1
|
Liang X, Deng H, Bai Y, Fan TP, Zheng X, Cai Y. Highly efficient biosynthesis of spermidine from L-homoserine and putrescine using an engineered Escherichia coli with NADPH self-sufficient system. Appl Microbiol Biotechnol 2022; 106:5479-5493. [PMID: 35931895 DOI: 10.1007/s00253-022-12110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Spermidine is an important polyamine that can be used for the synthesis of various bioactive compounds in the food and pharmaceutical fields. In this study, a novel efficient whole-cell biocatalytic method with an NADPH self-sufficient cycle for spermidine biosynthesis was designed and constructed by co-expressing homoserine dehydrogenase (HSD), carboxyspermidine dehydrogenase (CASDH), and carboxyspermidine decarboxylase (CASDC). First, the enzyme-substrate coupled cofactor regeneration system from co-expression of NADP+-dependent ScHSD and NADPH-dependent AfCASDH exactly provides an efficient method for cofactor cycling. Second, we identified and characterized a putative CASDC with high decarboxylase activity from Butyrivibrio crossotus DSM 2876; it showed an optimum temperature of 35 °C and an optimum pH of 7.0, which make it better suited for the designed synthetic route. Subsequently, the protein expression level of each enzyme was optimized through the variation of the gene copy number, and a whole-cell catalyst with high catalytic efficiency was constructed successfully. Finally, a yield of 28.6 mM of spermidine was produced in a 1-L scale of E. coli whole-cell catalytic system with a 95.3% molar conversion rate after optimization of temperature, the ratio of catalyst-to-substrate, and the amount of NADP+, and a productivity of 0.17 g·L-1·h-1 was achieved. In summary, this novel pathway of constructing a whole-cell catalytic system from L-homoserine and putrescine could provide a green alternative method for the efficient synthesis of spermidine. KEY POINTS: • A novel pathway for spermidine biosynthesis was developed in Escherichia coli. • The enzyme-substrate coupled system provides an NADPH self-sufficient cycle. • Spermidine with 28.6 mM was obtained using an optimized whole-cell system.
Collapse
Affiliation(s)
- Xinxin Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1T, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
2
|
Conformational changes in the catalytic region are responsible for heat-induced activation of hyperthermophilic homoserine dehydrogenase. Commun Biol 2022; 5:704. [PMID: 35835834 PMCID: PMC9283420 DOI: 10.1038/s42003-022-03656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
When overexpressed as an immature enzyme in the mesophilic bacterium Escherichia coli, recombinant homoserine dehydrogenase from the hyperthermophilic archaeon Sulfurisphaera tokodaii (StHSD) was markedly activated by heat treatment. Both the apo- and holo-forms of the immature enzyme were successively crystallized, and the two structures were determined. Comparison among the structures of the immature enzyme and previously reported structures of mature enzymes revealed that a conformational change in a flexible part (residues 160-190) of the enzyme, which encloses substrates within the substrate-binding pocket, is smaller in the immature enzyme. The immature enzyme, but not the mature enzyme, formed a complex that included NADP+, despite its absence during crystallization. This indicates that the opening to the substrate-binding pocket in the immature enzyme is not sufficient for substrate-binding, efficient catalytic turnover or release of NADP+. Thus, specific conformational changes within the catalytic region appear to be responsible for heat-induced activation.
Collapse
|
3
|
Liang X, Deng H, Bai Y, Fan TP, Zheng X, Cai Y. Characterization of a novel type homoserine dehydrogenase with high oxidation activity from Arthrobacter nicotinovorans. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Expression, purification, and biochemical characterization of an NAD +-dependent homoserine dehydrogenase from the symbiotic Polynucleobacter necessarius subsp. necessarius. Protein Expr Purif 2021; 188:105977. [PMID: 34547433 DOI: 10.1016/j.pep.2021.105977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022]
Abstract
Homoserine dehydrogenase (HSD), encoded by the hom gene, is a key enzyme in the aspartate pathway, which reversibly catalyzes the conversion of l-aspartate β-semialdehyde to l-homoserine (l-Hse), using either NAD(H) or NADP(H) as a coenzyme. In this work, we presented the first characterization of the HSD from the symbiotic Polynucleobacter necessaries subsp. necessarius (PnHSD) produced in Escherichia coli. Sequence analysis showed that PnHSD is an ACT domain-containing monofunctional HSD with 436 amnio acid residues. SDS-PAGE and Western blot demonstrated that PnHSD could be overexpressed in E. coli BL21(DE3) cell as a soluble form by using SUMO fusion technique. It could be purified to apparent homogeneity for biochemical characterization. Size-exclusion chromatography revealed that the purified PnHSD has a native molecular mass of ∼160 kDa, indicating a homotetrameric structure. The oxidation activity of PnHSD was studied in this work. Kinetic analysis revealed that PnHSD displayed an up to 1460-fold preference for NAD+ over NADP+, in contrast to its homologs. The purified PnHSD displayed maximal activity at 35 °C and pH 11. Similar to its NAD+-dependent homolog, neither NaCl and KCl activation nor L-Thr inhibition on the enzymatic activity of PnHSD was observed. These results will contribute to a better understanding of the coenzyme specificity of the HSD family and the aspartate pathway of P. necessarius.
