional printed models in medical education: A multicenter study on their value as a supporting tool to conventional imaging. ANATOMICAL SCIENCES EDUCATION 2022; 15:719-730. [PMID: 34008341 DOI: 10.1002/ase.2105] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The utility of three-dimensional (3D) printed models for medical education in complex congenital heart disease (CHD) is sparse and limited. The purpose of this study was to evaluate the utility of 3D printed models for medical education in criss-cross hearts covering a wide range of participants with different levels of knowledge and experience, from medical students, clinical fellows up to senior medical personnel. Study participants were enrolled from four dedicated imaging workshops developed between 2016 and 2019. The study design was a non-randomized cross-over study to evaluate 127 participants' level of understanding of the criss-cross heart anatomy. This was evaluated using the scores obtained following teaching with conventional images (echocardiography and magnetic resonance imaging) versus a 3D printed model learning approach. A significant improvement in anatomical knowledge of criss-cross heart anatomy was observed when comparing conventional imaging test scores to 3D printed model tests [76.9% (61.5%-87.8%) vs. 84.6% (76.9%-96.2%), P < 0.001]. The increase in the questionnaire marks was statistically significant across all academic groups (consultants in pediatric cardiology, fellows in pediatric cardiology, and medical students). Ninety-four percent (120) and 95.2% (121) of the participants agreed or strongly agreed, respectively, that 3D models helped them to better understand the medical images. Participants scored their overall satisfaction with the 3D printed models as 9.1 out of 10 points. In complex CHD such as criss-cross hearts, 3D printed replicas improve the understanding of cardiovascular anatomy. They enhanced the teaching experience especially when approaching medical students.
Collapse
Affiliation(s)
- Israel Valverde
- Pediatric Cardiology Unit, Hospital Virgen del Rocio, Seville, Spain
- Cardiovascular Pathology Unit and Fabrication Laboratory, Institute of Biomedicine of Seville, Seville, Spain
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| | - Gorka Gomez
- Cardiovascular Pathology Unit and Fabrication Laboratory, Institute of Biomedicine of Seville, Seville, Spain
| | - Nick Byrne
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shafkat Anwar
- Division of Cardiology, Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, USA
| | | | | | - Kuberan Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's and St Thomas' National Health Service Foundation Trust, London, UK
| | - Maria Nieves Velasco Forte
- Cardiovascular Pathology Unit and Fabrication Laboratory, Institute of Biomedicine of Seville, Seville, Spain
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
- Department of Pediatric Cardiology, University of Bristol, Bristol Royal Hospital for Children, Bristol, UK
| |
Collapse
|
19
|
Al-Badri N, Touzet-Roumazeille S, Nuytten A, Ferri J, Charkaluk ML, Nicot R. Three-dimensional printing models improves long-term retention in medical education of pathoanatomy: A randomized controlled study. Clin Anat 2022; 35:609-615. [PMID: 35388922 DOI: 10.1002/ca.23878] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Craniosynostosis is a rare and complex pathology, and visuospatial skills are necessary for a good understanding of the condition. While the use of three-dimensional (3D) models has improved the understanding of complex craniofacial anatomy, no study has evaluated the impact of this teaching support on long-term retention. MATERIALS AND METHODS Our randomized controlled trial was designed to compare the long-term retention of information with 3D-printed models of four types of craniosynostosis versus classic 3D reconstructions displayed in two-dimensional (2D) among undergraduate students. All students benefited from the same standardized course followed by the manipulation of the learning tool associated with the group for 15 minutes. Long-term retention was assessed by the capability to properly recognize different types of craniosynostosis 3 weeks after the course. RESULTS Eighty-five students were enrolled. Previous educational achievements and baseline visuospatial skills were similar between the groups. The bivariate analysis showed the mean score in the 3D and 2D groups were 11.32 (2.89) and 8.08 (2.81), respectively (p < 0.0001). CONCLUSIONS 3D-printed models of structures with spatial complexity such as various craniosynostosis patterns improve significantly medical students' long-term retention, indicating their educational efficacy.
Collapse
Affiliation(s)
- Nour Al-Badri
- Univ. Lille, Department of Oral and Maxillofacial Surgery, CHU Lille, France
| | | | - Alexandra Nuytten
- Univ. Lille, CHU Lille, Department of Neonatology, Jeanne de Flandre Hospital, EA 2694 - Santé publique : épidémiologie et qualité des soins, Unité de Biostatistiques, Lille, France
| | - Joël Ferri
- Univ. Lille, INSERM, CHU Lille, Department of Oral and Maxillofacial Surgery, U1008, Controlled Drug Delivery Systems and Biomaterials, France
| | - Marie-Laure Charkaluk
- Université Catholique de Lille, Lille, France.,Service de néonatologie, Hôpital Saint Vincent de Paul, GHICL, Lille, France.,University of Paris, Epidemiology and Statistics Research Center/CRESS, INSERM, INRA, Paris, France
| | - Romain Nicot
- Univ. Lille, INSERM, CHU Lille, Department of Oral and Maxillofacial Surgery, U1008, Controlled Drug Delivery Systems and Biomaterials, France
| |
Collapse
|
20
|
Costanzo R, Ferini G, Brunasso L, Bonosi L, Porzio M, Benigno UE, Musso S, Gerardi RM, Giammalva GR, Paolini F, Palmisciano P, Umana GE, Sturiale CL, Di Bonaventura R, Iacopino DG, Maugeri R. The Role of 3D-Printed Custom-Made Vertebral Body Implants in the Treatment of Spinal Tumors: A Systematic Review. Life (Basel) 2022; 12:life12040489. [PMID: 35454979 PMCID: PMC9030237 DOI: 10.3390/life12040489] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/24/2022] Open
Abstract
In spinal surgery, 3D prothesis represents a useful instrument for spinal reconstruction after the removal of spinal tumors that require an “en bloc” resection. This represents a complex and demanding procedure, aiming to restore spinal length, alignment and weight-bearing capacity and to provide immediate stability. Thus, in this systematic review the authors searched the literature to investigate and discuss the advantages and limitations of using 3D-printed custom-made vertebral bodies in the treatment of spinal tumors. A systematic literature review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement, with no limits in terms of date of publication. The collected studies were exported to Mendeley. The articles were selected according to the following inclusion criteria: availability of full articles, full articles in English, studies regarding the implant of 3D custom-made prothesis after total or partial vertebral resection, studies regarding patients with a histologically confirmed diagnosis of primary spinal tumor or solitary bone metastasis; studies evaluating the implant of 3d custom-made prothesis in the cervical, thoracic, and lumbar spine. Nineteen published studies were included in this literature review, and include a total of 87 patients, 49 males (56.3%) and 38 females (43.7%). The main tumoral location and primary tumor diagnosis were evaluated. The 3D custom-made prothesis represents a feasible tool after tumor en-bloc resection in spinal reconstruction. This procedure is still evolving, and long-term follow-ups are mandatory to assess its safeness and usefulness.
Collapse
Affiliation(s)
- Roberta Costanzo
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
- Correspondence: ; Tel.: +39-0916554656
| | - Gianluca Ferini
- Department of Radiation Oncology, REM Radioterapia s.r.l., 95125 Catania, Italy;
| | - Lara Brunasso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Lapo Bonosi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Massimiliano Porzio
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Umberto Emanuele Benigno
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Sofia Musso
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Rosa Maria Gerardi
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Giuseppe Roberto Giammalva
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Federica Paolini
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Paolo Palmisciano
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95100 Catania, Italy; (P.P.); (G.E.U.)
| | - Giuseppe Emmanuele Umana
- Trauma Center, Gamma Knife Center, Department of Neurosurgery, Cannizzaro Hospital, 95100 Catania, Italy; (P.P.); (G.E.U.)
| | - Carmelo Lucio Sturiale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; (C.L.S.); (R.D.B.)
| | - Rina Di Bonaventura
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, 00100 Rome, Italy; (C.L.S.); (R.D.B.)
| | - Domenico Gerardo Iacopino
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| | - Rosario Maugeri
- Neurosurgical Clinic, AOUP “Paolo Giaccone”, Post Graduate Residency Program in Neurologic Surgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, 90127 Palermo, Italy; (L.B.); (L.B.); (M.P.); (U.E.B.); (S.M.); (R.M.G.); (G.R.G.); (F.P.); (D.G.I.); (R.M.)