Collapse
|
5
|
Tang W, Dong X, Meng J, Feng Y, Xie M, Xu H, Song P. Biochemical characterization and redesign of the coenzyme specificity of a novel monofunctional NAD +-dependent homoserine dehydrogenase from the human pathogen Neisseria gonorrhoeae. Protein Expr Purif 2021; 186:105909. [PMID: 34022392 DOI: 10.1016/j.pep.2021.105909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022]
Abstract
Gonorrhoea, caused by Neisseria gonorrhoeae, is a major global public health concern. Homoserine dehydrogenase (HSD), a key enzyme in the aspartate pathway, is a promising metabolic target against pathogenic infections. In this study, a monofunctional HSD from N. gonorrhoeae (NgHSD) was overexpressed in Escherichia coli and purified to >95% homogeneity for biochemical characterization. Unlike the classic dimeric structure, the purified recombinant NgHSD exists as a tetramer in solution. We determined the enzymatic activity of recombinant NgHSD for l-homoserine oxidation, which revealed that this enzyme was NAD+ dependent, with an approximate 479-fold (kcat/Km) preference for NAD+ over NADP+, and that optimal activity for l-homoserine oxidation occurred at pH 10.5 and 40 °C. At 800 mM, neither NaCl nor KCl increased the activity of NgHSD, in contrast to the behavior of several reported NAD+-independent homologs. Moreover, threonine did not markedly inhibit the oxidation activity of NgHSD. To gain insight into the cofactor specificity, site-directed mutagenesis was used to alter coenzyme specificity. The double mutant L45R/S46R, showing the highest affinity for NADP+, caused a shift in coenzyme preference from NAD+ to NADP+ by a factor of ~974, with a catalytic efficiency comparable with naturally occurring NAD+-independent homologs. Collectively, our results should allow the exploration of drugs targeting NgHSD to treat gonococcal infections and contribute to the prediction of the coenzyme specificity of novel HSDs.
Collapse
Affiliation(s)
- Wanggang Tang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China.
| | - Xue Dong
- Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Jiang Meng
- Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Yanan Feng
- Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Manman Xie
- Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Haonan Xu
- Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui, 233030, China
| | - Ping Song
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
6
|
Kim DH, Nguyen QT, Ko, GS, Yang JK. Molecular and Enzymatic Features of Homoserine Dehydrogenase from Bacillus subtilis. J Microbiol Biotechnol 2020; 30:1905-1911. [PMID: 33046675 PMCID: PMC9728202 DOI: 10.4014/jmb.2004.04060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
Homoserine dehydrogenase (HSD) catalyzes the reversible conversion of L-aspartate-4- semialdehyde to L-homoserine in the aspartate pathway for the biosynthesis of lysine, methionine, threonine, and isoleucine. HSD has attracted great attention for medical and industrial purposes due to its recognized application in the development of pesticides and is being utilized in the large scale production of L-lysine. In this study, HSD from Bacillus subtilis (BsHSD) was overexpressed in Escherichia coli and purified to homogeneity for biochemical characterization. We examined the enzymatic activity of BsHSD for L-homoserine oxidation and found that BsHSD exclusively prefers NADP+ to NAD+ and that its activity was maximal at pH 9.0 and in the presence of 0.4 M NaCl. By kinetic analysis, Km values for L-homoserine and NADP+ were found to be 35.08 ± 2.91 mM and 0.39 ± 0.05 mM, respectively, and the Vmax values were 2.72 ± 0.06 μmol/min-1 mg-1 and 2.79 ± 0.11 μmol/min-1 mg-1, respectively. The apparent molecular mass determined with size-exclusion chromatography indicated that BsHSD forms a tetramer, in contrast to the previously reported dimeric HSDs from other organisms. This novel oligomeric assembly can be attributed to the additional C-terminal ACT domain of BsHSD. Thermal denaturation monitoring by circular dichroism spectroscopy was used to determine its melting temperature, which was 54.8°C. The molecular and biochemical features of BsHSD revealed in this study may lay the foundation for future studies on amino acid metabolism and its application for industrial and medical purposes.