| |
Collapse
|
21
|
Three-Dimensional Printing Model Enhances Craniofacial Trauma Teaching by Improving Morphologic and Biomechanical Understanding: A Randomized Controlled Study. Plast Reconstr Surg 2022; 149:475e-484e. [PMID: 35196687 DOI: 10.1097/prs.0000000000008869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Teaching about craniofacial traumas is challenging given the complexity of the craniofacial anatomy and the necessity for good spatial representation skills. To solve these problems, three-dimensional printing seems to be an appropriate educative material. In this study, the authors conducted a randomized controlled trial. The authors' main objective was to compare the performance of the undergraduate medical students in an examination based on the teaching support: three-dimensionally printed models versus two-dimensional pictures. METHODS All participants were randomly assigned to one of two groups using a random number table: the three-dimensionally-printed support group (three-dimensional group) or the two-dimensionally-displayed support group (two-dimensional group). All participants completed a multiple-choice question evaluation questionnaire on facial traumatology (first, a zygomatic bone fracture; then, a double mandible fracture). Sex and potential confounding factors were evaluated. RESULTS Four hundred thirty-two fifth-year undergraduate medical students were enrolled in this study. Two hundred six students were allocated to the three-dimensional group, and 226 were allocated to the two-dimensional group. The three-dimensionally printed model was considered to be a better teaching material compared with two-dimensional support. The global mean score was 2.36 in the three-dimensional group versus 1.99 in the two-dimensional group (p = 0.008). Regarding teaching of biomechanical aspects, three-dimensionally-printed models provide better understanding (p = 0.015). Participants in both groups exhibited similar previous student educational achievements and visuospatial skills. CONCLUSIONS This prospective, randomized, controlled educational trial demonstrated that incorporation of three-dimensionally-printed models improves medical students' understanding. This trial reinforces previous studies highlighting academic benefits in using three-dimensionally-printed models mostly in the field of understanding complex structures.
Collapse
|
22
|
Shi J, Fu S, Cavagnaro MJ, Xu S, Zhao M. 3D Printing Improve the Effectiveness of Fracture Teaching and Medical Learning: A Comprehensive Scientometric Assessment and Future Perspectives. Front Physiol 2022; 12:726591. [PMID: 35002749 PMCID: PMC8740219 DOI: 10.3389/fphys.2021.726591] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/30/2021] [Indexed: 02/05/2023] Open
Abstract
Fractures of complex body parts are often serious and difficult to handle, and they have high technical and training requirements. However, the realistic situation is that there are few opportunities for the junior residents, trainee doctors, and especially medical students to contact enough clinical practice and see such fracture patients. Fortunately, with the rapid development and continuous progress of 3D printing and related technologies, this situation has gradually gotten better and better. In this research, we confirmed that 3D printing technology could improve the effectiveness of fracture teaching and medical learning from multiple dimensions. We comprehensively screened and assessed 223 papers from the Web of Science (WoS) Core Collection on October 3, 2021, with “((3D) AND ((printing) OR (printed)) AND (fracture)) AND ((education) OR (training) OR (teaching))” as the retrieval strategy. Additionally, we used the VOSviewer software to analyze the keywords and countries and the organizations of the publications, then a series of scientometric and visualized analyses were made based on the retrieval results. Afterward, multiple databases were retrieved according to our selection criteria, we selected eight studies for the extensive literature analysis. The extracted data contained information of authors, problems solved, participants, methods, assessments, results, and benefits/limitations. These intuitive and in-depth analyses further confirmed and appraised the advantages of 3D printing in complex fracture models more objectively. In conclusion, 3D printing could improve the effectiveness and extension of fracture teaching, as well as medical learning, by providing the powerful interaction with 3D effect, wakening students learning interest, and allowing the junior residents, trainee doctors to have as realistic a virtual practice experience as possible. Through this research, it is expected that more researchers could be attracted to conduct more comprehensive and thorough studies on the application of 3D printing for training and educational propose, to promote the development of 3D technology-based medical education practice and further deepen the reform of medical education and improve the quality of fracture education and learning.
Collapse
Affiliation(s)
- Jian Shi
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shenao Fu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - María José Cavagnaro
- College of Medicine-Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Shaokang Xu
- Xiangya School of Medicine, Central South University, Changsha, China.,Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Javan R, Rao A, Jeun BS, Herur-Raman A, Singh N, Heidari P. From CT to 3D Printed Models, Serious Gaming, and Virtual Reality: Framework for Educational 3D Visualization of Complex Anatomical Spaces From Within-the Pterygopalatine Fossa. J Digit Imaging 2021; 33:776-791. [PMID: 31916019 DOI: 10.1007/s10278-019-00315-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We describe the framework for capturing the internal view of complex anatomical spaces via multiple media and haptic platforms, exemplified by realistic and conceptual representations of the pterygopalatine fossa (PPF). A realistic three-dimensional (3D) mesh of the PPF was developed by segmenting the osseous anatomy on computed tomography (CT) using Materialize InPrint. Subsequently in Autodesk 3D Studio Max, the realistic mesh was enhanced with graphically designed neurovascular anatomy and additionally a conceptual representation of the PPF with its connections and contents was created. An interactive web-compatible Adobe Flash tutorial using ActionScript was developed, allowing users to advance through a series of educational slides that contained interactive rotatable interior camera views and scrollable CT cross-sectional content, incorporating both the realistic and conceptual models. Both models were also 3D printed using polyamide material. In the realistic model, the neurovasculature was colored with water-based acrylic paint. A 3-piece modular design with embedded magnets allows for internal visualization and seamless assembly. A serious gaming environment of the conceptual PPF was also developed using Truevision3D application programming interface, where users can freely move around rooms and hallways that represent various spaces. Lastly, the realistic model was incorporated into a headset-based virtual reality environment, Surgical Theater, allowing visualization and fly-through inside and outside the model. Multiple 3D techniques for visualization of complex 3D anatomical spaces from within were described, with the necessary software and skills detailed. A rough estimate of the time and cost needed to develop these tools as well as multiple supplementary source and end result files are also made available. Educators could utilize multiple advanced delivery methods to incorporate custom digital 3D models of complex anatomical spaces understood from inside.
Collapse
Affiliation(s)
- Ramin Javan
- Department of Radiology, George Washington University Hospital, 900 23rd St NW, Suite G2092, Washington, DC, 20037, USA.
| | - Aditya Rao
- Department of Radiology, Yale New Haven Hospital, New Haven, CT, USA
| | - Bryan S Jeun
- Department of Radiology, Cox Medical Center South, Springfield, MO, USA
| | | | - Neha Singh
- Department of Radiology, George Washington University Hospital, 900 23rd St NW, Suite G2092, Washington, DC, 20037, USA.,Department of Radiology, University of Pittsburg Medical Center, Pittsburgh, PA, USA
| | - Parisa Heidari
- Department of Radiology, George Washington University Hospital, 900 23rd St NW, Suite G2092, Washington, DC, 20037, USA.,Department of Neurology, George Washington University Hospital, Washington, DC, USA
| |
Collapse
|
24
|
Davids J, Manivannan S, Darzi A, Giannarou S, Ashrafian H, Marcus HJ. Simulation for skills training in neurosurgery: a systematic review, meta-analysis, and analysis of progressive scholarly acceptance. Neurosurg Rev 2021; 44:1853-1867. [PMID: 32944808 PMCID: PMC8338820 DOI: 10.1007/s10143-020-01378-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/17/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
At a time of significant global unrest and uncertainty surrounding how the delivery of clinical training will unfold over the coming years, we offer a systematic review, meta-analysis, and bibliometric analysis of global studies showing the crucial role simulation will play in training. Our aim was to determine the types of simulators in use, their effectiveness in improving clinical skills, and whether we have reached a point of global acceptance. A PRISMA-guided global systematic review of the neurosurgical simulators available, a meta-analysis of their effectiveness, and an extended analysis of their progressive scholarly acceptance on studies meeting our inclusion criteria of simulation in neurosurgical education were performed. Improvement in procedural knowledge and technical skills was evaluated. Of the identified 7405 studies, 56 studies met the inclusion criteria, collectively reporting 50 simulator types ranging from cadaveric, low-fidelity, and part-task to virtual reality (VR) simulators. In all, 32 studies were included in the meta-analysis, including 7 randomised controlled trials. A random effects, ratio of means effects measure quantified statistically significant improvement in procedural knowledge by 50.2% (ES 0.502; CI 0.355; 0.649, p < 0.001), technical skill including accuracy by 32.5% (ES 0.325; CI - 0.482; - 0.167, p < 0.001), and speed by 25% (ES - 0.25, CI - 0.399; - 0.107, p < 0.001). The initial number of VR studies (n = 91) was approximately double the number of refining studies (n = 45) indicating it is yet to reach progressive scholarly acceptance. There is strong evidence for a beneficial impact of adopting simulation in the improvement of procedural knowledge and technical skill. We show a growing trend towards the adoption of neurosurgical simulators, although we have not fully gained progressive scholarly acceptance for VR-based simulation technologies in neurosurgical education.
Collapse
Affiliation(s)
- Joseph Davids
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, Holborn, London, WC1N 3BG, UK.
- Imperial College Healthcare NHS Trust, St Mary's Praed St, Paddington, London, W2 1NY, UK.
| | - Susruta Manivannan
- Department of Neurosurgery, Southampton University NHS Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Ara Darzi
- Imperial College Healthcare NHS Trust, St Mary's Praed St, Paddington, London, W2 1NY, UK
| | - Stamatia Giannarou
- Imperial College Healthcare NHS Trust, St Mary's Praed St, Paddington, London, W2 1NY, UK
| | - Hutan Ashrafian
- Imperial College Healthcare NHS Trust, St Mary's Praed St, Paddington, London, W2 1NY, UK
| | - Hani J Marcus
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, Holborn, London, WC1N 3BG, UK
- Imperial College Healthcare NHS Trust, St Mary's Praed St, Paddington, London, W2 1NY, UK
| |
Collapse
|
25
|
Kislov MA, Chauhan M, Zakharov SN, Leonov SV, Shakiryanova YP. Computer assisted three-dimensional reconstruction of scene in firearm homicide. Med Leg J 2021; 89:193-198. [PMID: 34225527 DOI: 10.1177/00258172211018359] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Worldwide advances in computer techniques are not yet recognised in the practice of forensic medicine. A promising application is their use in making a three-dimensional reconstruction of the crime scene. This study analyses this technique in a homicide by firearm. Queries regarding the direction and number of shots, position of the victim inside the car when shot at and presence of the accused at the crime scene were answered by a scientific model. Similar reconstruction of the scene, nailing the accused in a heinous crime, has not previously been reported as a study or a case. The paper anticipates impetus to the growth of literature in criminology and forensic sciences. It will also expedite the delivery of justice based on scientific evidence in controversial causes of death.
Collapse
Affiliation(s)
- M A Kislov
- Department of Forensic Medicine, Sechenov Moscow State Medical University, Moscow, Russia
| | - M Chauhan
- Department of Forensic Medicine and Toxicology, Government Medical College and Hospital, Chandigarh, India
| | - S N Zakharov
- Department of Forensic Medicine, Sechenov Moscow State Medical University, Moscow, Russia
| | - S V Leonov
- Department of Medical and Criminalistic Identification, Centre for Forensic Medicine and Forensic Medicine, Ministry of Defense of Russia, Moscow, Russia
| | - Y P Shakiryanova
- Department of Medical and Criminalistic Identification, Centre for Forensic Medicine and Forensic Medicine, Ministry of Defense of Russia, Moscow, Russia
| |
Collapse
|
26
|
Wang B, Feng C, Pan J, Zhou S, Sun Z, Shao Y, Qu Y, Bao S, Li Y, Yang T. The Effect of 3D Printing Metal Materials on Osteoporosis Treatment. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9972867. [PMID: 34239938 PMCID: PMC8233068 DOI: 10.1155/2021/9972867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022]
Abstract
3D printing has been in use for a long time and has continued to contribute to breakthroughs in the fields of clinical, physical, and rehabilitation medicine. In order to evaluate the role of 3D printing technology in treating spinal disorders, this paper presents a systematic review of the relevant literature. 3D printing is described in terms of its adjunctive function in various stages of spinal surgery and assistance in osteoporosis treatment. A review of metal 3D printed materials and applications of the technology is also provided.
Collapse
Affiliation(s)
- Bing Wang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Chuwen Feng
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Jianyu Pan
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Shuoyan Zhou
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Zhongren Sun
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Yuming Shao
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Yuanyuan Qu
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Shengyong Bao
- Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Department of Rehabilitation Medicine, Shenzhen 518120, China
| | - Yang Li
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin 8615-0040, China
| | - Tiansong Yang
- Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 8615-0040, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, 26 Heping Road, Xiangfang District, Harbin 8615-0040, China
- Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Department of Rehabilitation Medicine, Shenzhen 518120, China
| |
Collapse
|
27
|
Tenewitz C, Le RT, Hernandez M, Baig S, Meyer TE. Systematic review of three-dimensional printing for simulation training of interventional radiology trainees. 3D Print Med 2021; 7:10. [PMID: 33881672 PMCID: PMC8059217 DOI: 10.1186/s41205-021-00102-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
RATIONALE AND OBJECTIVES Three-dimensional (3D) printing has been utilized as a means of producing high-quality simulation models for trainees in procedure-intensive or surgical subspecialties. However, less is known about its role for trainee education within interventional radiology (IR). Thus, the purpose of this review was to assess the state of current literature regarding the use of 3D printed simulation models in IR procedural simulation experiences. MATERIALS AND METHODS A literature query was conducted through April 2020 for articles discussing three-dimensional printing for simulations in PubMed, Embase, CINAHL, Web of Science, and the Cochrane library databases using key terms relating to 3D printing, radiology, simulation, training, and interventional radiology. RESULTS We identified a scarcity of published sources, 4 total articles, that appraised the use of three-dimensional printing for simulation training in IR. While trainee feedback is generally supportive of the use of three-dimensional printing within the field, current applications utilizing 3D printed models are heterogeneous, reflecting a lack of best practices standards in the realm of medical education. CONCLUSIONS Presently available literature endorses the use of three-dimensional printing within interventional radiology as a teaching tool. Literature documenting the benefits of 3D printed models for IR simulation has the potential to expand within the field, as it offers a straightforward, sustainable, and reproducible means for hands-on training that ought to be standardized.
Collapse
Affiliation(s)
- Chase Tenewitz
- Mercer University School of Medicine, Savannah, GA, USA.
| | - Rebecca T Le
- University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | | | - Saif Baig
- UF Health Jacksonville, Jacksonville, FL, USA
| | | |
Collapse
|
28
|
Kaya I, Cingöz ID, Şahin MC, Bozoğlan E. Investigation of the Effects of Three-Dimensional Modeling Techniques on Degenerative Rotoscoliosis Surgery. Cureus 2021; 13:e13075. [PMID: 33643748 PMCID: PMC7885741 DOI: 10.7759/cureus.13075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2021] [Indexed: 11/26/2022] Open
Abstract
Objectives The present study aimed to compare patients in whom an operation plan was prepared before surgery using the three-dimensional (3D) modeling technology with the application of freehand screws using magnetic resonance imaging (MRI) and computed tomography (CT) scan images. Methods The printings and modelings were established in the Training and Research Center. Of 40 patients, 20 underwent surgery with 3D printing (Group 1) and 20 with the freehand technique (Group 2). The surgeries were performed by the same surgeons. Moreover, 5-mm pedicle screws were located in 122 vertebrae in 20 patients in whom 3D modeling was used and in 124 vertebrae in 20 patients in whom this modeling technique was not used. Results The mean time of screw insertion was 2.9 ± 1.2 minutes in the experimental group and 4.7 ± 2.3 minutes in the control group. While the mean amount of bleeding was 7.4 ± 4.1 ml in the experimental group, it was found to be 39.6 ± 14.2 ml in the control group. When the locations of the screws in the experimental group were evaluated, it was seen that 106 (86.9%) screws were 'excellent' and 16 (13.1%) screws were 'good.' When the placement of 124 pedicle screws in the control group was evaluated, it was found that 100 (80.6%) screws were 'excellent,' 20 (17.8%) screws were 'good,' and two (1.6%) screws were 'poor.' Conclusion The use of the improved 3D technology in the neurosurgery field is advantageous for surgeons, as it decreases the preoperative preparation phase, length of operation, and risk of complications.