Collapse
Affiliation(s)
- Do Hyeon Kim
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Quyet Thang Nguyen
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea,Department of Information Communication, Materials, and Chemistry Convergence Technology, Soongsil University, Seoul 06978, Republic of Korea
| | - Gyeong Soo Ko,
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea
| | - Jin Kuk Yang
- Department of Chemistry, College of Natural Sciences, Soongsil University, Seoul 06978, Republic of Korea,Corresponding author Phone: +82-2-820-0433 Fax: +82-2-824-4383 E-mail:
| |
Collapse
|
7
|
Kim DH, Nguyen QT, Yang JK. Biochemical Characterization of Homoserine Dehydrogenase from
Pseudomonas aeruginosa. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Do Hyeon Kim
- Department of Chemistry, College of Natural SciencesSoongsil university Seoul 156‐743 South Korea
| | - Quyet Thang Nguyen
- Department of Chemistry, College of Natural SciencesSoongsil university Seoul 156‐743 South Korea
- Department of Information Communication, Materials, and Chemistry Convergence TechnologySoongsil university Seoul 156‐743 South Korea
| | - Jin Kuk Yang
- Department of Chemistry, College of Natural SciencesSoongsil university Seoul 156‐743 South Korea
| |
Collapse
|
8
|
Akai S, Ikushiro H, Sawai T, Yano T, Kamiya N, Miyahara I. The crystal structure of homoserine dehydrogenase complexed with l-homoserine and NADPH in a closed form. J Biochem 2019; 165:185-195. [PMID: 30423116 DOI: 10.1093/jb/mvy094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
Homoserine dehydrogenase from Thermus thermophilus (TtHSD) is a key enzyme in the aspartate pathway that catalyses the reversible conversion of l-aspartate-β-semialdehyde to l-homoserine (l-Hse) with NAD(P)H. We determined the crystal structures of unliganded TtHSD, TtHSD complexed with l-Hse and NADPH, and Lys99Ala and Lys195Ala mutant TtHSDs, which have no enzymatic activity, complexed with l-Hse and NADP+ at 1.83, 2.00, 1.87 and 1.93 Å resolutions, respectively. Binding of l-Hse and NADPH induced the conformational changes of TtHSD from an open to a closed form: the mobile loop containing Glu180 approached to fix l-Hse and NADPH, and both Lys99 and Lys195 could make hydrogen bonds with the hydroxy group of l-Hse. The ternary complex of TtHSDs in the closed form mimicked a Michaelis complex better than the previously reported open form structures from other species. In the crystal structure of Lys99Ala TtHSD, the productive geometry of the ternary complex was almost preserved with one new water molecule taking over the hydrogen bonds associated with Lys99, while the positions of Lys195 and l-Hse were significantly retained with those of the wild-type enzyme. These results propose new possibilities that Lys99 is the acid-base catalytic residue of HSDs.
Collapse
Affiliation(s)
- Shota Akai
- Graduate School of Science, Osaka City University, Osaka, Japan
| | - Hiroko Ikushiro
- Depertment of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Taiki Sawai
- Depertment of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Takato Yano
- Depertment of Biochemistry, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Nobuo Kamiya
- Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - Ikuko Miyahara
- Graduate School of Science, Osaka City University, Osaka, Japan
| |
Collapse
|
9
|
Ogata K, Yajima Y, Nakamura S, Kaneko R, Goto M, Ohshima T, Yoshimune K. Inhibition of homoserine dehydrogenase by formation of a cysteine-NAD covalent complex. Sci Rep 2018; 8:5749. [PMID: 29636528 PMCID: PMC5893615 DOI: 10.1038/s41598-018-24063-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/27/2018] [Indexed: 02/02/2023] Open
Abstract
Homoserine dehydrogenase (EC 1.1.1.3, HSD) is an important regulatory enzyme in the aspartate pathway, which mediates synthesis of methionine, threonine and isoleucine from aspartate. Here, HSD from the hyperthermophilic archaeon Sulfolobus tokodaii (StHSD) was found to be inhibited by cysteine, which acted as a competitive inhibitor of homoserine with a Ki of 11 μM and uncompetitive an inhibitor of NAD and NADP with Ki's of 0.55 and 1.2 mM, respectively. Initial velocity and product (NADH) inhibition analyses of homoserine oxidation indicated that StHSD first binds NAD and then homoserine through a sequentially ordered mechanism. This suggests that feedback inhibition of StHSD by cysteine occurs through the formation of an enzyme-NAD-cysteine complex. Structural analysis of StHSD complexed with cysteine and NAD revealed that cysteine situates within the homoserine binding site. The distance between the sulfur atom of cysteine and the C4 atom of the nicotinamide ring was approximately 1.9 Å, close enough to form a covalent bond. The UV absorption-difference spectrum of StHSD with and without cysteine in the presence of NAD, exhibited a peak at 325 nm, which also suggests formation of a covalent bond between cysteine and the nicotinamide ring.