Collapse
Affiliation(s)
- Ismail Kaya
- Neurosurgery, Kutahya Health Sciences University, Kutahya, TUR
| | | | | | - Emirhan Bozoğlan
- Bioengineering, Kutahya Health Sciences University, Kutahya, TUR
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW Additive manufacturing (AM) is a rapidly evolving field traditionally utilized in non-medical industries. Recently, the medical use of AM is expanding, especially in orthopedics. The goal of this article is presenting the principles of AM and its main applications in orthopedics. RECENT FINDINGS The main indications for AM in orthopedics are education, orthotics, surgical planning, surgical guides, and custom-made implants. Three-dimensional (3D) digital models can be obtained from tomographic scans using available free software. Then, it can be used to create a physical model, plan surgeries, or develop surgical guides which can aid the orthopedic surgeon during complex cases. Recent studies demonstrated the benefits of using printed models in educating patients and medical residents. Custom-made implants also have been evaluated with promising clinical outcomes. Using 3D technology has become a reality in orthopedics. Surgeons should expect exponential growth of its applications in the upcoming years. It is paramount that orthopedists get familiar with this disruptive technology.
Collapse
|
30
|
Rodrigues KEM, Lucas KDA, Cordeiro ALL, Silva RPM, Santos FGDA, de Carvalho YK. 3D models of nonunion fractures in long bones as education tools. BRAZILIAN JOURNAL OF VETERINARY MEDICINE 2021; 43:e114820. [PMID: 35749084 PMCID: PMC9179198 DOI: 10.29374/2527-2179.bjvm114820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 11/05/2022] Open
Abstract
The appearance of fracture complications can present itself as a difficult scenario in a veterinarian's practice, and it can be difficult to diagnose and have a poor prognosis. The recognition of the different types of nonunion fractures can enable quick guidance on the best way to act, thus reducing the cost of treatment and the patient's suffering. The objective of this study was to create 3D models of nonunion fractures in long bones (3D NUFs). The study was carried out in three stages: 1) creating biscuit models from representations of nonunion fractures; 2) scanning the biscuit models of nonunion fractures and 3D modeling; and 3) printing and finishing the 3D models of nonunion fractures (hereafter, 3D NUFs). The creation of biscuit prototypes and the respective digitalization were decisive in producing 3D NUFs, which reproduced the main characteristics of each type of nonunion fracture classification described in the literature. It took 31.1 hours to create and print all 3D NUFs using 95.66 grams of filament (ABS) for a total cost of $3.73. The creation of 3D NUFs from the biscuit dough presented a new way of obtaining didactic models for the teaching of veterinary medicine. The 3D NUFs represent the different forms of low-cost manifestations that characterize this disease, which can be used as a possible teaching-learning tool for veterinary education.
Collapse
Affiliation(s)
- Katriny Elifelina Monteiro Rodrigues
- Undergraduate in Veterinary Medicine, Centro de Ciência Biológicas e da Natureza (CCBN), Universidade Federal do Acre (UFAC), Rio Branco, AC, Brasil
| | - Kleber dos Anjos Lucas
- Undergraduate in Veterinary Medicine, Centro de Ciência Biológicas e da Natureza (CCBN), Universidade Federal do Acre (UFAC), Rio Branco, AC, Brasil
| | - Andrey Luiz Lopes Cordeiro
- Veterinarian, MSc. Programa de Pós-Graduação Sanidade e Produção Animal Sustentável na Amazônia Ocidental (PPGESPA), CCBN, UFAC, Rio Branco, AC, Brasil
| | - Romeu Paulo Martins Silva
- Physical educator, DSc., Departamento de Biotecnologia, Universidade Federal do Catalão (UFCAT), Catalão, GO, Brasil
| | | | - Yuri Karaccas de Carvalho
- Veterinarian, DSc., CCBN, UFAC, Rio Branco, AC, Brasil
- Correspondence Yuri Karaccas de Carvalho Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre - UFAC Rodovia BR 364, Km 04, Distrito Industrial CEP 69920-900 - Rio Branco (AC), Brasil E-mail:
| |
Collapse
|
31
|
Tripodi N, Kelly K, Husaric M, Wospil R, Fleischmann M, Johnston S, Harkin K. The Impact of Three-Dimensional Printed Anatomical Models on First-Year Student Engagement in a Block Mode Delivery. ANATOMICAL SCIENCES EDUCATION 2020; 13:769-777. [PMID: 32163665 PMCID: PMC7687145 DOI: 10.1002/ase.1958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
Student engagement is known to have several positive effects on learning outcomes and can impact a student's university experience. High levels of engagement in content-heavy subjects can be difficult to attain. Due to a major institutional restructure, the anatomy prosection laboratory time per subject was dramatically reduced. In response, the authors set out to redesign their anatomy units with a focus on engaging the learning activities that would increase time-on-task both within and outside of the classroom. One of these curriculum changes was the implementation of a suite of anatomy learning activities centered on sets of three-dimensional printed upper limb skeleton models. A two-part mixed-method sequential exploratory design was used to evaluate these activities. Part one was a questionnaire that evaluated the students' engagement with and perceptions of the models. Part two involved focus groups interviews, which were an extension of the survey questions in part one. The results of the study indicated that the majority of students found the models to be an engaging resource that helped improve their study habits. As a result, students strongly felt that the use of the models inspired greater academic confidence and overall better performance in their assessments. Overall, the models were an effective way of increasing the engagement and deep learning, and reinforced previous findings from the medical education research. Future research should investigate the effects of these models on student's grades within osteopathy and other allied health courses.
Collapse
MESH Headings
- Anatomy/education
- Curriculum
- Education, Medical, Undergraduate/methods
- Education, Medical, Undergraduate/organization & administration
- Educational Measurement/statistics & numerical data
- Focus Groups
- Humans
- Imaging, Three-Dimensional
- Models, Anatomic
- Models, Educational
- Osteopathic Medicine/education
- Printing, Three-Dimensional
- Problem-Based Learning/methods
- Program Evaluation
- Qualitative Research
- Stakeholder Participation
- Students, Medical/psychology
- Students, Medical/statistics & numerical data
- Surveys and Questionnaires/statistics & numerical data
- Universities/organization & administration
Collapse
Affiliation(s)
| | - Kate Kelly
- First Year CollegeVictoria UniversityMelbourneVictoriaAustralia
| | - Maja Husaric
- First Year CollegeVictoria UniversityMelbourneVictoriaAustralia
| | - Rebecca Wospil
- First Year CollegeVictoria UniversityMelbourneVictoriaAustralia
| | - Michael Fleischmann
- Osteopathy DivisionCollege of Health and BiomedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Susan Johnston
- First Year CollegeVictoria UniversityMelbourneVictoriaAustralia
| | | |
Collapse
|
32
|
Ye Z, Dun A, Jiang H, Nie C, Zhao S, Wang T, Zhai J. The role of 3D printed models in the teaching of human anatomy: a systematic review and meta-analysis. BMC MEDICAL EDUCATION 2020; 20:335. [PMID: 32993608 PMCID: PMC7523371 DOI: 10.1186/s12909-020-02242-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/10/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Three-dimensional (3D) printing is an emerging technology widely used in medical education. However, its role in the teaching of human anatomy needs further evaluation. METHODS PubMed, Embase, EBSCO, SpringerLink, and Nature databases were searched systematically for studies published from January 2011 to April 2020 in the English language. GRADEprofiler software was used to evaluate the quality of literature. In this study, a meta-analysis of continuous and binary data was conducted. Both descriptive and statistical analyses were used. RESULTS Comparing the post-training tests in neuroanatomy, cardiac anatomy, and abdominal anatomy, the standardized mean difference (SMD) of the 3D group and the conventional group were 1.27, 0.37, and 2.01, respectively (p < 0.05). For 3D vs. cadaver and 3D vs. 2D, the SMD were 0.69 and 1.05, respectively (p < 0.05). For answering time, the SMD of the 3D group vs. conventional group was - 0.61 (P < 0.05). For 3D print usefulness, RR = 2.29(P < 0.05). Five of the six studies showed that satisfaction of the 3D group was higher than that of the conventional group. Two studies showed that accuracy of answering questions in the 3D group was higher than that in the conventional group. CONCLUSIONS Compared with students in the conventional group, those in the 3D printing group had advantages in accuracy and answering time. In the test of anatomical knowledge, the test results of students in the 3D group were not inferior (higher or equal) to those in the conventional group. The post-training test results of the 3D group were higher than those in the cadaver or 2D group. More students in the 3D printing group were satisfied with their learning compared with the conventional group. The results could be influenced by the quality of the randomized controlled trials. In a framework of ethical rigor, the application of the 3D printing model in human anatomy teaching is expected to grow further.
Collapse
Affiliation(s)
- Zhen Ye
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Aishe Dun
- Department of Anatomy, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Hanming Jiang
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Cuifang Nie
- Department of Infectious Disease, Tai'an Central Hospital, Tai'an, Shandong, P.R. China
| | - Shulian Zhao
- Department of Infectious Disease, Tai'an Central Hospital, Tai'an, Shandong, P.R. China
| | - Tao Wang
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China
| | - Jing Zhai
- Department of Molecular Biology, Basic Medical College, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, Shandong, P.R. China.
| |
Collapse
|
33
|
Cai S, He Y, Cui H, Zhou X, Zhou D, Wang F, Tian Y. Effectiveness of three-dimensional printed and virtual reality models in learning the morphology of craniovertebral junction deformities: a multicentre, randomised controlled study. BMJ Open 2020; 10:e036853. [PMID: 32973056 PMCID: PMC7517559 DOI: 10.1136/bmjopen-2020-036853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES To compare the effectiveness of three-dimensional printed (3DP), virtual reality (VR) and conventional normal physical (NP) models in clinical education regarding the morphology of craniovertebral junction (CVJ) deformities. DESIGN Prospective, multicentre, randomised controlled study. SETTING Three teaching hospitals in China. PARTICIPANTS One hundred and fifty-three participants in their first year of a 3-year medical residency programme. INTERVENTIONS All participants were randomised to one of the three groups to learn the morphology of CVJ deformities using 3DP, VR or NP models. PRIMARY OUTCOME MEASURES The objective outcomes were evaluated using three-level objective testing. In the first-level test, the participants were required to identify 15 anatomical landmarks on radiographs without CVJ deformities. In the second-level test, all participants were asked to identify the same 15 landmarks on radiographs showing classic CVJ deformities. In the third-level test, the participants were required to describe the key features of three classic cases of CVJ deformities depicted on radiographs. Each participant was also asked to answer four subjective questions to evaluate the importance and usefulness of the educational materials. RESULTS In the first-level test, the 3DP, VR and NP groups achieved similar correct rates. In the second-level test, the correct rate was higher in the 3DP group (82.1%±13.6%) than the VR and NP groups (76.9%±16.9% and 69.9%±20.0%, p=0.002). In the third-level test, the 3DP group achieved better correct rates regarding the description of key CVJ deformities features (66.2%±20.0%, p=0.049) than the other groups. The subjective tests showed that the 3DP model method was considered the most valuable approach for learning CVJ deformities. CONCLUSIONS The objective and subjective results show that the 3DP model is more effective teaching instrument than the NP model for learning the pathomorphology of CVJ deformities. The VR model also showed great efficacy, second to 3DP model, in improving participants' understanding of CVJ deformities.
Collapse
Affiliation(s)
- Siyi Cai
- Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yu He
- Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College Plastic Surgery Hospital and Institute, Shijingshan District, Beijing, China
| | - Haomin Cui
- Orthopedic Surgery, Shanghai Jiaotong University Affiliated Sixth People Hospital South Campus, Shanghai, China
| | - Xi Zhou
- Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Dongsheng Zhou
- Orthopaedic Surgery, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Fu Wang
- Orthopaedic Surgery, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Ye Tian
- Orthopaedic Surgery, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
34
|
Fleming C, Sadaghiani MS, Stellon MA, Javan R. Effectiveness of Three-Dimensionally Printed Models in Anatomy Education for Medical Students and Resident Physicians: Systematic Review and Meta-Analysis. J Am Coll Radiol 2020; 17:1220-1229. [PMID: 32603662 DOI: 10.1016/j.jacr.2020.05.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Despite a surge in the use of three-dimensional printing (3DP) in medical education, a comprehensive evaluation of randomized trials in its effectiveness is lacking. Radiologic studies play an integral role in affording educators the ability to create customized realistic anatomic models. This systematic review and meta-analysis sought to assess the effect of 3DP versus traditional 2-D methods for anatomy education. METHODS PubMed, Scopus, Cochrane Library, ERIC, and IEEE Xplore were queried to identify randomized controlled trials that quantitatively investigated anatomy education via postintervention assessments of medical students or resident physicians who were exposed to 3DP versus traditional methods. Criteria for the meta-analysis required that studies additionally included a pre-intervention assessment. RESULTS A total of 804 articles were reviewed, identifying 8 and 7 studies for systematic reviews of medical students and resident physicians, respectively, of which 4 and 7 were included in the meta-analyses. 3DP models were associated with higher anatomy examination scores for medical students (P < .0001), but for resident physicians were statistically not significant (P = .53). DISCUSSION The 3DP models are shown to positively impact medical students especially given their limited fund of knowledge in anatomy. It is postulated that the lack of a statistically significant result for the resident physicians was multifactorial, in part because of the small test group sizes introducing noise and nonrepresentative samples, as well as relative simplicity of the 3DP models used with resident physicians, which were below their level of training. More trials are required to evaluate the usefulness of highly customized 3DP models.
Collapse
Affiliation(s)
- Cullen Fleming
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | | | - Michael A Stellon
- George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ramin Javan
- George Washington University Hospital, Department of Radiology, Washington, DC.
| |
Collapse
|
35
|
Smoczok M, Starszak K, Starszak W. 3D Printing as a Significant Achievement for Application in Posttraumatic Surgeries - A Literature Review. Curr Med Imaging 2020; 17:814-819. [PMID: 32386498 DOI: 10.2174/1573405616666200510003811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND 3D printing is increasingly used in many fields of medicine. The broadening of knowledge in this field and the cooperation of doctors and engineers increase the interest in this technology and results in attempts to implement it at every stage of the treatment. OBJECTIVE The review aims to summarize the current literature on the use of 3D printing technology in the treatment of post-trauma patients. METHODS A review of available scientific publications in PubMed regarding 3D printing and its application in the context of posttraumatic procedures was carried out. Clinical Trials and Reviews from the period 2014-2019 (6-year period) were taken into consideration. The database was searched for "Printing", "ThreeDimensional" [MAJR] [MeSH Term]. Finally, 48 studies have been included in our review article. RESULTS 3D printing technology has a number of applications in patients who have suffered injuries. 3D printing has found application in the preparation of procedures, accurate visualization of occurring injuries and complications, education of doctors and patients, prototyping, creation of synthetic scaffolding, production and implementation of target implants and rehabilitation. CONCLUSION 3D printing is increasingly used in providing for posttraumatic patients. It is necessary to conduct further research in this area and to provide development opportunities regarding biopolymers and bioprinting. It is also necessary to improve cooperation between doctors and engineers and to create new centres that can comprehensively use 3D printing - from imaging diagnostics to the production of implants and their surgical use.