Collapse
Affiliation(s)
- Kohei Ogata
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1, Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yui Yajima
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 1-2-1, Izumichou, Narashino, Chiba, 275-8575, Japan
| | - Sanenori Nakamura
- Department of Applied Molecular Chemistry, Graduate School of Industrial Technology, Nihon University, 1-2-1, Izumichou, Narashino, Chiba, 275-8575, Japan
| | - Ryosuke Kaneko
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1, Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Masaru Goto
- Department of Biomolecular Science, Graduate School of Science, Toho University, 2-2-1, Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1, Ohmiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Kazuaki Yoshimune
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, 1-2-1, Izumichou, Narashino, Chiba, 275-8575, Japan. .,Department of Applied Molecular Chemistry, Graduate School of Industrial Technology, Nihon University, 1-2-1, Izumichou, Narashino, Chiba, 275-8575, Japan.
| |
Collapse
|
10
|
Yoneda K, Sakuraba H, Araki T, Ohshima T. Crystal structure of the NADP + and tartrate-bound complex of L-serine 3-dehydrogenase from the hyperthermophilic archaeon Pyrobaculum calidifontis. Extremophiles 2018; 22:395-405. [PMID: 29353380 DOI: 10.1007/s00792-018-1004-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
A gene encoding L-serine dehydrogenase (L-SerDH) that exhibits extremely low sequence identity to the Agrobacterium tumefaciens L-SerDH was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The predicted amino acid sequence showed 36% identity with that of Pseudomonas aeruginosa L-SerDH, suggesting that P. calidifontis L-SerDH is a novel type of L-SerDH, like Ps. aeruginosa L-SerDH. The overexpressed enzyme appears to be the most thermostable L-SerDH described to date, and no loss of activity was observed by incubation for 30 min at temperatures up to 100 °C. The enzyme showed substantial reactivity towards D-serine, in addition to L-serine. Two different crystal structures of P. calidifontis L-SerDH were determined using the Se-MAD and MR method: the structure in complex with NADP+/sulfate ion at 1.18 Å and the structure in complex with NADP+/L-tartrate (substrate analog) at 1.57 Å. The fold of the catalytic domain showed similarity with that of Ps. aeruginosa L-SerDH. However, the active site structure significantly differed between the two enzymes. Based on the structure of the tartrate, L- and D-serine and 3-hydroxypropionate molecules were modeled into the active site and the substrate binding modes were estimated. A structural comparison suggests that the wide cavity at the substrate binding site is likely responsible for the high reactivity of the enzyme toward both L- and D-serine enantiomers. This is the first description of the structure of the novel type of L-SerDH with bound NADP+ and substrate analog, and it provides new insight into the substrate binding mechanism of L-SerDH. The results obtained here may be very informative for the creation of L- or D-serine-specific SerDH by protein engineering.
Collapse
Affiliation(s)
- Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto, Kumamoto, 862-8652, Japan.
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Tomohiro Araki
- Department of Bioscience, School of Agriculture, Tokai University, 9-1-1 Toroku, Higashi-ku, Kumamoto, Kumamoto, 862-8652, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka, 535-8585, Japan
| |
Collapse
|
11
|
Hayashi J, Yamamoto K, Yoneda K, Ohshima T, Sakuraba H. Unique coenzyme binding mode of hyperthermophilic archaeal sn-glycerol-1-phosphate dehydrogenase from Pyrobaculum calidifontis. Proteins 2016; 84:1786-1796. [PMID: 27616573 DOI: 10.1002/prot.25161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/08/2016] [Accepted: 09/02/2016] [Indexed: 11/08/2022]
Abstract
A gene encoding an sn-glycerol-1-phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax ) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 Å. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2' of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild-type enzyme with NADPH, which suggests that the biased interactions around the C2'-phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)-dependent dehydrogenases. Proteins 2016; 84:1786-1796. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Junji Hayashi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Kaori Yamamoto
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| | - Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto, 869-1404, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka, 535-8585, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa, 761-0795, Japan
| |
Collapse
|
12
|
Gohara DW, Di Cera E. Molecular Mechanisms of Enzyme Activation by Monovalent Cations. J Biol Chem 2016; 291:20840-20848. [PMID: 27462078 DOI: 10.1074/jbc.r116.737833] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Regulation of enzymes through metal ion complexation is widespread in biology and underscores a physiological need for stability and high catalytic activity that likely predated proteins in the RNA world. In addition to divalent metals such as Ca2+, Mg2+, and Zn2+, monovalent cations often function as efficient and selective promoters of catalysis. Advances in structural biology unravel a rich repertoire of molecular mechanisms for enzyme activation by Na+ and K+ Strategies range from short-range effects mediated by direct participation in substrate binding, to more distributed effects that propagate long-range to catalytic residues. This review addresses general considerations and examples.
Collapse
Affiliation(s)
- David W Gohara
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|