Collapse
Affiliation(s)
- Michał Smoczok
- Department of Biophysics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Krzysztof Starszak
- Department of Orthopaedics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Weronika Starszak
- Students' Scientific Society, Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
36
|
Replicating Skull Base Anatomy With 3D Technologies: A Comparative Study Using 3D-scanned and 3D-printed Models of the Temporal Bone. Otol Neurotol 2020; 41:e392-e403. [DOI: 10.1097/mao.0000000000002524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Montgomery SJ, Kooner SS, Ludwig TE, Schneider PS. Impact of 3D Printed Calcaneal Models on Fracture Understanding and Confidence in Orthopedic Surgery Residents. JOURNAL OF SURGICAL EDUCATION 2020; 77:472-478. [PMID: 32033916 DOI: 10.1016/j.jsurg.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/23/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To determine if three-dimensionally printed (3Dp) fracture models can improve orthopedic trainee education. DESIGN A prospective comparison study of orthopedic trainees and attending surgeons was performed, where a range of calcaneal fractures were used for creating anonymized 3Dp models. Study participants rotated through workstations viewing computed tomography images and either a digital 3D volume rendering or 3Dp model of the fractured calcaneus. Diagnosis, time for evaluation, confidence of fracture understanding, perceived model accuracy, and proposed treatment were compared using a standardized questionnaire. PARTICIPANTS Sixteen resident trainees and 5 attending surgeons participated in this study. Attending surgeons were required to have fellowship training in trauma or foot and ankle surgery and manage calcaneal fractures as part of their current practice. RESULTS Junior residents had the slowest time of assessment (mean = 121 ± 54 seconds) and lowest percentage of correct diagnoses (69%), although these findings did not reach significance compared to the other residency years. Residents displayed higher levels of confidence in fracture understanding with increasing residency year of training (p < 0.0001), and this confidence was greater for cases that included a 3Dp model (p < 0.03). Perceived accuracy of cases with 3Dp models was significantly higher than cases without 3Dp models (7.0 vs 5.5 p < 0.001). CONCLUSIONS This study found that 3Dp models increase the perceived accuracy of fracture assessment, though no statistically significant improvement in diagnostic accuracy was observed. The 3Dp models did improve trainee confidence, although this effect diminished with increasing residency year. In orthopedic residency training programs, 3Dp models of complex fractures can be a valuable educational tool, especially for junior trainees.
Collapse
|
38
|
Chytas D, Piagkou M, Natsis K. Application of three-dimensional reconstruction and printing as an elective course for undergraduate medical students: an exploratory trial. Surg Radiol Anat 2020; 42:729-730. [PMID: 32055923 DOI: 10.1007/s00276-020-02431-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/31/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Dimitrios Chytas
- School of Medicine, European University of Cyprus, 6, Diogenous Str, Engomi, 2404, Nicosia, Cyprus
| | - Maria Piagkou
- Department of Anatomy, School of Medicine, National and Kapodistrian University of Athens, 75, Mikras Asias Str., 11527, Athens, Greece
| | - Konstantinos Natsis
- Department of Anatomy and Surgical Anatomy, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloníki, Greece.
| |
Collapse
|
39
|
Li QY, Zhang Q, Yan C, He Y, Phillip M, Li F, Pan AH. Evaluating phone camera and cloud service-based 3D imaging and printing of human bones for anatomical education. BMJ Open 2020; 10:e034900. [PMID: 32041863 PMCID: PMC7044880 DOI: 10.1136/bmjopen-2019-034900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility of a phone camera and cloud service-based workflow to image bone specimens and print their three-dimensional (3D) models for anatomical education. DESIGN The images of four typical human bone specimens, photographed by a phone camera, were aligned and converted into digital images for incorporation into a digital model through the Get3D website and submitted to an online 3D printing platform to obtain the 3D printed models. The fidelity of the 3D digital, printed models relative to the original specimens, was evaluated through anatomical annotations and 3D scanning. SETTING The Morphologic Science Experimental Center, Central South University, China. PARTICIPANTS Specimens of four typical bones-the femur, rib, cervical vertebra and skull-were used to evaluate the feasibility of the workflow. OUTCOME MEASURES The gross fidelity of anatomical features within the digital models and 3D printed models was evaluated first using anatomical annotations in reference to Netter's Atlas of Human Anatomy. The measurements of the deviation were quantised and visualised for analysis in Geomagic Control 2015. RESULTS All the specimens were reconstructed in 3D and printed using this workflow. The overall morphology of the digital and 3D printed models displayed a large extent of similarity to the corresponding specimens from a gross anatomical perspective. A high degree of similarity was also noticed in the quantitative analysis, with distance deviations ≤2 mm present among 99% of the random sampling points that were tested. CONCLUSION The photogrammetric digitisation workflow adapted in the present study demonstrates fairly high precision with relatively low cost and fewer equipment requirements. This workflow is expected to be used in morphological/anatomical science education, particularly in institutions and schools with limited funds or in certain field research projects involving the fast acquisition of 3D digital data on human/animal bone specimens or on other remains.
Collapse
Affiliation(s)
- Qing-Yun Li
- Department of Human Anatomy and Neurobiology, and Morphologic Science Experimental Center, School of Basic Medical Science, Central South University, Changsha, China
- Class of 2020, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, and Morphologic Science Experimental Center, School of Basic Medical Science, Central South University, Changsha, China
| | - Chun Yan
- Department of Human Anatomy and Neurobiology, and Morphologic Science Experimental Center, School of Basic Medical Science, Central South University, Changsha, China
| | - Ye He
- Aier School of Ophthalmology, Central South University, Changsha, China
| | - Mukuze Phillip
- Class of 2020, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Fang Li
- Department of Human Anatomy and Neurobiology, and Morphologic Science Experimental Center, School of Basic Medical Science, Central South University, Changsha, China
| | - Ai-Hua Pan
- Department of Human Anatomy and Neurobiology, and Morphologic Science Experimental Center, School of Basic Medical Science, Central South University, Changsha, China
| |
Collapse
|
40
|
Eltes PE, Kiss L, Bartos M, Gyorgy ZM, Csakany T, Bereczki F, Lesko V, Puhl M, Varga PP, Lazary A. Geometrical accuracy evaluation of an affordable 3D printing technology for spine physical models. J Clin Neurosci 2020; 72:438-446. [DOI: 10.1016/j.jocn.2019.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
|
41
|
Wang Q, Guo W, Liu Y, Shao W, Li M, Li Z, Li C, Li Z. Application of a 3D-Printed Navigation Mold in Puncture Drainage for Brainstem Hemorrhage. J Surg Res 2020; 245:99-106. [DOI: 10.1016/j.jss.2019.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/11/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023]
|
42
|
Cai B, Rajendran K, Bay BH, Lee J, Yen CC. The Effects of a Functional Three-dimensional (3D) Printed Knee Joint Simulator in Improving Anatomical Spatial Knowledge. ANATOMICAL SCIENCES EDUCATION 2019; 12:610-618. [PMID: 30536570 DOI: 10.1002/ase.1847] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
In recent decades, three-dimensional (3D) printing as an emerging technology, has been utilized for imparting human anatomy knowledge. However, most 3D printed models are rigid anatomical replicas that are unable to represent dynamic spatial relationships between different anatomical structures. In this study, the data obtained from a computed tomography (CT) scan of a normal knee joint were used to design and fabricate a functional knee joint simulator for anatomical education. Utility of the 3D printed simulator was evaluated in comparison with traditional didactic learning in first-year medical students (n = 35), so as to understand how the functional 3D simulator could assist in their learning of human anatomy. The outcome measure was a quiz comprising 11 multiple choice questions based on locking and unlocking of the knee joint. Students in the simulation group (mean score = 85.03%, ±SD 10.13%) performed significantly better than those in the didactic learning group, P < 0.05 (mean score = 70.71%, ±SD 15.13%), which was substantiated by large effect size, as shown by a Cohen's d value of 1.14. In terms of learning outcome, female students who used 3D printed simulators as learning aids achieved greater improvement in their quiz scores as compared to male students in the same group. However, after correcting for the modality of instruction, the sex of the students did not have a significant influence on the learning outcome. This randomized study has demonstrated that the 3D printed simulator is beneficial for anatomical education and can help in enriching students' learning experience.
Collapse
Affiliation(s)
- Bohong Cai
- Division of Industrial Design, School of Design and Environment, National University of Singapore, Singapore
- Keio-NUS CUTE Center, Smart Systems Institute, National University of Singapore, Singapore
| | | | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jieying Lee
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Keio-NUS CUTE Center, Smart Systems Institute, National University of Singapore, Singapore
| | - Ching-Chiuan Yen
- Division of Industrial Design, School of Design and Environment, National University of Singapore, Singapore
- Keio-NUS CUTE Center, Smart Systems Institute, National University of Singapore, Singapore
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW To summarize the recent advances in 3D printing technology as it relates to spine surgery and how it can be applied to minimally invasive spine surgery. RECENT FINDINGS Most early literature about 3D printing in spine surgery was focused on reconstructing biomodels based on patient imaging. These biomodels were used to simulate complex pathology preoperatively. The focus has shifted to guides, templates, and implants that can be used during surgery and are specific to patient anatomy. However, there continues to be a lack of long-term outcomes or cost-effectiveness analyses. 3D printing also has the potential to revolutionize tissue engineering applications in the search for the optimal scaffold material and structure to improve bone regeneration without the use of other grafting materials. 3D printing has many potential applications to minimally invasive spine surgery requiring more data for widespread adoption.
Collapse
Affiliation(s)
- Jonathan T Yamaguchi
- Department of Orthopaedic Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Wellington K Hsu
- Department of Orthopaedic Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
44
|
Zhuang YD, Zhou MC, Liu SC, Wu JF, Wang R, Chen CM. Effectiveness of personalized 3D printed models for patient education in degenerative lumbar disease. PATIENT EDUCATION AND COUNSELING 2019; 102:1875-1881. [PMID: 31113688 DOI: 10.1016/j.pec.2019.05.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 04/09/2019] [Accepted: 05/04/2019] [Indexed: 05/24/2023]
Abstract
OBJECTIVE Three-dimensional printing may play an important role in patients' education. The objective of this study was to assess the effectiveness of personalized 3D printed models for increasing patient understanding of their medical condition and surgical plan. METHODS Forty-five patients with degenerative lumbar diseases were randomized by block design into three groups: educational program presented by CT & MRI imaging (care-as-usual), 3D reconstructions, or personalized 3D printed models. Patients' level of understanding and satisfaction were evaluated by two questionnaires one day after education. RESULTS Patients educated with personalized 3D printed models demonstrated an expanded level of understanding than patients educated with CT & MRI imaging (care-as-usual) (P < 0.05) and 3D reconstructions (P < 0.05). Personalized 3D printed models also resulted in a higher degree of patient satisfaction (P < 0.05). CONCLUSIONS Personalized 3D printed models and 3D reconstructions can simplify and enhance understanding of lumbar anatomy, physiology, and patients' disease and surgical plan. Personalized 3D printed models also enhance patients' subjective satisfaction. PRACTICE IMPLICATIONS Personalized 3D printed models for patient education are feasible and could be generalized for degenerative lumbar diseases.
Collapse
Affiliation(s)
- Yuan-Dong Zhuang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fujian Institute of Neurosurgery, Fuzhou 350001, China
| | - Mao-Chao Zhou
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fujian Institute of Neurosurgery, Fuzhou 350001, China
| | - Shi-Chao Liu
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fujian Institute of Neurosurgery, Fuzhou 350001, China
| | - Jian-Feng Wu
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fujian Institute of Neurosurgery, Fuzhou 350001, China
| | - Rui Wang
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fujian Institute of Neurosurgery, Fuzhou 350001, China
| | - Chun-Mei Chen
- Department of Neurosurgery, Union Hospital, Fujian Medical University, Fujian Institute of Neurosurgery, Fuzhou 350001, China.
| |
Collapse
|
45
|
Hojo D, Murono K, Nozawa H, Kawai K, Hata K, Tanaka T, Oba K, Ishihara S. Utility of a Three-Dimensional Printed Pelvic Model for Lateral Pelvic Lymph Node Dissection Education: A Randomized Controlled Trial. J Am Coll Surg 2019; 229:552-559.e3. [PMID: 31493548 DOI: 10.1016/j.jamcollsurg.2019.08.1443] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Lateral pelvic lymph node dissection for rectal cancer is a difficult technique due to the complex pelvic anatomy involved. Three-dimensional (3D) organ models have been introduced as education tools to study anatomy in some fields. In this study, we educated the participants about pelvic anatomy using a 3D model, and evaluated learning efficiency, comparing the outcomes with those using a traditional textbook. STUDY DESIGN This study was a randomized, controlled, single-center trial conducted between July 2018 and July 2019. A total of 102 participants (34 medical students, 34 residents, and 34 surgeons) were enrolled. Participants were randomly assigned to the 3D model group or the textbook group. First, they completed a short test to confirm their basic knowledge before further education. After collocated education, they completed the same short test again and another long test to evaluate their learning outcomes. RESULTS Before education, there was no significant difference in the short test scores between the 3D model group and the textbook group. After education, the short and long test scores of the 3D model group were significantly higher than those of the textbook group for students (short test; p = 0.05, long test; p = 0.03), residents (short test; p = 0.05, long test; p = 0.002), and surgeons (short test; p = 0.009, long test; p < 0.001). CONCLUSIONS Using a 3D pelvic model is superior to using a textbook when learning pelvic anatomy required for lateral pelvic lymph node dissection.
Collapse
Affiliation(s)
- Daisuke Hojo
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Koji Murono
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Nozawa
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazushige Kawai
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Hata
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Tanaka
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Oba
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Soichiro Ishihara
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Backhouse S, Taylor D, Armitage JA. Is This Mine to Keep? Three-dimensional Printing Enables Active, Personalized Learning in Anatomy. ANATOMICAL SCIENCES EDUCATION 2019; 12:518-528. [PMID: 30406975 DOI: 10.1002/ase.1840] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
Understanding orbital anatomy is important for optometry students, but the learning resources available are often fragile, expensive, and accessible only during scheduled classes. Drawing on a constructivist, personalized approach to learning, this study investigated students' perceptions of an alternative learning resource: a three-dimensional (3D) printed model used in an active learning task. A human skull was three-dimensionally scanned and used to produce a 3D printed model for each student. Students actively participated in model creation by tracing suture lines and coloring individual orbital bones during a practical class, then keeping the model for future study. Students' perceptions of the 3D orbital model were examined through a questionnaire: the impact the model had on their learning; perceptions of the 3D orbit compared to traditional resources; and utility of having their own personalized model. The 3D orbit was well received by the student cohort. Participants (n = 69) preferred the 3D orbit as a resource for learning orbital bone anatomy compared to traditional learning resources, believing the model helped them to understand and visualize the spatial relationships of the bones, and that it increased their confidence to apply this knowledge. Overall, the participants liked that they co-created the model, could touch and feel it, and that they had access to it whenever they liked. Three-dimensional printing technology has the potential to enable the creation of effective learning resources that are robust, low-cost and readily accessible to students, and should be considered by anyone wishing to incorporate personalized resources to their multimodal teaching repertoire.
Collapse
Affiliation(s)
- Simon Backhouse
- School of Medicine (Optometry), Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | - Darci Taylor
- Health Learning Design Pod, Deakin Learning Futures, Deakin University, Geelong, Victoria, Australia
| | - James A Armitage
- School of Medicine (Optometry), Faculty of Health, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
47
|
Bockhorn L, Gardner SS, Dong D, Karmonik C, Elias S, Gwathmey FW, Harris JD. Application of three-dimensional printing for pre-operative planning in hip preservation surgery. J Hip Preserv Surg 2019; 6:164-169. [PMID: 31660202 PMCID: PMC6662895 DOI: 10.1093/jhps/hnz023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/29/2019] [Accepted: 05/05/2019] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional printing is a valuable modality with broad clinical applications. Hip preservation surgery outcomes are dependent on correction of morphological abnormalities that may be optimally visualized with three-dimensional models. To assess the efficacy of three-dimensional models for patient and trainee education and to determine its benefits during pre-operative planning in hip preservation surgery. Sixteen patients with hip pathology were selected. Computed tomography was utilized to generate three-dimensional models. Customized Likert-style questionnaires were given to 10 hip preservation surgeons, 11 orthopedic surgery residents and 10 patients. All residents strongly agreed or agreed that the three-dimensional hip models helped them to understand patients’ pathology. All but one patient agreed that the models assisted in their understanding of the treatment plan. Surgeons concurred that although they do not routinely order three-dimensional models, their use would improve trainee and patient education, especially when treating atypical osseous pathomorphologies. Three-dimensional models are tools that can help surgeon, trainee and patient understanding and participation in treatment of complex hip disorders. Patients and trainees agree that the prototypes enhanced their educational experience, as the surgeon can directly demonstrate complex morphological abnormalities. Trainees can therefore gain a better understanding of hip pathologies and treatment. As patients better understand their hip disorder, they can more fully participate in shared treatment decision-making. Level of Evidence Level IV, Retrospective Case Series
Collapse
Affiliation(s)
- Lauren Bockhorn
- Houston Methodist Orthopedics & Sports Medicine, Houston, TX, USA
| | | | - David Dong
- Houston Methodist Orthopedics & Sports Medicine, Houston, TX, USA
| | | | - Saba Elias
- Houston Methodist Orthopedics & Sports Medicine, Houston, TX, USA
| | - F Winston Gwathmey
- Department of Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA
| | - Joshua D Harris
- Houston Methodist Orthopedics & Sports Medicine, Houston, TX, USA
| |
Collapse
|
48
|
Yi X, Ding C, Xu H, Huang T, Kang D, Wang D. Three-Dimensional Printed Models in Anatomy Education of the Ventricular System: A Randomized Controlled Study. World Neurosurg 2019; 125:e891-e901. [DOI: 10.1016/j.wneu.2019.01.204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 01/17/2023]
|
49
|
Shen Z, Yao Y, Xie Y, Guo C, Shang X, Dong X, Li Y, Pan Z, Chen S, Xiong G, Wang FY, Pan H. The process of 3D printed skull models for anatomy education. Comput Assist Surg (Abingdon) 2019; 24:121-130. [PMID: 31012745 DOI: 10.1080/24699322.2018.1560101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In general, the 3 D printed medical models are made based on virtual digital models obtained from machines such as the computed tomography scanner. However, due to the limited accuracy of CT scanning technology, which is usually 1 millimeter, there are differences between scanned results and the real structure. Besides, the collected data can hardly be printed directly because of some errors in the model. In this paper, we present a general and efficient procedure to process the digital skull data to make the printed structures meet the requirements of anatomy education, which combines the use of five 3 D manipulation tools and the procedure can be finished within 6 hours. Then the model is printed and compared with the cadaveric skull from frontal, left, right and anterior views respectively. The printed model can describe the correct structure and details of the skull clearly, which can be considered as a good alternative to the cadaveric skull. The manipulation procedure presented in this study is an easily available and cost-effective way to obtain a printed skull model from the original CT data, which has a considerable economic and social benefit for the medical education. The steps of the data processing can be performed easily. The cost for the 3 D printed model is also low. Outcomes of this study can be applied widely in processing skull data.
Collapse
Affiliation(s)
- Zhen Shen
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation Chinese Academy of Sciences (CASIA) , Beijing , China.,Qingdao Academy of Intelligent Industries , Qingdao , China
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital (PUMCH) Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC) , Beijing , China
| | - Yi Xie
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation Chinese Academy of Sciences (CASIA) , Beijing , China.,School of Electrical & Electronic Engineering, University of Manchester , Manchester , UK
| | - Chao Guo
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation Chinese Academy of Sciences (CASIA) , Beijing , China.,University of Chinese Academy of Sciences , Beijing , China
| | - Xiuqin Shang
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation Chinese Academy of Sciences (CASIA) , Beijing , China.,Beijing Engineering Research Center of Intelligent Systems and Technology, Institute of Automation Chinese Academy of Sciences (CASIA) , Beijing , China
| | - Xisong Dong
- Qingdao Academy of Intelligent Industries , Qingdao , China.,Beijing Engineering Research Center of Intelligent Systems and Technology, Institute of Automation Chinese Academy of Sciences (CASIA) , Beijing , China
| | - Yuqing Li
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation Chinese Academy of Sciences (CASIA) , Beijing , China.,College of Information Science and Technology, Beijing University of Chemical Technology , Beijing , China
| | - Zhouxian Pan
- PUMCH CAMS & PUMC, Eight-year Program of Clinical Medicine , Beijing , China
| | - Shi Chen
- Department of Endocrinology, Endocrine Key Laboratory of Ministry of Health, PUMCH, CAMS & PUMC , Beijing , China.,National Virtual Simulation Laboratory Education Center of Medical Sciences, PUMCH, CAMS & PUMC , Beijing , China
| | - Gang Xiong
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation Chinese Academy of Sciences (CASIA) , Beijing , China.,Cloud Computing Center, Chinese Academy of Sciences , Dongguan , China
| | - Fei-Yue Wang
- The State Key Laboratory for Management and Control of Complex Systems, Institute of Automation Chinese Academy of Sciences (CASIA) , Beijing , China
| | - Hui Pan
- Department of Endocrinology, Endocrine Key Laboratory of Ministry of Health, PUMCH, CAMS & PUMC , Beijing , China.,National Virtual Simulation Laboratory Education Center of Medical Sciences, PUMCH, CAMS & PUMC , Beijing , China.,Department of Education, PUMCH, CAMS & PUMC , Beijing , China
| |
Collapse
|
50
|
Lee M, Moharem-Elgamal S, Beckingham R, Hamilton M, Manghat N, Milano EG, Bucciarelli-Ducci C, Caputo M, Biglino G. Evaluating 3D-printed models of coronary anomalies: a survey among clinicians and researchers at a university hospital in the UK. BMJ Open 2019; 9:e025227. [PMID: 30852545 PMCID: PMC6430025 DOI: 10.1136/bmjopen-2018-025227] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To evaluate the feasibility of three-dimensional (3D) printing models of coronary artery anomalies based on cardiac CT data and explore their potential for clinical applications. DESIGN Cardiac CT datasets of patients with various coronary artery anomalies (n=8) were retrospectively reviewed and processed, reconstructing detailed 3D models to be printed in-house with a desktop 3D printer (Form 2, Formlabs) using white resin. SETTING A University Hospital (division of cardiology) in the UK. PARTICIPANTS The CT scans, first and then 3D-printed models were presented to groups of clinicians (n=8) and cardiovascular researchers (n=9). INTERVENTION Participants were asked to assess different features of the 3D models and to rate the models' overall potential usefulness. OUTCOME MEASURES Models were rated according to clarity of anatomical detail, insight into the coronary abnormality, overall perceived usefulness and comparison to CT scans. Assessment of model characteristics used Likert-type questions (5-point scale from 'strongly disagree' to 'strongly agree') or a 10-point rating (from 0, lowest, to 10, highest). The questionnaire included a feedback form summarising overall usefulness. Participants' imaging experience (in a number of years) was also recorded. RESULTS All models were reconstructed and printed successfully, with accurate details showing coronary anatomy (eg, anomalous coronary artery, coronary roofing or coronary aneurysm in a patient with Kawasaki syndrome). All clinicians and researchers provided feedback, with both groups finding the models helpful in displaying coronary artery anatomy and abnormalities, and complementary to viewing 3D CT scans. The clinicians' group, who had substantially more imaging expertise, provided more enthusiastic ratings in terms of models' clarity, usefulness and future use on average. CONCLUSIONS 3D-printed heart models can be feasibly used to recreate coronary artery anatomy and enhance understanding of coronary abnormalities. Future studies can evaluate their cost-effectiveness, as well as potentially explore other printing techniques and materials.
Collapse
Affiliation(s)
- Matthew Lee
- Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Moharem-Elgamal
- National Heart Institute, Giza, Egypt
- University Hospitals Bristol, NHS Foundation Trust, Bristol, UK
| | | | - Mark Hamilton
- University Hospitals Bristol, NHS Foundation Trust, Bristol, UK
| | - Nathan Manghat
- University Hospitals Bristol, NHS Foundation Trust, Bristol, UK
| | - Elena Giulia Milano
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
- Cardiorespiratory Division, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Chiara Bucciarelli-Ducci
- Bristol Medical School, University of Bristol, Bristol, UK
- University Hospitals Bristol, NHS Foundation Trust, Bristol, UK
| | - Massimo Caputo
- Bristol Medical School, University of Bristol, Bristol, UK
- University Hospitals Bristol, NHS Foundation Trust, Bristol, UK
| | - Giovanni Biglino
- Bristol Medical School, University of Bristol, Bristol, UK
- University Hospitals Bristol, NHS Foundation Trust, Bristol, UK
- Cardiorespiratory Division, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| |
Collapse
|